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Abstract

We consider the blind separation of source layers from
superimposed mixtures thereof, involving unknown motions
and unknown mixing coefficients of layers in each mixture.
Previous blind separation approaches for such problems as-
sume motions to be uniform translations, and hence are lim-
ited for real world applications. In this paper, we develop
a sparse blind separation algorithm to estimate both pa-
rameterized motions and mixing coefficients. Then, a novel
reconstruction approach is presented to recover all layers,
by utilizing not only the mixing model but also the statistical
properties of natural images. The whole method can han-
dle more general motions than translations, including scal-
ings, rotations and other transformations. In addition, the
number of layers is automatically identified, and all layers
can be recovered even in the under-determined case where
mixtures are fewer than layers. The effectiveness of this
technology is shown in the experiments on two simulated
mixtures of four layers, real photos containing transparency
and reflections, and real crossfade images from videos.

1. Introduction

When we take photos through a transparent surface, like

window glass, we often obtain superimposed mixtures of

two layers: one layer is the transmitted scene behind the

surface and the other is the reflected scene in front of the

surface. Such mixture images can seriously disturb human

perception, as well as many computer vision algorithms,

such as segmentation, tracking and object detection. Thus,

the need of separating and recovering the component layers

arises.

When only one mixture image is available, the separa-

tion is massively ill-posed (although Levin et al. [12, 13]

attempted it and then Levin and Weiss [11] developed a two-

layer separation system with user’s assistances, the system

is not automatic). However, when two or more mixtures are

available, automatic separation can be achieved by exploit-

ing the diversity of different mixtures. From one mixture

to another, some layer properties probably change. First,

layers may have relative motions because of the movements

of the camera, the glass surface or the target object. Such

movements may be inevitable (e.g., due to hand jitter), and

can be introduced deliberately for separation. Second, lay-

ers’ overall intensity may vary, since reflection angles alter

along with the movements, or due to the changes of cam-

era’s settings or lighting conditions. Such diversity will lead

to some changes of layers’ mixing coefficients. With sev-

eral different mixtures, our goal is to estimate the motions

and the mixing coefficients and then recover all layers.

A number of approaches have been proposed to separate

two-layer mixtures containing transparency and reflections.

On one hand, some methods perform independent compo-

nent analysis (ICA) [5, 6, 15, 17, 19] or utilize images with

different focus [16, 18]. Static mixing is assumed in these

methods. On the other hand, some technologies are pro-

posed to recover multiple motions from image sequences,

e.g., [4, 9, 10]. They focus on only motion recovery, with-

out considering layer restoration. A min/max alternative

method [20] is then developed to extract layers from mo-

tions (and it is extended for stereo matching in [21]). It

needs a large amount of images with motions of various di-

rections, and will meet the “degeneracy” problem [20] when

there are only two or several mixtures. Moreover, it assumes

fixed mixing coefficients, which can be easily violated by

the changes of reflection angles or camera settings.

Recently, blind source separation (BSS) technologies

show abilities to handle both relative motions and unknown

mixing coefficients. Be’ery and Yeredor propose 2D-AC-

DC [1, 2] to separate superimposed shifted images of two

layers, and Gai et al. develop another fast and reliable algo-

rithm named SPBSS [7] to handle such mixtures of multiple
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layers without the local optimum problem. Nevertheless,

these methods assume motions to be only uniform transla-

tions, and hence are limited to a small set of applications.

We develop a method to blindly separate mixtures con-

sisting of multiple layers with unknown motions and mixing

coefficients. Our method has a number of desirable proper-

ties. (1) It can deal with unknown mixing coefficients and

parameterized motions, including scalings, translations, ro-

tations and other transformations. (2) It can handle multi-

ple layers from only two mixtures. (3) Layers still can be

well reconstructed when the layer number is wrongly set by

users. (4) The layer number is automatically estimated. (5)

More layers can be well recovered from fewer mixtures.

Usually, the separation method contains two main parts,

one of which is to estimate the mixing model and the other

is to reconstruct the layers according to the mixing model.

This paper has contributions on both parts. In the first part,

a blind separation algorithm, named sparse blind separation

with unknown motions (SPBS-M), is presented to estimate

the parameterized motions and mixing coefficients. To the

best of our knowledge, the separation of mixtures with un-

known mixing coefficients and nonuniform motions has not

yet been addressed in open literature. Then, we develop an

approach to automatically identify the layer number, while

in most other methods the layer number has to be specified

by users. In the second part, previous reconstruction meth-

ods often have the “degeneracy” problem [2, 20], and thus

can not well recover layers in some usual cases. We present

a novel reconstruction approach, which takes advantages of

not only the mixing model but also statistical properties of

natural images, to completely solve this problem. The com-

bination of two parts enables completely automatic separa-

tion, even when the layer number is unknown, or in under-

determined cases where mixtures are fewer than layers.

The rest of this paper is organized as follows. Section 2

presents the problem formulation. Then, Section 3 proposes

SPBS-M algorithm, and the estimation of the layer number

is discussed in Section 4. Subsequently in Section 5, we

analyze the reason of “degeneracy”, and present a novel re-

construction approach. Section 6 shows the experiments on

two simulated mixtures of four layers, real photos contain-

ing transparency and reflections, and real crossfade images

from a video. Finally, we close with a conclusion.

2. Problem formulation
As discussed in Section 1, in each mixture, the layers

probably have unknown motions and unknown mixing co-

efficients. Here we assume linear mixing as in many other

methods (e.g., [2, 5, 7, 11, 20]), and formulate the mixing

model of m mixtures with n layers as:

Ii(x) =
∑n

j=1
aijLj

(
fij(x)

)
, i = 1, · · · , m, (1)

where Ii (i = 1, · · · ,m) is the ith mixture, Lj (j =
1, · · · , n) is the jth layer, and x = (x1, x2)� is a 2D in-

(Source layers) (Mixtures) (Gradients) (Separation)

Figure 1. Demonstration of the moving mixing and the sparsity.

teger vector that represents the pixel location. The mixing

coefficient and the motion transformation are described by

aij and fij(·), respectively. Without loss of generality, we

take the component layers in the first mixture as reference

layers, and thereby a1j = 1 and f1j(x) = x. For simplicity,

we use a matrix A to describe all mixing coefficients, and

A = [aij ] = [A�
1 , · · · , A�

n ]�.

Here only mixtures Ii are known, and the goal is to re-

cover all model parameters and the component layers. Note

that the mixing model is not space-invariant due to nonuni-

form motions. Such a non-space-invariant mixing problem

is very challenging. We resort to the statistic properties of

natural images to solve it.

Recently several studies have figured out the fact that

most natural images have sparse gradients [5, 11, 12]. The

sparsity denotes that only a small number of the gradients

in images are significantly different from zero. The gradi-

ents significantly different from zero are called significant
gradients, while others are called nonsignificant ones. The

significant gradients can be seen as edges of images. It is

also implied that most natural images have sparse edges.

A demonstration of the mixing model and the sparsity is

shown in Fig. 1. Column 1 shows 3 layers, and column 2

shows 3 mixtures of them. The motions in the demonstra-

tion have forms of affine transformations, as:

fij(x) = Kij x̃, (2)

where x̃ = (x1, x2, 1)� is the extended location vector, and

Kij is a 2 × 3 matrix. The parameters in the 3rd mixture

are as follows:
A3 = (1.05, 0.575, 1.75),

K31=

[
1 −0.05 −3

0.05 1 −4

]
, K32=K33=

[
0.998 0.05 1
−0.07 0.998 3

]
.

(3)

Although the 2nd and the 3rd layers have equivalent mo-

tions, they can be discriminated owing to different mixing

coefficients. Column 3 of Fig. 1 shows L2-norms of gra-

dients in mixtures. The gradients are sparse, as most pixels

are black. Images in column 4 are the separation results

from mixtures, by the proposed method in this paper.
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3. Sparse blind separation with motions
This section assumes that the numbers of mixtures and

layers are 2 and n, respectively, and presents an algorithm

of sparse blind separation with unknown motions (SPBS-

M) on 2 mixtures. Its extension to more mixtures and the

automatic estimation of the layer number will be discussed

in Section 3.5 and Section 4, respectively.

3.1. Hypotheses
For mathematical convenience, we use ∇(·) to denote

the gradient operator, and assume that the layer gradients

∇Li(x) (1 ≤ i ≤ n) are zero-mean processes. Then, we

give the following hypotheses:

1. Sparsity: ∀i, ∇Li is sparse.

2. Independence between layers: ∀x and y, when i �= j,

∇Li(x) and ∇Lj(y) are independent.

3. Independence on locations: ∀i, when x �= y, ∇Li(x)
and ∇Li(y) are independent.

In the first hypothesis, the sparsity of gradients is found

as properties of most natural images [5, 12]. Since different

layers derive from different scenes, the independence be-

tween layers can be satisfied in most cases (even when the

original layers are not independent, their gradients are usu-

ally independent [8]). In the perspective of filtering, the dis-

crete gradient operator can be seen as a combination of two

(vertical and horizontal) autoregressive (AR) filters, which

can greatly remove the dependence of image pixels on loca-

tions [8], and thus usually the last hypothesis also tends to

be met. We would like to emphasize that our algorithm is

robust, as shown in experiments, even when some hypothe-

ses are not well satisfied.

3.2. The motion object function
In order to search for correct motions, we move the first

mixture with a searching motion u(·). Consider the follow-

ing motion object function:

O(u) =
1

N

∣∣∣∑
x

〈
D

(
I1

(
u(x)

))
,∇I2(x)

〉∣∣∣ , (4)

where N denotes the pixel number, 〈·, ·〉 represents the inner

product of two vectors, and

D
(
I1

(
u(x)

))
=

dI1 (u(x))

dx
=

du�(x)

dx

(
∇I1

(
u(x)

))
. (5)

By use of the mixing model (1) and the independence be-

tween layers (assume the pixel number N is large enough),

the object function in (4) can be expanded as:

O(u) =
∣∣∣∑j a2jGj(u)

∣∣∣ , (6)

where

Gj(u) =
1

N

∑
x
∇�Lj

(
u(x)

)du(x)

dx�
df�

2j(x)

dx
∇Lj

(
f2j(x)

)
.

(7)
On one hand, when u(·) = f2j(·),
Gj(u)=

1

N

∑
x
∇�Lj

(
f2j(x)

)df2j(x)

dx�
df�

2j(x)

dx
∇Lj

(
f2j(x)

)
> 0, (8)

NCC between images Correlation between gradients

Figure 2. The motion object function.

where the summed term is a positive determined form

and the sum value will be significantly larger than zero.

On the other hand, when u(·) �= f2j(·), ∇Lj

(
u(x)

)
and

∇Lj

(
f2j(x)

)
are independent, and therefore

Gj(u) = 0. (9)

Being the weighted sum of Gj(u), O(u) is significantly

larger than zero when and only when u is equivalent with a

correct layer motion. Consequently, maximizing O(u) can

be used to search for layer motions.

We take planar and affine transformations for examples

to give detailed formulations of the motion object function

(4). Planar transformations can be written as:

u1(x) = p1 + p2x1 + p3x2 + p7x
2
1 + p8x1x2,

u2(x) = p4 + p5x1 + p6x2 + p7x1x2 + p8x
2
2,

(10)

where p1 and p4 are translation parameters, others are re-

specting linear and quadratic terms. Then we get:

u(x) = Pxe,
du�(x)

dx
= X(x)P�, (11)

where P is a parameter matrix, xe=(1, x1, x2, x
2
1, x1x2, x

2
2)

T,

and
X(x) =

[
0 1 0 2x1 x2 0
0 0 1 0 x1 2x2

]
. (12)

The motion object function for planar transformations is:

O(P ) =
1

N

∣∣∣∑
x
∇�I1

(
Pxe

)
· PX�(x) · ∇I2

(
x
)∣∣∣ . (13)

Affine transformations are also widely used, which assume

u(x) = Kx̃ = Ksx + kt, (14)

where Ks is a 2×2 shape matrix, and kt is a 2×1 translation

vector. So, the motion object for affine transformations is:

O(K) =
1

N

∣∣∣∑
x
∇�I1

(
Ksx + kt

)
· Ks · ∇I2

(
x
)∣∣∣ . (15)

Furthermore, if we restrict motions to be translations,

i.e., Ks = I , the motion object function (15) will become

the correlation between gradients. In Fig. 2, the right fig-

ure shows a motion object function in a three-layer shifted

superimposed case. As discussed, the motion object func-

tion has three sharp impulses (peaks), which can be used

to search for correct motions. The normalized cross corre-

lation (NCC) between original images is also shown in the

left figure. It does not have such properties, and its global

maximum value does not appear at any correct motion.

The gradient-based optimization technologies are not ad-

equate here, since the motion object function has zero gra-

dients almost everywhere. Thereby we use discrete search
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as it does not have the local optimum problem. Hierarchi-

cal methods [3] are also applied to speedup the searching.

We construct an image pyramid by a desampling factor as

2. Then, discrete search is performed from smaller image

level to bigger image level. At each level, we only search

new occurring motions near the one respecting the optimal

solution of the preceding level. Thereby, the motion number

to be searched at each level is not dependent on the origi-

nal pixel number N . One computation of motion object

function has a complexity of O(N), and the level number is

O(log N). In all, the whole complexity of the hierarchical

discrete search is O(N log N) (when the parameter number

in the motion transformation is a small constant).

Directly maximizing the motion object function only

gives one correct layer motion at the highest peak. Other

parameters are still unknown. Motivated by the scatter plot

method in [5, 7], we utilize sparsity to get other motions and

all mixing coefficients.

3.3. Estimating all parameters via sparsity

We use the subscript k to denote the kth element of a

vector, and expand derivative vectors used in (4), as:⎧⎪⎪⎨
⎪⎪⎩
Dk

(
I1

(
u(x)

))
=

∑
i�=j

∂u�(x)
∂xk

∇Li

(
u(x)

)
+∂u�(x)

∂xk
∇Lj

(
u(x)

)
∇kI2(x)=

∑
i�=j

a2i
∂f�

2i(x)
∂xk

∇Li

(
f2i(x)

)
+a2j

∂f�
2j(x)

∂xk
∇Lj

(
f2j(x)

),
(16)

where two terms respecting the jth layer are listed sep-

arately for analysis. Due to the independence and spar-

sity, we can get properties as follows. For any location x
where ∇Lj

(
u(x)

)
or ∇Lj

(
f2j(x)

)
is significant (i.e., sig-

nificantly different from zero), there is a high probability

that the gradients of other layers are nonsignificant, i.e.,

∇Li

(
g(x)

)
= 0 for any i (i �= j) and g. It means: for most

x ∈ Bj
.= {x|∇Lj

(
u(x)

)
or ∇Lj

(
f2j(x)

)
is significant},⎧⎨

⎩Dk

(
I1

(
u(x)

))
= ∂u�(x)

∂xk
∇Lj

(
u(x)

)
,

∇kI2(x)=a2j
∂f�

2j(x)

∂xk
∇Lj

(
f2j(x)

)
.

(17)

On one hand, if u is the same with f2j , for most x ∈ Bj ,

∇kI2(x) = a2jDk

(
I1

(
u(x)

))
. (18)

Thus, these 2D points
(
Dk

(
I1

(
u(x)

))
,∇kI2(x)

)
are on a

line with a slope of a2j . On the other hand, when u is not

the same with f2j , ∇Lj

(
u(x)

)
and ∇Lj

(
f2j(x)

)
are inde-

pendent, and hence most significant values of ∇Lj

(
u(x)

)
and ∇Lj

(
f2j(x)

)
do not appear simultaneously. Thereby,

the corresponding 2D points
(
Dk

(
I1

(
u(x)

))
,∇kI2(x)

)
are

on two axes.

For simplicity, if u is the same with a correct layer mo-

tion, we call the corresponding layer is matched by the

motion u. For all k and x we plot the 2D points of(
Dk

(
I1

(
u(x)

))
,∇kI2(x)

)
on a plane to get a scatter plot.

In the scatter plot, if there exist i (0 ≤ i ≤ n) layers

0

100

200

300

400

500

−π/2 0 π/20.81
0

50

100

150

200

250

−π/2 0 π/20.52 1.05

Figure 3. Illustration of feature lines. The scatter plots when

one layer is matched (Left top) and when two layers are matched

(Right top). The angular histograms respecting above scatter plots

(The medium row). Gradients of two mixtures after the first

matched layer of the aeroplane is eliminated (Left two images in

the bottom row). The extracted layer gradients (Right three images

in the bottom row).

matched by u, there will be i clusters along i lines with
slopes equal to the corresponding mixing coefficients. Such
lines are called feature lines. Besides, there are 2 additional

clusters on axes because of the unmatched layers. If we

map all the points in the scatter plot into the angular space

by arctan
(∇kI2(x)/Dk

(
I1

(
u(x)

)))
, in the correspond-

ing angular density plot there will be i + 3 peaks (Clusters

along axes will cause 3 peaks at: −π
2 , 0 and π

2 ). Two scatter

plots (based on the 1st and 3rd mixtures in Fig. 1) and the

corresponding angular density plots are shown in row 1 and

2 of Fig. 3: when there are one or two matched layers, in

the corresponding angular density plot there exist the same

number of clear peaks besides 3 axis peaks.

From above properties, we know that most edges (i.e.,

significant gradients) of unmatched layers are on axes in the

scatter plot, and edges of matched layers are not near axes.

When we find any correct layer motion, we can eliminate

gradients of matched layers from mixture gradients by set-

ting the gradients not near axes to be zero. Then, the next

maximization of the motion object function will go to the

motion of another layer. Such process can be done one by

one until we find n motion candidates, as follows.

1. Maximizing the motion object function (4) to find a

motion candidate c.

2. Set the gradients in mixtures that are not near axes in

the scatter plot of
(
Dk

(
I1

(
u(x)

))
,∇kI2(x)

)
to be zero.

3. Goto 1 until we have found n different candidates.

Fig. 3 shows two gradient images after one elimination.

The edges of the aeroplane layer have been perfectly elim-

inated, and the edges of other layers remain (for compari-

son, the original gradients can be found in the 1st and 3rd
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gradient images of Fig. 1). With such gradients, the next it-

eration will find the motion of other layers, rather than find

the motion of the aeroplane again.

With n motion candidates, we can produce n scatter

plots (when producing each scatter plot, we also can elimi-

nate the gradients matched by other candidates to make fea-

ture lines more clear). Then, “line clustering” algorithm [7]

can be used to detect scopes of feature lines matched by

each motion candidates. However, the difficulty is that we

do not known how many feature lines there exist in each

scatter plot. Given a candidate ci (1 ≤ i ≤ n), we use a

guess di as the number of feature lines, then implement line

clustering on the set of points
(
Dk

(
I1

(
ci(x)

))
,∇kI2(x)

)
,

and finally obtain a sum-of-squared error Eci(di) output by

line clustering. Like in k-means, Eci(di) has properties as

follows [7]. If di is smaller than the true underlying number

of feature lines, Eci(di) will be significantly large, other-

wise Eci(di) will be very small. So, we can determine the

number of matched layers by the following minimization

problem, as:

min
di

: L(d1, · · · , dn) =
∑n

i=1 Eci(di), (19)

s. t.
∑n

i=1 di = n, and ∀i, di ∈ Z
+ ∪ {0}.

L(d1, · · · , dn) gets minimal value when every guess di is no

smaller than the true underlying number. With restrictions

of nonnegativity and the sum value n, the minimal value

happens only when all di are the correct numbers.

The minimization problem (19) can be solved by dy-

namic programming and the global optimal solution can be

found within a time of O(n3) [7]. In practice, the layer

amount n is a very small constant, and O(n3) can also be

seen as a small constant. With the correct numbers of fea-

ture lines, all the corresponding mixing coefficients can be

given by line clustering. Now all parameters in the mixing

model have been obtained.

3.4. Extracting layer gradients

Because of the sparsity and independence, most of sig-

nificant gradients in the mixtures are contributed by only

one layer. So we can approximately estimate gradients of

layers by assigning gradients of the 1st mixture to them.

Then, there is a classifying problem: which layer should we

assign to? Based on preceding analysis, for any location

x, in the condition of ∇kLj(x) being significant, there is a

high probability that the point
(∇kI1(x), Dk

(
I2

(
f−1
2j (x)

)))
is on a feature line with a slope equal to a2j . According

to this property, for any given location x and subscript k,

we deicide the assignation by minimizing angular distances

between the corresponding points and feature lines, as fol-

lows:
idc(k, x) = arg min

j
a(k,x)(j), (20)

where a(k,x)(j) is the angular distance. It is defined as: for

1 ≤ j ≤ n,

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

Layer number n

Q
(n

)

1 2 3 4 5 6 7 8 9
0

2

4

6

8

Layer number n

T(
n)

Figure 4. Estimation of the layer number

a(k,x)(j)=

∣∣∣∣∣∣arctan

⎛
⎝Dk

(
I2

(
f−1
2j (x)

))
∇kI1(x)

⎞
⎠−arctan(a2j)

∣∣∣∣∣∣ , (21)

and for j = n + 1,

a(k,x)(j)=max
i

min
s=

−π
2,0, π

2

∣∣∣∣∣∣arctan

⎛
⎝Dk

(
I2

(
f−1
2i (x)

))
∇kI1(x)

⎞
⎠−s

∣∣∣∣∣∣ . (22)

The class n + 1 is an added class to denote that the

gradient does not belong to any layer. When idc(k, x)
= n + 1, the reason for this label is that for any i,(∇kI1(x), Dk

(
I2

(
f−1
2i (x)

)))
is near an axis, i.e., is not on

any feature line. Thus in this case ∇kI1(x) should not be as-

signed to any layer. When 1 ≤ idc ≤ n, we assign ∇kI1(x)

to ∇kLidc(x). Then we get estimated gradients of n layers,

as well as remaining gradients respecting class n+1.

The right three images in the bottom of Fig. 3 show the

extracted gradients from two mixtures. They clearly show

shapes of an aeroplane, Lena and vegetables, almost with-

out superimposition. Such extracted gradients will be used

to reconstruct original layers.

3.5. Extension to more mixtures

Given m mixtures, denoted by I1, · · · , Im, we apply the

sparse blind separation algorithm on two mixtures for m−1
times, each time on I1 and another mixture Ij (2 ≤ j ≤ m),

and get m − 1 results. Then extracted gradients are used to

match layer orders and the whole mixing model is obtained.

4. Estimating the layer number
Almost all previous approaches assume that the layer

number is known. In practice, only mixture images are

known, and in those methods the layer number needs to be

specified by users. See the multilayer mixtures in Fig. 1. It

is not easy for human to figure out the number. This section

discusses how to estimate the layer number, to make the

proposed approach be a completely automatic algorithm.

The remaining gradients (respecting the added class in

Section 3.4) that are not assigned to any layer can indicate

whether the layer number is correctly specified. Suppose

the remaining gradients are denoted by ∇Ir(x, n) when the

layer number is set as n, and we calculate the remaining

edge quantity R(n), as:

R(n) =
∑

x

‖∇Ir(x, n)‖2, i ≥ 0. (23)

Then, calculate the decreasing quantity Q(n):
Q(n) = R(n − 1) − R(n). (24)
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Q(n) denotes the quantity of new extracted gradients. The

left bar graph in Fig. 4 shows a demonstration of Q(n)
(based on the 1st and 2nd mixtures of Fig. 1 where the

correct layer number is 3). Q(n) is large when one true

layer is extracted, and is very small after all layers have

been extracted. Thus the true underlying layer number can

be estimated by maximizing the following function:

T (n) =
Q(n)

maxk>n Q(k)
. (25)

The corresponding T (n) is also shown in Fig. 4. The esti-

mated layer number is 3, the same with the true value.

In other perspectives, it can also be found that SPBS-M

is adaptive to the layer number. When the layer number is

wrongly specified by users, layers still can be well recon-

structed, which will be shown in the next section.

5. Reconstruction of source layers
With the mixing model known, the reconstruction step

is the final and crucial part for the separation. Some re-

searchers have focused on it. When motions are restricted

to translations, the frequency methods are used (e.g. in

[2, 7]). For more complex parameterized motions, Szeliski

et al. proposed a constrained least squares formulation [20].

Nevertheless, when applying the above methods, many re-

searchers found the “degeneracy” problem [2, 20]: although

the number of different mixtures is equal or larger than

the layer number, layers still can not be well reconstructed.

This section will give analyses and solutions.

5.1. Degeneracy of the mixing model

For convenience, we start at an example of two shifted

layers. Suppose one layer has a spatial shift of s, and

the other layer stays static, without any mixing coefficient

changed. Transfer such mixing model to frequency domain,

as: at any given frequency v,[
ft(I1)(v)
ft(I2)(v)

]
=

[
1 1

e−2jπs�v 1

] [
ft(L1)(v)
ft(L2)(v)

]
, (26)

where ft(·) denotes the Fourier transform, and j satisfies

j2 = −1. Note that at any frequency v that satisfies s�v
= 0, the frequency mixing matrix is singular. It means the

layer frequencies perpendicular to the relative shift direc-

tion are unrecoverable from the mixing model. The lack of

correct layer frequencies in the perpendicular direction will

cause serious straight stripes along the shift direction in the

reconstructed layers, as shown in some results of [1, 2, 20].

For other complex motions, there also exist damaged

stripes along motion directions (in every small patch, the

motion can be approximately seen as translations, so stripes

appear by the same reason). Such phenomena are called

the degeneracy of the mixing model. The substantial rea-

son is that the mixing model itself is not enough for com-

plete reconstruction in many usual cases, like the case of

two mixtures with relative motions and fixed mixing coeffi-

cients. Previous methods, which use only the mixing model,

inevitably can not well reconstruct layers is such cases.

5.2. Reconstruction using extracted gradients
Besides the mixing model, the SPBS-M algorithm also

offers the extracted gradients of every layer. These gradi-
ents show clear shapes of layers, and can greatly help the
reconstruction. So, we want to find layers that agree with
not only the mixing model but also the extracted gradients.
Consider the reconstruction loss function w.r.t. layers L:

J(l) = (1−β)
∑
i,x

s
(
Ii(x)

)(
Ii(x)−

∑
j

aijLj(fij(x))

)2

+ β
∑
j,x,k

g
(∣∣∣ej

k(x)
∣∣∣) ∣∣∣∇kLj(x) − ej

k(x)
∣∣∣ , (27)

where l is a large column vector consisting of all pixels of all

layers, and ej(x) denotes the extracted gradients of the jth

layers (by the method in Section 3.4). The first term tends to

meet the mixing model. s(y) is 1 when y < 255, otherwise

is 0 (for 8-bit images). It is used to discard saturated pixels

in mixtures. The last term enforces the agreement with the

extracted gradients. g(y) is a positive and monotonously in-

creasing function to enhance the agreement with significant

gradients. In our experiments, when y = 0, g(y) is 1 , oth-

erwise is 2. For most location x and subscript k, ej
k(x) is

0. So L1-norm form in the last term also implies that the

layers with sparse gradients are wanted. Finally, β is used

as a trade off coefficient between two terms.

In the first term of (27), the motion is a location to lo-

cation operation without any pixel value changed, and the

operation of mixing coefficients is only to linearly change

pixel values. Thereby the first term can be rewritten by a

matrix form as:
(Al − b)�(Al − b), (28)

where s(·) and (1−β) are also integrated. In the last term,

the discrete gradient operation is actually a combination of

the vertical and horizontal difference filters. This term can

also be transformed to a matrix form as:

‖El − c‖1. (29)

With the nonnegative constraint of layer intensity, mini-
mization of the reconstruction loss has a formulation as:

min
l

: J(l) = (Al − b)�(Al − b) + ‖El − c‖1, (30)

s. t. : l ≥ 0.

By introducing slack variables w, z+ and z−, the mini-
mization problem (30) becomes:

min
l,w,z+,z−

: w�w + 1�(z+ + z−), (31)

s. t. : Al − b = w,

El − c + z+ − z− = 0,

z+ ≥ 0, z− ≥ 0, l ≥ 0.

The above problem can be solved by quadratic program-

ming, and the global optimal solution can be obtained.
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Figure 5. The separation using wrong layer number.

The presented reconstruction method not only addresses

the degeneracy problem but also can recover more layers

from fewer layers (will be shown in the experiments). Fur-

thermore, the whole technologies are very adaptive to the

layer number. Although the layer number can be correctly

estimated by the method in Section 4, we would like to de-

liberately specify a wrong layer number to give an example.

Fig. 5 shows the results from the mixtures in Fig. 1 which

contain 3 layers, with the layer number wrongly set as 4. All

layers have been separated, with good image quality. The

Bayesian approach proposed by Miskin and MacKay [14]

also shares the adaptive features for the layer number. Their

examples are on simple layers of line drawings, whereas our

method can handle more complex layers of natural scenes.

6. Experiments
In this section, we show experiments on both synthetic

and real world mixtures (a separation of 3 layers from 3

mixtures has been shown in Fig. 1 and 5). First, we demon-

strate an under-determined separation from two mixtures

which contain four layers. Then, we perform our presented

method (referred to as SPBS-M) on real world images: two

photos consisting of transmitted and reflected layers, and

two video images from a crossfade process.

For comparison, we also apply other blind separation al-

gorithms: 2D-AC-DC [1] and SPBSS [7], as well as the

constrained least squares reconstruction approach proposed

by Szeliski et al. [20] (referred to as CLS-S). The settings

are as follows. (1) In SPBS-M, the layer number is auto-

matically estimated, and the trade-off coefficient β = 0.7.

In other methods the layer number can not be estimated and

is set manually. (2) Affine transformations (10) are used in

SPBS-M. (3) A derivative filter is performed as preprocess-

ing steps of 2D-AC-DC and SPBSS, as in [1, 7], and the

initial guesses in 2D-AC-DC are the same as in [1]. (4) The

real-data are color images. We only use grayscale images

to estimate model parameters. Then, each color channel is

separately recovered.

The under-determined separation is shown in Fig. 6. We

mix four layers into two mixtures, with different mixing co-

efficients and affine motions as:

A =

[
0.25 0.25 0.25 0.25
0.20 0.21 0.27 0.32

]
, K21=

[
0.9848 0.1736−7
−0.1736 0.9848 3

]
,

K22=

[
1 0−4
0 1 2

]
, K23=

[
1 0 9
0 1 0

]
, K24=

[
0.9986−0.0523 3
0.0523 0.9986 −2

]
.

(32)

The mixtures (Row 2) are quite complicated, and even hu-

man self can not easily distinguish the layer number and

objects on layers. However, the layer number is correctly

Figure 6. Under-determined separation. Four original layers (Row

1). Two mixtures (Row 2). The reconstructed results (Row 3).

(Real photos) (2D-AC-DC) (SPBSS) (CLS-S)

(SPBS-M)
Figure 7. Transparency and reflections.

estimated by our method and the reconstructed layers (Row

3) are clear enough to show most objects. To the best of

our knowledge, the blind separation of mixtures containing

more than two layers with nonuniform motions has not yet

been addressed by other methods in open literature.

Fig. 7 shows two real world photos containing a trans-

mitted layer of a painting and another reflected layer of a

outside scene. When one meets such mixing problem in

his photo, one of the most convenient way for separation

is to take another shot after a movement. Without enough

preparation, normal users will almost inevitably introduce

some rotations or scalings besides translations, due to hand

jitter or some other factors. As shown, our photos contain

some translations and slight rotations. With such two dif-

ferent mixtures, 2D-AC-DC and SPBSS fail in separation

as they can not deal with rotations. SPBS-M successfully

recognizes the layer number as 2, and finds accurate layer

motions. Then SPBS-M gives two clear layers, where there

is almost no superposing effect. For separately comparison

of the reconstruction part, we also perform the reconstruc-

tion method by Szeliski et al. (CLS-S) using motions out-

put by our method. Note that each layer has little intensity

change, and in such case there exists the degeneracy prob-
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(Crossfade images)

(2D-AC-DC) (SPBSS)

(SPBS-M)
Figure 8. Separating crossfade images.

lem in the mixing model. Although CLS-S can give good

results when there are a large amount of mixtures with mo-

tions of various directions, in our two-photo case it offers

two layers with obvious stripes because of the degeneracy.

Our reconstruction method perfectly addresses the degener-

acy problem, providing layers of high quality.

In TV and movies, crossfade effects, which are linear

mixtures of fade in and fade out scenes, are widely used

for scene changes. Row 1 of Fig. 8 shows two crossfade

images1, where a fade in scene of a water dam has increas-

ing intensity, also with a zoom out effect, and another fade

out scene of two engineers has decreasing intensity. With

such two mixtures, 2D-AC-DC and SPBSS (Row 2) do not

achieve complete separation because they can not handle

scalings (CLS-S is not used here as it does not consider

changing mixing coefficients). Again, SPBS-M (Row 3)

gives a correct layer number and well-separated results. The

video is recorded from an old TV programme in 1986, and

the images are very noisy (See the big noisy line in the red

circle on the second image). Our method is robust in such

noisy case, and layers are well reconstructed.

7. Conclusion
When one meets the mixing problem in photographing,

one of the most convenient way for separation is to take

another shot after a movement. However, this two-photo

separation problem has not been well addressed by other

methods. On one hand, when mixing coefficients are fixed,

previous approaches have the degeneracy problem. On the

other hand, when the mixing coefficients of layers change,

only recent 2D-AC-DC and SPBSS can deal with it but they

are limited to uniform translations. Our presented SPBS-

M addresses this separation problem well: it completely

solves the degeneracy problem, and can handle not only un-

1The images are from “How Water Won the West” in TREC Video Re-

trieval Test Collection, at http://open-video.org/details.php?videoid=489

known mixing coefficients but also general parameterized

motions. Moreover, in our approach the layer number is

automatically identified, and more layers can be separated

from fewer mixtures. The above features make SPBS-M

much more applicable than previous approaches, as shown

in the experiments.
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