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Abstract
We propose a novel approach for modelling correlations

between activities in a busy public space captured by multi-
ple non-overlapping and uncalibrated cameras. In our ap-
proach, each camera view is automatically decomposed into
semantic regions, across which different spatio-temporal
activity patterns are observed. A novel Cross Canonical
Correlation Analysis (xCCA) framework is formulated to
detect and quantify temporal and causal relationships be-
tween regional activities within and across camera views.
The approach accomplishes three tasks: (1) estimate the
spatial and temporal topology of the camera network; (2)
facilitate more robust and accurate person re-identification;
(3) perform global activity modelling and video temporal
segmentation by linking visual evidence collected across
camera views. Our approach differs from the state of the art
in that it does not rely on either intra or inter camera track-
ing. It therefore can be applied to even the most challenging
video surveillance settings featured with severe occlusions
and extremely low spatial and temporal resolutions. Its ef-
fectiveness is demonstrated using 153 hours of videos from
8 cameras installed in a busy underground station.

1. Introduction
A typical public space video surveillance system deploys

a network of cameras to monitor a wide-area scene, e.g.
underground station, airport, and shopping complex. For
global activity monitoring and situation awareness, it is cru-
cial to detect and model correlations among object activities
observed across camera views. Specifically, discovering
multi-camera activity correlations will lead to understand-
ing of both the spatial topology (i.e. between-camera spa-
tial relationships) and more importantly the temporal topol-
ogy of a camera network, that is, we wish to discover if
an activity takes place in one camera view, what other ac-
tivities it may cause in different camera views after what
time delay. Discovering and modelling such activity cor-
relations among multiple camera views from data directly
can facilitate person re-identification across disjoint camera
views [2, 3, 5–7, 14] and global activity analysis [9, 18, 21].

Previous multi-camera activity analysis methods [6, 12,

Figure 1. Three consecutive frames from a typical public space
CCTV video where at a frame rate of 0.7 fps, an object can pass
through the whole view in three frames.

16,18,21] rely on either intra-camera (within camera) track-
ing to detect exit and entry events for modelling transi-
tion time distribution, or both intra-camera tracking and
inter-camera (between cameras) object association to solve
the trajectory correspondence problem. To achieve intra-
camera tracking, these approaches assume reliable object
localisation and detection as well as smooth object move-
ment. However, both assumptions are largely invalid for
activities captured by CCTV cameras in public spaces typ-
ically with crowded scenes and low spatial and tempo-
ral resolution (Figure 1) 1. In a crowded environment,
the sheer number of objects with complex activities causes
severe inter-object occlusions continuously, making intra-
camera tracking difficult, if not impossible. The problem
is compounded by the low temporal resolution of surveil-
lance video, where large spatial displacement is observed in
moving objects between consecutive frames. Without reli-
able intra-camera tracking, one cannot detect exit and entry
events, required by existing techniques for both transition
time distribution modelling and inter-camera tracking.

In this work, we propose a novel approach for modelling
correlations between multi-camera activities without ei-
ther intra-camera tracking or inter-camera object correspon-
dence. In our approach, each camera view is automatically
decomposed into semantic regions, across which different
spatio-temporal activity patterns are observed. A novel
Cross Canonical Correlation Analysis (xCCA) framework
is formulated to discover and quantify temporal and causal
relationships of arbitrary order among these multi-camera
regional activities. The framework addresses three funda-
mental problems in distributed multi-camera networks: (1)

1Current surveillance systems rarely record videos of more than 5 fps
due to limited data bandwidth and storage space.
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estimate the spatial and temporal topology of a network of
disjoint and uncalibrated cameras; (2) facilitate more robust
and accurate person re-identification among different cam-
era views; (3) infer and model global activity, and perform
video temporal segmentation by correlating regional activi-
ties from different camera views.

To our knowledge, this study is the first attempt to infer
multi-camera activity correlation in a crowded scene with
low-frame rate video. This is made possible by analysing
the underlying spatial and temporal correlation of regional
activities, as opposed to object centred activities, without
relying on tracking. Moreover, the proposed approach is
novel in its ability to discover and quantify the temporal and
causal relationships of arbitrary order among local activities
across different camera views, and to provide global activity
inference from disjoint views. This approach is completely
unsupervised. Although we focus on disjoint and uncali-
brated cameras in this study, the proposed approach can be
readily used for camera views with any degrees of overlap-
ping. We demonstrate the effectiveness of the proposed ap-
proach using 153 hours of videos captured at 0.7 fps from
a busy underground station with eight camera views, all of
which feature crowded scene and complex activities.

2. Related Work
Most previous work on multi-camera activity analysis

with non-overlapping views focuses on two related issues:
(1) object re-identification (inter-camera object tracking)
[2, 6, 7, 14] and (2) camera network topology inference
[6, 12, 16]. To infer the topology of a network of non-
overlapping cameras, previous work generally follows two
approaches: (1) solving the inter-camera correspondence
problem by matching object visual appearance, velocity,
and transition time between cameras; (2) exploiting the dis-
tribution of transition times of entry and exit events without
inter-camera object correspondence.

Javed et al. [6] took the first approach which relies on
the availability of reliable visual features and motion trends
from targets to achieve inter-camera trajectory association.
Their method suffers from drastic feature variations across
camera views due to illumination changes, camera orienta-
tion, and dynamic appearance of clothing. Although various
strategies have been proposed [2, 7] to adapt and to rectify
the feature variations, the object correspondence/ trajectory
association problem remain a notoriously difficult problem.
The second approach was adopted by [12, 14, 16] to avoid
solving the correspondence problem by modelling the tran-
sition time between entry and exit events detected in differ-
ent camera views.

All existing topology inference methods are based on the
assumption that individual exit and entry events can be de-
tected given reliable intra-camera tracking. However, object
tracking in a busy public scene is far from being reliable es-

pecially when video’s spatial and temporal resolutions are
low. Our approach overcomes this problem by modelling
temporal and causal relationships among activities without
relying on either intra or inter camera tracking. This ap-
proach is scalable to multi-camera activity analysis even un-
der the most challenging public scene viewing conditions.

Beyond object re-identification and topology inference,
work on global activity analysis by linking visual evidence
from multi-camera views has also been reported more re-
cently [18, 21]. Zelniker et al. [21] stitch trajectories of the
same objects observed in different views to form so called
“global trajectories”, which is then followed by the same
trajectory clustering method developed for single view ac-
tivity analysis [17]. In contrast, Wang et al.’s method [18]
relies only on intra-camera tracking. Trajectories in differ-
ent camera views are grouped into global activities using a
topic model based on Latent Dirichlet Analysis (LDA), with
a restriction that only co-occurrence relationships between
activities can be modelled. The xCCA framework proposed
in this work is capable of capturing temporal and causal re-
lationships of arbitrary order. Moreover, unlike Wang et
al.’s method [18], our approach is able to cope with co-
existence of large number of objects both within and across
camera views.

3. Multi-Camera Activity Correlation
The proposed approach consists of two main compo-

nents: activity-based semantic scene decomposition and
Cross Canonical Correlation Analysis (xCCA) for global
activity topology inference. The overall framework is il-
lustrated in Figure 2.

3.1. Semantic Scene Decomposition

In a complex public space scenario, each camera view
naturally consists of multiple semantic regions. Activity
patterns observed within each region are similar to each
other whilst being dissimilar to those occurring in other re-
gions. For instance, in a train platform as shown in Fig-
ure 2(a), object activities differ significantly at the track
area, sitting areas, platform areas near the track and far away
from the track. It is therefore necessary to decompose each
camera view into semantic regions before correlation be-
tween activities across different regions and different cam-
era views can be established.

We aim to decomposing the scene observed by K cam-
eras into L semantic regions with each region being as-
signed a unique number ranging from 1 to L (Figure 2(c)).
Consequently, the kth camera view in the network contains
Lk semantic regions with Lk being determined automati-
cally and

∑K
k=1 Lk = L. To this end, we first divide each

camera view into blocks of 10 × 10 pixels (Figure 2(b)).
Foreground pixels are detected using a background sub-
traction method [15]. To cope with illumination changes,
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Figure 2. A diagram illustrating our multi-camera activity correlation approach.

we update the background model every fixed time interval
(5000 frames), and reduce the chroma noise by performing
colour correction in YUV colour space. Each foreground
pixel is classified as either static or moving via frame dif-
ferencing (e.g. sitting people are detected as static fore-
ground whilst passing-by people are detected as moving
foreground). A local pixel block activity pattern is then
represented as a time series signal composed of two com-
ponents: u = {ut : t ∈ τ}, where ut is the percentage of
static foreground pixels within the block at time t and τ is
the total number of frames used in the inference process;
and v = {vt : t ∈ τ}, where vt is the percentage of pixels
within the block that are classified as moving foreground.
Note that more sophisticated features such as optical flow
can be considered. However, given low spatial and tempo-
ral resolution, ut and vt are the only reliable features ex-
tractable.

After feature extraction, we group blocks into semantic
regions according to the similarity of local spatio-temporal
activity patterns represented as u and v. The grouping pro-
cess begins with computing correlation distances among lo-
cal activity patterns of each pair of blocks. A correlation
distance is defined as a dissimilarity metric derived from
Pearson’s correlation coefficient [11], given as r = 1− |r|.
In particular, r = 0 if two blocks have strongly correlated
local activity patterns, or r = 1 otherwise. Subsequently,
we construct an affinity matrix A ∈ RN×N , where N is the
total number blocks in the camera view, defined as:

Aij =


exp

(
− (ruij)

2

2σu
i σ

u
j

)
exp

(
− (rvij)

2
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(1)

The correlation distances of u and v between block i and
block j are given by ruij and rvij respectively. [σu

i , σ
u
j ] and

[σv
i , σ

v
j ] are the correlation scaling factors for ruij and rvij

respectively. The correlation scaling factors are defined as
the mean correlation distance between the current block and
all blocks within a radiusR. The 2-D coordinates of the two
blocks are denoted as bi and bj. Similar to the correlation
scaling factors, the spatial scaling factor σb is defined as
the mean spatial distance between the current block and all
blocks within the radiusR. Note that we only compare sim-
ilarity within a fixed radiusR to avoid under-fitting problem
during segmentation [10]. The affinity matrix is then nor-
malised according to A = D−

1
2 AD−

1
2 , where D is a di-

agonal matrix and Dii =
∑N
j=1Aij . A spectral clustering

algorithm [20] is then employed to segment each camera
view into semantic regions with the optimal number of re-
gions being determined automatically.

To facilitate a more precise topology inference, we re-
move any region that is populated by more than TH per-
centage of zero-activity (background) blocks. The percent-
age TH is set at 90% in this study. We note that the clus-
tering result is governed by the choice of R. From our ex-
periments, we found that consistent cluster formation is ob-
tained with R set between 20-30. Figure 2(c) shows some
examples of scene decomposition. It is evident that each
camera view is decomposed into semantically meaningful
regions such as train track areas and people sitting areas.

Our scene decomposition method is similar to that of Li
et al. [10] but with a noticeable modification on how local
activities are represented. Specifically, in our method lo-
cal activities are represented as time series and correlation
between them are used as the similarity measure. In com-
parison, a Bag of Words representation is adopted in [10],
which ignores the temporal order information of a local ac-
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tivity and is thus less discriminative than our representation.
Given scene decomposition, a regional spatio-temporal

activity observed over time is represented as a time-series
of two components û and v̂, obtained by averaging u and v
computed from each pixel block within a region.

3.2. Cross Canonical Correlation Analysis

For any pair of semantic regions in the entire camera
network, two questions are to be answered: (1) are ac-
tivities in these regions correlated? (2) if yes, what are
the temporal and causal relationships among them? Cor-
relations between regional activities across disjoint camera
views are complex in that there is often an arbitrary tempo-
ral gap/delay between the times when a causing activity in
one region taking place and the correlated/caused activity in
another region being observed. This temporal gap is mod-
elled as a temporal dependency of arbitrary order between
two time-series representing any two regional activities. To
this end, we formulate a new Cross Canonical Correlation
Analysis (xCCA) to measure the correlation of regional ac-
tivities as a function of an unknown time-lag applied to one
of the two regional activity time-series.

xCCA is an extension of Canonical Correlation Analy-
sis (CCA) proposed by Hotelling [4], with additional steps
similar in nature to the standard cross-correlation analysis
(xCA) [8]. This principally involves the shifting of one
time-series and computes its canonical correlation with the
other. Specifically, given two regional activity time series
denoted as x and y, CCA finds two sets of optimal basis
vectors wx and wy for x and y such that the correlation of
the projections of them onto the basis vectors are mutually
maximised. Let the linear combinations of canonical vari-
ates be x = wᵀ

xx and y = wᵀ
yy, The canonical correlation

ρ is defined as:

ρ = E[xy]√
E[x2]E[y2]

= E[wᵀ
xxyᵀwy ]√

E[wᵀ
xxxᵀwx]E[wᵀ

yyyᵀwy ]

= wᵀ
xCxywy√

wᵀ
xCxxwxwᵀ

yCyywy

, (2)

where Cxx and Cyy are the within-set covariance matri-
ces of x and y, respectively, whilst Cxy represents their
between-set covariance matrix. The maximisation can be
solved by setting the derivatives in Eqn. (2) to zero, yield-
ing the following eigenvalue equations:{

C−1
xxCxyC−1

yy Cyxwx = ρ2wx

C−1
yy CyxC−1

xxCxywy = ρ2wy
, (3)

where the eigenvalues ρ2 are the square canonical correla-
tions and the eigen vectors wx and wy are the basis vectors.
We only need to solve one of the eigenvalue equations since
the equations are related by:{

Cxywy = ρλxCxxwx

Cyxwx = ρλyCyywy
, (4)

where

λx = λ−1
y =

√
wᵀ
yCyywy

wᵀ
xCxxwx

. (5)

The canonical correlation ρ measures how strong x and
y are correlated in a co-current or zero-order sense. To mea-
sure correlations beyond zero-order, cross canonical corre-
lation zxy(t) is computed as a function of time-lag t:

zxy(t) =
E[wᵀ

xxy(t)ᵀwy(t)]√
E[wᵀ

xxxᵀwx]E[wᵀ
y(t)y(t)y(t)ᵀwy(t)]

, (6)

where y(t) is obtained by shifting y by t and t ∈ [1 −
τ, τ − 1], i.e. y can be shifted either forward or backward.
The maximum cross canonical correlation zmax

xy is then ob-
tained by locating the peak value in function zxy(t), whilst
the temporal delay of the two regional activities can be com-
puted as

T delay
xy = argmax

t
zxy(t). (7)

Our xCCA compares favourably to alternative correla-
tion analysis methods. One alternative approach is to repre-
sent each region as a node in a Bayesian network and learn
the optimal structure of the network. This can be achieved
by performing search over the space of candidate network
structures, using methods such as Markov Chain Monte
Carlo (MCMC) Bayesian network structure learning [13].
The strength of dependency between two regions can then
be represented by the frequency of an edge being selected
from the sampled structures. However, the learned structure
can only reveal zero-order temporal dependency, and thus
cannot cope with more complex (and higher order) correla-
tions that are common in a multi-camera scene. Another al-
ternative is the standard Cross Correlation Analysis (xCA).
Compared to xCA, xCCA is more capable of capturing the
underlying mutual patterns of two regional activity time se-
ries. This is because by projecting them into an optimal
subspace, it minimises the effect of pattern variations in-
troduced by different camera view angles and the temporal
delays between correlated activities across camera views.

3.3. Topology Inference

Given the ability to correlate regional activities, we wish
to infer a global activity topology, which reflects correla-
tions between all the semantic regions discovered in multi-
ple camera views. For now we do not consider time delays
of the correlated regional activities explicitly. That will be
addressed further in Sec. 3.5 on global activity modelling.
Instead we focus solely on the strength of the correlations.
Specifically, each region is denoted as a node in the global
activity topology. The thickness of an edge between any
two nodes is determined by zmax

xy and reflects the strength
of the correlation. An example of global activity topology is
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given in Figure 2(d). Once we have estimated the global ac-
tivity topology, the camera topology can be inferred. In the
camera topology, the edges between any two camera views
are computed by averaging the inter-camera regional activ-
ity correlations. To reduce the influence of noise, we only
consider the correlations greater than the mean inter-camera
regional activity correlation. An example of inferred cam-
era topology is given in Figure 2(e). Again, the thickness of
the edges encodes the strength of the correlations.

3.4. Context-aware Person Re-identification

A more robust person re-identification can be achieved
by incorporating the inferred global activity topology as
visual context. A simple colour histogram feature is em-
ployed here for person re-identification. Note that more so-
phisticated features can be used [2, 3], but our focus here is
to demonstrate the effectiveness of using the learned tem-
poral and causal relationships between regional activities
to reduce the search space and resolve ambiguities arisen
from similar visual features presented by different objects.
The similarity between two colour histograms Ha and Hb

is computed using Bhattacharyya score [1] as follows:

Sbha =
Nbin∑
i=1

√
Hi
aH

i
b. (8)

The number of bins Nbin used in a histogram is set to 256.
Each histogram bin is normalised using the total number
of pixels in the colour image. Note that in order to com-
pare two colour objects a and b, we must compute the Bhat-
tacharyya score for three RGB channels. Thus the overall
Bhattacharyya score Sbha is the average of similarity scores
computed in all three channels. To incorporate the output
of our Cross Canonical Correlation Analysis into the score
computation, we compute the overall score as follows:

Sab =
{
Sbhaz

max
ab if |ta,b| ∈ [|T delay

ab | ± 0.5T delay
ab ]

0 otherwise
,

(9)
where zmax

ab is the maximum cross-canonical correlation of
the two semantic regions occupied by object a and object
b respectively, ta,b is the time gap between the two objects
being observed (could be negative corresponding to b being
observed before a), and T delay

ab is computed using Eqn. (7).

3.5. Global Activity Modelling

Correlated activities across multiple camera views
should be modelled collectively. This is because by util-
ising visual evidence collected from different views, global
activity modelling is more robust to noise and visual ambi-
guities than modelling activities separately within individ-
ual camera views. Note that the global activity topology

(Fig. 2(d)) is only concerned with the correlations of re-
gional activities. It does not reveal either the contribution of
these regional activities to the global activities or the tempo-
ral dynamics of the global activities. We therefore need to
discover these global activities and build models for them.

A complex camera network can capture multiple global
activities occurring simultaneously. These global activities
are discovered and modelled by taking the following steps.
(1) A regional activity affinity matrix R ∈ RL×L is con-
structed, where L is the total number of regions in the cam-
era views, and:

Rij = zmax
ij (10)

where zmax
ij is the cross canonical correlation between the

ith and jth regions (see Sec. 3.2). (2) The same spectral
clustering algorithm used in Sec. 3.1 is employed using
R as input to discover global activities defined by corre-
lated regional activities across camera views. Specifically,
the formed clusters with the highest mean cross canoni-
cal correlations correspond to global activities composed of
strongly correlated regional activities. (3) One regional ac-
tivity in each cluster is set as the reference point to tempo-
rally align the activity patterns of other regions in the clus-
ter in accordance to the respective T delay

ij computed using
xCCA. (4) The aligned regional activity patterns in every
cluster, each represented as a 2-D time series (i.e. û and v̂),
are used as input to a Multi-Observation Hidden Markov
Model (MOHMM) [19] to model the temporal dynamic of
each global activity.

The learned MOHMM for each global activity can be
used for activity-based temporal segmentation. The objec-
tive is to segment a continuous video stream into phases
based on ‘what is happening’ not only in this particular view
but also in other correlated views [19]. To that end, for each
discovered global activity, the optimal number of hidden
states of the MOHMM is determined using Bayesian Infor-
mation Criterion (BIC). When applying the learned model
to unseen video streams, global activity phases are inferred
for real-time temporal segmentation using online filtering.

4. Experimental Results
4.1. Dataset

Our dataset contains synchronised and static views, from
eight uncalibrated and disjoint cameras installed in a busy
underground station. The video from each camera lasts over
19 hours from 5:28am to 12:58am the next day, giving a
total of 153 hours of video footage (or 384,000 frames) at
a frame rate of 0.7 fps. Each image frame has a size of
320 × 230. Two train platforms are covered by 3 cameras
each. The rest two cameras monitor a connected concourse,
which is far away from the two platforms. The samples of
each camera view and the topology are given in Figure 3.

All the scenes are crowded, especially during the peak
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Figure 3. The layout of the underground station with the camera locations. Entry and exit points are highlighted in red colour.

hours. This dataset is thus challenging in terms of having
enormous number of objects and low video frame rate. In
addition, the complex activities in the scene make global
activity analysis difficult. For example, there are trains to
different destinations using the same platform. Passengers
waiting on the platform thus may choose not to get on an
arrived train. In addition, the eight cameras only cover a
small section of this large station, which introduces addi-
tional uncertainty to the captured global activities.

4.2. Semantic Scene Decomposition

(a) Cam 1 (b) Cam 2 (c) Cam 3 (d) Cam 4

(e) Cam 5 (f) Cam 6 (g) Cam 7 (h) Cam 8

Figure 4. Semantic scene decomposition results.

(a) (b)

Figure 5. Better scene decomposition result (a) was obtained using
our correlation based distance metric, as compared to the result
obtained using histogram-based technique [10] (b).

We used 5000 frames (or 2 hours) from each camera for
activity correlation analysis. Figure 4 shows the results of
scene decomposition. Each camera view was automatically
segmented into semantic regions based on the local pixel
block activities, despite the heavy occlusion and low tem-
poral resolution. For example, the areas corresponding to
the train tracks and platforms were well isolated. The sit-
ting areas (regions 5 and 21) were also segmented from ar-
eas where people standing or walking. We performed com-
parison with the scene decomposition method introduced

in [10] and found that our method yielded more accurate
region boundary (Figure 5). As we explained in Sec. 3.1,
this is because our local activity representation captures the
temporal dynamics of activity while the Bag of Words based
representation in [10] ignores the temporal order of the ac-
tivity occurrences.

4.3. Multi-Camera Topology Inference

(a) xCCA (b) xCA (c) MCMC

Figure 6. Regional activity affinity matrices obtained using xCCA,
xCA and MCMC Bayesian network structure learning.

In the experiments on topology inference, we first com-
pared xCCA with xCA and MCMC Bayesian network
structure learning for learning regional activity correlation.
The regional activity affinity matrices (see Eqn. (10)) are
shown in Figure 6. From the xCCA affinity matrix shown in
Figure 6(a), it is evident that regions within the same cam-
era view exhibited high correlations, as expected. More im-
portantly, xCCA also correctly discovered correlation be-
tween regions across camera views. In comparison, xCA
tended to ‘over-correlate’ regions causing the detection of
correlations that do not exist. In contrast, MCMC Bayesian
network structure learning revealed few and also incorrect
correlations with a lot of missing detections.

The camera topologies yielded by different methods are
shown in Figure 7. From the results, we observe that
xCCA yielded the closest topology to the actual one. It is
not surprising to see that our xCCA outperformed MCMC
Bayesian network structure learning significantly. As we
discussed earlier, the learned structure using Bayesian net-
work structure learning can only reveal zero-order tempo-
ral dependencies, i.e. co-occurrence relationships, between
activities. Thus it cannot cope with more complex corre-
lations that are common in a multi-camera scene. xCCA
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(a) Actual (b) xCCA (c) xCA (d) MCMC (e) Full Frame

Figure 7. xCCA yielded the closest topology to the actual one as
compared to other methods. Figure (e) shows the topology in-
ferred using xCCA without scene decomposition. Only edges with
normalised correlation value larger than 0.8 are shown.

outperformed xCA due to its ability in capturing the under-
lying mutual patterns of two regional activity time series by
projecting them onto an optimal subspace. This is critical
for analysing a busy public space such as an underground
station where significant variations exist for correlated ac-
tivities in different views caused by different camera view
angles and uncertainties on activity time delays between
views.

To demonstrate the importance of semantic scene de-
composition on topology inference, we also performed
xCCA without scene decomposition, i.e. the activities
within each camera view as a whole are correlated with
those in other camera views to infer the camera topology.
The result is shown in Figure 7(e) which suggests that with-
out scene decomposition, even the proposed xCCA failed to
learned the correct camera topology.

All methods failed to infer the connection between cam-
era views 7 and 8 because the area in Cam 8 adjacent to
Cam 7 is too far away from the camera (at the end of the
concourse). In addition, there are four entry/exit points in
the field of view of Cam 7 leading to spaces not covered by
the 8 cameras (see Figure 3). This weakened the correlation
between these two camera views.

4.4. Context-aware Person Re-identification
In this experiment, we compared the recognition per-

formance of people across camera views using colour his-
togram (CH) alone, CH + xCA, and CH + xCCA. Note that
MCMC Bayesian network structure learning is not able to
quantify the temporal and causal relationship between two
correlated regions. It is thus not suitable for context-aware
person re-identification. Score returned by CH was com-
puted by Eqn. (8), whilst score returned by CH + other
methods were computed by Eqn. (9). In this evaluation, we
performed re-identification on 16 individuals against 298
persons with their blobs manually segmented.

The results are shown in Figure 8 and example matches
are given in Figure 9. It can be seen that the result yielded
by CH + xCCA was significantly better than that obtained
using CH alone and CH + xCA. In particular, CH + xCCA

yielded the best performance with approximately 68.75%
of the queries generated a true match in the top 20 rank,
compared to 43.75% and 25% using CH + xCA and CH
alone. Without considering the camera topology, each per-
son has to be compared against all possible candidates. On
the contrary, with the inferred topological information, the
search space and ambiguity were greatly reduced which has
resulted in better recognition rate. Our results also show
that CH + xCCA outperforms CH + xCA. This is because,
as demonstrated in Sec. 4.3, xCCA is able to learn the re-
gional activity correlations more accurately than xCA.

Figure 8. Performance comparison on person re-identification us-
ing colour histogram (CH) alone, CH + xCA, and CH + xCCA.

Figure 9. Example of matches using colour histogram (CH) alone,
CH + xCA and CH + xCCA. The left column is the query image,
and the remaining columns are the top matches ordered from left
to right. Matches that correspond to the queries are highlighted.

4.5. Activity-based Temporal Segmentation

Figure 10. Example of phases inferred using (a) single view ac-
tivity analysis without semantic scene decomposition, (b) single
view activity analysis with semantic scene decomposition, and (c)
global activity analysis. The ground truth is shown in (d). Y-axis
represents the inferred phases and X-axis represents the frame in-
dex. Only 2000 frames from the test set are shown.

Global activities were discovered by performing spec-
tral clustering on the regional activity affinity matrix (see
Figure 6). Two global activities are learned, corresponding
to the platform activities observed by Cam 1,2,3 and Cam
4,5,6 respectively. Due to space constraint, we only report
the temporal segmentation result on the platform activity
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(a) Phase 1 - train is absent (b) Phase 2 - train is present

Figure 11. Example frames from the phases inferred using global
activity analysis.

monitored by Cam 1,2,3. The segmentation result was com-
pared with those from individual single camera view with-
out semantic scene decomposition and from single camera
view with semantic scene decomposition.

We employed 5000 frames per camera to train a
MOHMM following the steps described in Sec. 3.5. The
test set consists of the rest of the videos (43000 frames per
camera). For all three methods, it turned out that two hid-
den states gave the best BIC score. The two phases have
clear semantic meaning: one phase corresponds to the pe-
riod when train is absent, whilst the other phase is the pe-
riod when train is present. We then compared the inferred
phases obtained using the three methods with the ground
truth. The accuracy yielded by single view analysis with-
out scene decomposition was 68.17%. The accuracy in-
creased to 86.71% after we employed scene decomposition
on the single view analysis, whilst the proposed method
based on global activity analysis gave 94.33%. Examples
of the inferred phases by different methods and some ex-
ample frames from the segmented phases are shown in Fig-
ure 10 and Figure 11 respectively. The results demonstrate
the effectiveness of our global activity modelling based on
the learning of regional activity correlations. In particular,
single view activity analysis was susceptible to noise and
visual ambiguities of activities during the occlusions and
low frame rate. The ambiguities were greatly reduced by
exploiting semantic scene decomposition. As compared to
single view activity analysis, our global activity modelling
utilises evidences collected from multiple correlated regions
across camera view. It has therefore further reduced visual
ambiguities, resulting in a more accurate segmentation re-
sult.

5. Conclusions
We presented a novel approach for multi-camera activ-

ity correlation analysis and global activity inference over a
distributed camera network of non-overlapping views. We
introduced a Cross Canonical Correlation Analysis frame-
work to detect and quantify temporal and causal relation-
ships between local semantic regions within and across
camera views. The approach addressed three fundamen-
tal problems in multi-camera activity analysis: (1) es-
timate the spatial and temporal topology of the camera
network; (2) facilitate more robust and accurate person
re-identification through context-awareness; (3) perform
global activity modelling and video temporal segmentation.
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