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Abstract

We propose the Facial Trait Code (FTC) to encode hu-
man facial images. The proposed FTC is motivated by the
discovery of some basic patterns existing in certain local fa-
cial features. We call these basic patterns Distinctive Trait
Patterns (DTP), which can be extracted from a large num-
ber of faces. We have also found that the fusion of these
DTP’s can accurately capture the appearance of a face.
The extraction of DTP involves clustering and boosting for
maximizing the discrimination between human faces. The
extracted DTP’s can be symbolized and used to make up
the n-ary facial trait codes. A given face can be encoded
at some prescribed facial traits to render an n-ary facial
trait code with each symbol in its codeword corresponding
to the closest DTP. We applied FTC to a face identifica-
tion and verification problems with 3575 facial images from
840 people under different illumination conditions, and it
yielded satisfactory results.

1. Introduction

Most 2D face recognition algorithms can be classified
into global approach, part-based approach, and some hy-
brid of both. A comprehensive survey is given in [25].
The global approach considers the whole facial area, mostly
from eyebrows to chin and ear to ear; while the part-based
extracts some local features, mostly eyes, nose, mouth, and
maybe others. Part-based approaches often start with some
feature extraction methods and are followed by classifica-
tion schemes. Liao and Li [14] extracted 17 local features
using the Elastic Graph Matching (EGM), and each of these
17 features has its own specific spot on a face, for example,
the corners of eyes, the ends of eyebrows, and the centers
of lips. Deformable graphs and dynamic programming are
used in [1] to determine eyes, nose, mouth, and chin. A
two-level hierarchical component classifier is proposed in
[10] to locate 14 feature patches in a face, and [9] shows

that face recognition using these 14 feature patches outper-
forms the same recognition method but using the whole face
as a global feature. Ivanov et. al. [11] extended this study
by experimenting with a few different recognition schemes
using this same set of 14 feature patches. Few have dif-
ferent perspective toward the definition of such local fea-
tures, as the features are perceivable to our nature, and
many part-based approaches have yielded promising per-
formance. More part-based approaches can be found in [3]
[19].

Some imperceivable local features, however, have been
emerging in recent years that have created some additional
dimension for the computer analysis of human faces. Using
the Adaboost algorithm, Viola and Jones [22] developed a
highly effective real-time face detector that utilizes a large
number of patches of different sizes, orientations, and loca-
tions across a face as the features for discriminating faces
from non-faces. Similar features are used again in [12] for
face recognition. To study the properties of these patch fea-
tures, we have carried out some experiments and found the
following interesting observations:

1. Some typical patterns seem to exist in many patch fea-
tures, and the number of patterns in one patch feature
can vary from one feature to another.

2. If the patterns in each patch feature are numerated, a
face can be represented by a series of numbers, each
of which shows the specific pattern of a specific patch
feature on that face. More importantly, the series of
numbers seems different for a different face.

These observations motivated our development of Facial
Trait Code (FTC). From an exhaustive set of the patch fea-
tures collected from a large number of faces, FTC extracts
those with relatively stronger strength in discriminating dif-
ferent faces. The extracted patch features are called facial
traits, and each facial trait has its own specific location, size,
and orientation on a face. The patterns in each facial trait
are determined using some clustering approach, and the re-
sulting patterns are then numerated. Given a face, one can
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Figure 1. Illustration of Facial Trait Code.

encode it using the numbers of the patterns at all facial traits
that best describes the appearance of this face. These num-
bers constitute the facial trait code for this face. An illustra-
tive example is given in Figure 1, where three facial traits
are shown in each of the three faces. According to FTC, the
faces can be encoded into [1, 2, 1], [3, 7, 4], and [9, 9, 6],
respectively.

Putting the facial trait patterns into codes has the follow-
ing advantages:

1. A face can be effectively denoted by a finite length of
codeword in which each symbol gives not just a spe-
cific facial trait with a fixed size and location, but also
the pattern in this facial trait that best describes the face
in that specific facial trait. This implies that the FTC
offers an effective descriptor to a given face.

2. Face identification and verification problems can be
formulated as code matching problems, and thus some
merits from coding perspective can be preserved. Er-
ror correcting is one such merit needed in the develop-
ment of the FTC, and more details will be given sub-
sequently.

3. Coding consists of encoding and decoding. The for-
mer transforms a face into a codeword, and the lat-
ter, according to the proposed FTC, transforms a code-
word to a subject in the gallery for face identification.
This is, however, just an option in the FTC decoding.
Our on-going research show that FTC decoding can be
made to generate faces with different levels of simi-
larity and some caricature faces that preserve certain
features of a real face. This implies that the FTC may
also be useful for other applications, for example in
animation or entertainment areas.

1.1. Related Works

A few works were proposed that put together coding and
facial recognition. Kittler et al [13] and Windeatt et at [23]
applied an Error Correcting Output Coding (ECOC) ap-
proach for face verification. This work shows that ECOC
can decompose a multi-classification problem into a set of
complimentary binary classification problems solvable by,
for example, MLP (Multi-Layer Perceptron) binary classi-
fiers. The input to the binary classifiers are the holistic fa-
cial features extracted using Principal Component Analysis
(PCA) and Linear Discriminant Analysis (LDA). The out-
put of the binary classifiers defines the ECOC feature space,
where the patterns of different faces are claimed to be well
separated. Followed by [13], Xie and Kumar proposed Face
Class Code (FCC) [24] to encode each subject’s facial class
into a binary string. They designed classifiers to discrimi-
nate ’1’ or ’0’ for each bit in the binary string for the deter-
mination of the class label. [24] aimed to fix the computa-
tionally expensive one-classifier-per-subject problem when
the number of subjects is large. Given an N -subject recog-
nition task that generally requires N binary classifiers, FCC
only creates log2(N) binary classifiers.

The proposed FTC is distinctive from all of the previous
works upon coding for facial recognition in following as-
pects. Firstly, the codes are developed from unperceivable
and local features. Secondly, each symbol in a codeword
denotes some specific pattern existing in a facial trait, i.e., a
local rectangle patch of a certain size and location. Thirdly,
the FTC is an n-ary codeword instead of the binary ones in
all the previous works. This paper begins with the spec-
ification of the FTC in Section 2 that elaborates how the
facial trait codes are determined and specified from a large
collection of faces. When the specification of the FTC is
determined, one can encode a given facial image and de-
code a FTC codeword for face recognition, and the details
are given in Section 3. The experimental setup and the
databases used for the performance evaluation is given in
Section 4. This paper ends at a conclusion in Section 5.

2. Extraction of Facial Traits and Their Pat-
terns

Given a facial image, one can specify a local patch by
a bounding box {x, y, w, h}, where x and y are the 2-D
pixel coordinates of this bounding box’s upper-left corner,
and w and h are the width and height of this bounding box,
respectively. If this bounding box is moved from left to right
and top to bottom in the face with a step size of ∆x and ∆y
pixels in each direction, one can obtain many patches with
the same size but different locations. If w and h can further
change from some small values to large values, we will end
up with some exhaustive set of local patches across the face.
Some similar set of such an exhaustive collection of local
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Figure 2. Illustration of some of the patches resulting from the
local patch selection scheme. The highlight areas in each face
indicates the location of the patches.

patches was used in [22] to determine the features good for
facial detection.

It can be seen that the number of the patches grows with
(1) the size of the facial image, (2) the size range of local
patches, and also (3) the reduction in the step size. The
above items (2) and (3) are size-and-step parameters. For
a given facial image, these size-and-step parameters can
be appropriately determined based on the spatial-frequency
contents of the facial image. Some of our research upon the
spatial frequency analysis of facial images are underway,
and the outcome will be reported later. The size-and-step
parameters in this paper are determined from some exper-
imental observations showing that the characteristics of a
face are mostly in the low spatial frequencies. These exper-
iments have determined the following size-and-step param-
eters for the local patches:

1. The patches with sizes less than 6% of the whole face
are ignored because these small patches carry less fre-
quency contents of the face and more high frequency
noises.

2. The patches with sizes between 6% and 16% of the
whole face are obtained with step sizes 1/3 of the
width w or the height h.

3. The patches with sizes larger than 16% of the whole
face are obtained with step sizes 1/5 of the width w or
the height h.

The above scheme will result in a couple thousands of
patches, some of them are overlapped with each other, for a
face with 80x100 pixels in size. Figure 2 illustrates some of
the resulting patches.

2.1. Pattern Clustering in Each Patch

Given a stack of K frontal facial images aligned by the
centers of both eyes, we can crop a stack of K correspond-
ing patch samples for each patch resulting from the above
local patch selection scheme. To cluster the K patch sam-
ples in each patch stack, we first extract their features us-
ing the Principal Component Analysis (PCA). Considering

the case that the K facial images can be from L subjects
(L ≤ K, i.e., one subject can have multiple facial samples),
in each patch stack we calculate the L mean facial images
for L subjects, and the Linear Discriminant Analysis (LDA)
is applied to determine the L most discriminant low dimen-
sional patch features. It is assumed that the L low dimen-
sional patch features in each patch stack can be modeled by
a Mixture of Gaussian (MoG), then the unsupervised clus-
tering algorithm proposed by Figueiredo and Jain [7] can be
applied to identify the MoG patterns in each patch stack.

The method given by Figueiredo and Jain [7], abbrevi-
ated as FJ algorithm in the following, can determine the
number of clusters in a mixture model for a given data
set, and avoid the drawbacks of the standard Expectation
Maximization (EM) algorithm such as the sensitivity to ini-
tialization and possible convergence to the parameter space
boundary. Instead of the often usual approach by choos-
ing one from a set of candidate models with different num-
bers of clusters, their method combines parameter estima-
tion and model selection in one single algorithm. If there
are M patch stacks, then the FJ algorithm can be applied to
cluster the L low dimensional patch features into ki clus-
ters in the i-th patch stack, where i = 1, 2, ...,M . The ki

clusters in the i-th patch stack are considered the patterns
existing in the i-th patch stack, and will be called patch
patterns.

2.2. From Patches to Facial Traits

Basically M , the number of the local patches over a face,
is large. However, if the effectiveness of each patch in the
discrimination of the subjects whose faces were used to de-
termine the overall patch patterns can be compared and
ranked, this can give a way to reduce M . Those patches
with their patterns that are good at discriminating the sub-
jects will be called Facial Trait, and the corresponding
patch patterns will be called Distinctive Traits Patterns.

To extract the facial trait, one must come up with a mea-
sure able to assess each patch’s effectiveness for face dis-
crimination. This measure can be defined via a matrix,
called Patch Pattern Map or PPM for short. PPM is de-
fined for each different patch, and it shows which subjects’
faces reveal the same pattern at that specific local patch. Let
PPMi denote the PPM for the i-th patch, i = 1, 2, ...,M .
PPMi will be L× L in dimension in the case with L sub-
jects, and the entry at (p, q), denoted as PPMi(p, q), is de-
fined as follows:

PPMi(p, q) =


0 if the patches on the faces of the

p-th and the q-th subjects are
clustered into the same
patch pattern

1 otherwise
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Given N patches and their associated PPMi’s stacked
to form a L × L × N dimensional array, there are L(L−1)

2
N -dimensional binary vectors along the depth of this array
because each PPMi is symmetric matrix and one can con-
sider the lower triangular part of it. Let vp,q (1 ≤ q <
p ≤ L) denote one of the N -dimensional binary vectors,
then vp,q reveals the local similarity between the p-th and
the q-th subjects in terms of these N local patches. More
unities in vp,q indicates more differences between this pair
of subjects, and on the contrary, more zeros shows more
similarities.

The binary vector vp,q motivates our application of the
Error Correcting Output Code (ECOC) [6] to this research.
If each subject’s face is encoded using the most discrim-
inant patches, or the facial traits, then the induced set of
[vp,q]1≤q<p≤L can be used to define the minimum and max-
imum Hamming distance among all encoded faces in the
corresponding code space. The vp,q with the least (most)
of unities gives the minimum (maximum) Hamming dis-
tance. To maximize the robustness against possible recogni-
tion errors in the decoding phase, we propose an Adaboost
algorithm to maximize the dmin, the minimum Hamming
distance, for the determination of the facial traits from the
overall patches. This algorithm is summarized in Algorithm
1.

Algorithm 1 Extraction of Facial Trait Patterns
Require: PPMi, i = 1 ∼ M
Ensure: selected N facial traits that yield maximum dmin

F = {the set of M patches}; F̂ = {∅}
C(p, q) = 0; ω(p, q) = 1, where p = 1 ∼ L and q =
1 ∼ L
for t = 1 to N do

Normalizing the weight ω(p, q) = ω(p,q)∑
p,q ω(p,q) .

For every element fi ∈ F , α(fi) =∑
p,q PPMi(p, q)ω(p, q)

Select f̂t = arg maxi α(fi)
Update C(p, q) = C(p, q) + PPMi(p, q)
Calculate dmin(dmax), which is the mini-
mum(maximum) element in C(p, q)

ω(p, q) =

 L if C(p, q) = dmin

0 if C(p, q) = dmax

1 otherwise

Update sets F = F − f̂t and F̂ = F̂
⋃

f̂t.
end for

In Algorithm 1, F is the set of the overall patches, ini-
tially contains M patches. F̂ is the set of selected facial
traits, which will finally reach N traits in total. C is a L×L
dimensional array where C(p, q) gives the number of ones
in vp,q. ω is a weight array with the same dimension as that

of C, and ω(p, q) is the weight for the subject pair p and q.
In each run, the patch able to maximize the updated dmin is
selected as one new facial trait.

The N facial traits with their trait patterns symbolized
from 1, 2, ..., N define the basic structure of the proposed
Facial Trait Code. Each codeword in the FTC is of length N
and n-ary where n is the largest number of the trait patterns
found in one single trait. And the smallest distance between
codewords is dmin. In summary, given a set of frontal faces,
we can define N facial traits,

∑N
j=1 kj trait patterns, and∏N

j=1 kj faces (or FTC codewords).

3. FTC Encoding, Decoding, and Application
to Face Recognition

The following facial sets need to be defined so that one
can apply the proposed FTC for face recognition.

1. Trait Extraction Set: A large collection of neutral
frontal faces which best covers both genders and a
wide range of ages, races, and possibly other param-
eters. Those with variations caused by poses, illumi-
nations, and expressions are excluded. The facial trait
patterns and thus the facial trait codes are defined upon
such a set. This set specifies (1) the number of facial
traits, and thus the codeword length for a given face;
(2) the patterns in each facial trait, and thus the range
of each symbol in a codeword; (3) the location and the
size of each facial trait.

2. Trait Variation Set: This is the set that encompasses
the images with the variations excluded in the trait ex-
traction set. This set does not alter any specifications
given by the trait extraction set, but substantially en-
riches the spectrum of each predetermined trait pattern
by adding in samples with variations.

3. Gallery Set: This is the set that those enrolled used to
register their faces to a face recognition system. It is
allowed in the FTC and other algorithms that images
with the aforementioned variations can be included.

4. Probe Set: This is a disjoint set from the gallery set,
and is used to test the recognition rate and other perfor-
mance indices. This set includes the images of those
enrolled but taken at different time and conditions, and
also the images of those not enrolled. It often includes
images with a tremendous amount of the aforemen-
tioned variations.

With a pre-selected length of the FTC codeword, N , the
trait extraction set defines N facial traits of different sizes,
orientations, and locations, and also the patterns in each fa-
cial trait. Each facial trait pattern is tagged with a number,
which will be used as a symbol in the FTC codeword. In
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the FTC encoding, a given face is firstly decomposed into
N patches according to the specifications given by the N fa-
cial traits, and each patch is then classified into a specific fa-
cial trait pattern and numbered as the pattern tag. An SVM
(Support Vector Machines) classifier is used for the patch
classification1, and it is trained using both the trait extrac-
tion set and the trait variation set for encompassing possible
variations. The given face is therefore encoded into a n-ary
FTC codeword of length N .

In practice the images in the gallery set are firstly en-
coded into gallery codes. Given a probe, an image from the
probe set, it is also firstly encoded into a probe code. The
FTC decoding matches this probe code against all gallery
codes, and finds the ’closest’ one using the Hamming dis-
tance as the measure.

Given two codewords gc = [g1g2...gN ] and pc =
[p1p2...pN ], the Hamming distance can be easily interpreted
using the code difference dc = [d1d2...dN ] where

di =
{

0 if pi = gi

1 otherwise.

Then the Hamming distance between gc and pc is given by
the following,

D(gc,pc) =
N∑

i=1

di. (1)

4. Performance Evaluation–A Comparative
Study

4.1. Face Samples under Different Illumination
Conditions

To diversify the face samples in our experimental study,
we selected samples from some commonly used databases,
namely AR [15], FERET [18], FRGC [17], PIE [20],
XM2VTS [16], and an in-house one, called FVI (Face,
Voice and Iris) database. Only frontal faces with illumi-
nation variations were considered, and the whole selected
dataset consists of 840 subjects with 3575 facial images.
The details of the samples selected from the 6 databases are
given in Table 1.

All facial images were aligned to the centers of the eyes,
and normalized to 80x100 pixels in size. About 34%2 of the
3575 samples were considered with significant variations
caused by illumination. Figure 3 shows a few samples with
variations caused by illumination. To alleviate the impacts
made by illumination variations, all samples were processed
to have mean 128 and variance 10.

1We used libsvm [5] and applied the C-SVC SVM with a RBF kernel.
The associated parameters, C and γ were determined using the grid search
strategy for each trait.

234% gives 1216 facial samples.

Database #subjects #faces #face/subject
AR 126 1008 8

FERET 200 400 2
FRGC 191 876 1 ∼ 18

FVI 34 283 1 ∼ 18
PIE 43 344 8

XM2VTS 246 664 1 ∼ 4
total 840 3575 4.26

Table 1. Face samples selected from 6 benchmark databases.

Figure 3. Facial samples used in our experimental study.

4.2. Test Scenarios and Performance Comparison

To evaluate the FTC’s performance, two typical face
recognition tasks were carried out: identification and verifi-
cation. In identification, each probe image had one unique
match to identify in the gallery set. In verification, each
probe image with a claimed subject were both presented to
the verification algorithm, which would either accept or re-
ject the claim. A claim would be rejected when the probe
failed to match the claimed subject, no matter whether the
subject of the probe was in the gallery set or not.

To compare the FTC’s performance with others, we
implemented two methods using local facial features,
Heisele03 [9] and Ahonen06 [2], one algorithm using
ECOC, Kittler01 [13], and two baseline methods, Eigen-
face [21] and Fisherface [4]. The implementation of the
ECOC method [13] applied [127, 15, 27] binary BCH code
to generate the codewords. This 127-bit code was able to
correct up to 27 error bits. The FTC codeword was also
made to have 127 symbols from the 127 facial traits.

The experiments were carried out with the following four
setups with different partitions of the overall dataset.

1. Overall Identification: The whole set of 3575 facial
images was divided into two disjoint sets, Sg and Sp,
separated by the time when the images were taken. Sg

contained 1895 images from the overall 840 subjects
and Sp contained 1680 images from 777 subjects. The
subjects in Sp were all in Sg , and those with only one
image available were all in Sg . Sg was used as the
gallery set and Sp as the probe set.
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(a)

Figure 4. FTC identification performance with different numbers
of facial traits.

2. Subset Identification: To study the identification per-
formance with different sizes of datasets, three subsets
were randomly selected from Sg . Sg1 had 100 sub-
jects, Sg2 had 200 subjects, and Sg3 had 400 subjects.
The three corresponding probe sets, Sp1, Sp2, and Sp3

were also selected from Sp. This test was repeated for
more than 20 times to obtain some average statistics.

3. Subset Verification: The three probe sets Sp1, Sp2, and
Sp3 were used along with three disjoint but equal-sized
probe sets, Sq1, Sq2, and Sq3, respectively, to match
against Sg1, Sg2, and Sg3. Sq1, Sq2, and Sq3 were
used as imposters who were trying to break in using
false identities. This test was also repeated for more
than 20 times.

4. Generalization Test: This test was designed to eval-
uate the generalization performance of the FTC. The
840 subjects were randomly selected to form three dis-
joint sets, V1 had 440 subjects, V2 had 200 subjects,
and V3 had the rest 200 subjects. V2 was further par-
titioned into two disjoint subsets V2a and V2b, which
had the same subjects but with images taken at differ-
ent time. V1 was used as the trait extraction set and
trait variation set in the FTC, and also as the basis ex-
traction set for the approaches as PCA and LDA. When
the basis components were defined by V1, the faces in
V2a, V2b and V3 would be decomposed accordingly.
V2a was then used as the gallery set, V2b as the probe
set, and V3 as another probe set formed by imposters
only. V2a and V2b were used in identification test, and
with V3 added in for verification test. This test was re-
peated for at least 20 times for 4 different gallery sizes,
20, 40, 80, and 160.

With the first setup Overall Identification, figure 4 shows
the the FTC’s performance with different numbers of facial
traits, and thus with different length of codeword. It can be
seen that the identification rate increases with the number of
the facial traits, and it reaches some upper bound between
64 and 128 traits. If 127 traits were selected, we would end

Figure 5. An example of the FTC codebook.

up with a [127, 840, 41] FTC3, which could correct up to
41 error digits in the 127 symbol positions. The BCH code
proposed in Kittler01 in our experiment could only correct
27 error bits. We also found that the number of trait patterns
in each different trait was typically from 15 to 30. A few
major facial traits with their patterns are shown in figure 5.

Figure 6 (a) and (b) gives results for the Subset Identi-
fication and Subset Verification, respectively. The verifica-
tion performance was evaluated as the Hit Rate when the
False Acceptance Rate was 0.001. The most difficult test
scenario was given by the Generalization Test, and the iden-
tification and verification rates are shown in Figure 7 (a) and
(b), respectively. In both Figure 6 and 7, we use 127 facial
traits for the proposed FTC method and a 127-bit BCH code
for the algorithm Kittler01.

Our experiments have shown that the ECOC algorithm
Kittler01 performs well in most setups except the most
challenging Generalization Test. This is because its bina-
rization at each bit is determined solely by the BCH cod-
ing method, resulting in dichotomies irrelevant to the ap-
pearance of a human face. It sure fails in the generaliza-
tion test. In all our experiments, FTC outperformed other
methods, including Ahonen06, which drew some attention
in the face recognition community recently. FTC performed
better than Ahonen06 in the subset(generalization) test for
23.9%(15.8%) higher in the verification rate.

Table 2 summarizes the performance of all algorithms
evaluated in our experiments in terms of average identifica-
tion/verification rates. Heisele03 were not feasible for the
study of the generalization performance, and thus excluded
in this table.

3We denote a [N, M, dmin−1
2

] FTC as a code with M valid n-ary
codewords of length N . And the smallest distance between these M code-
words is dmin.
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(a) Subset Identification (b) Subset Verification

Figure 6. Experimental results. The x-axis is the number of subjects. The y-axis is the identification rate for (a), and verification rate for
(b).

(a) Generalization for Identification (b) Generalization for Verification

Figure 7. Experimental results. The x-axis is the number of subjects. The y-axis is the identification rate for (a), and verification rate for
(b).

Subset Generalization
algorithm ident. verif. ident. verif.

Eigenface [21] 78.8% 45.5% 81.9% 45.3%
Fisherface [4] 83.2% 50.8% 86.7% 59.7%
Kittler01 [13] 86.5% 81.3% 76.5% 48.2%
Heisele03 [9] 85.9% 75.7% n/a n/a

Ahonen06 [2] 89.9% 61.0% 90.4% 58.6%
FTC 89.9% 84.9% 91.3% 74.4%

Table 2. Performance summary of all tested algorithms.

5. Conclusion and Future Work

We propose a novel human face coding scheme called
Facial Trait Code in this paper. The proposed code cap-
tures the major patterns among local appearance of human
faces, and encodes faces into n-ary codewords accordingly.
The proposed code can be seen as a type of Error Correcting

Code, and its construction follows the principle of maximiz-
ing the error correcting capability. In the code space of the
proposed code, codewords of different humans are made far
away from each other. The resulting discriminative code-
words can be regarded as a new descriptor for human faces,
and it yield promising results for face verification and iden-
tification problems.

As mentioned in introduction, the decoding scheme de-
scribed in this paper is just an option for the FTC decod-
ing. For the face synthesis purpose, based on the fact that
each number in a given codeword refers to a trait pattern,
we can renders a facial image by mosaicing these trait pat-
terns from different locations and sizes. The mosaicing in-
volves averaging if a pixel location is overlapped by mul-
tiple patches, and smoothing at the edges of the patches to
produce a seamless face. We are current working on the
application of FTC to face synthesis.

Our future works also include handling faces under
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larger out-of-plane rotations. One better solution is to use
3-D facial data. It is worthy of mention that the proposed
algorithm can be extended to incorporate 3-D facial data
straightforwardly. The whole algorithm remains the same,
except that the raw features become range data instead of
image intensities.
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Appendix: Error-Correcting Property of the
ECOC

FTC inherits the error-correcting capability from the
ECOC. An (N,L, dmin) ECOC C is a set of L binary vec-
tors of dimension N , called codewords, such that the Ham-
ming distance between every pair of distinct codewords is
at least dmin. This code can correct at least (dmin−1

2 ) er-
ror bits. Since every codeword has distance at least dmin

from every other codeword, the closed Hamming balls of
radius (dmin−1

2 ) around each codeword are disjoint. Hence
if a binary vector y differs from some codeword x ∈ C in at
most (dmin−1

2 ) bit positions, then x is still the unique clos-
est codeword in C to y [8]. Consequently, an ECOC with
larger dmin is able to correct more error bits. It also means
that the L codewords in C are well separated in the Ham-
ming space of C.
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