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Abstract

System theoretic approaches to action recognition model
the dynamics of a scene with linear dynamical systems
(LDSs) and perform classification using metrics on the
space of LDSs, e.g. Binet-Cauchy kernels. However, such
approaches are only applicable to time series data living
in a Euclidean space, e.g. joint trajectories extracted from
motion capture data or feature point trajectories extracted
from video. Much of the success of recent object recogni-
tion techniques relies on the use of more complex feature
descriptors, such as SIFT descriptors or HOG descriptors,
which are essentially histograms. Since histograms live in
a non-Euclidean space, we can no longer model their tem-
poral evolution with LDSs, nor can we classify them using
a metric for LDSs. In this paper, we propose to represent
each frame of a video using a histogram of oriented optical
flow (HOOF) and to recognize human actions by classifying
HOOF time-series. For this purpose, we propose a gener-
alization of the Binet-Cauchy kernels to nonlinear dynami-
cal systems (NLDS) whose output lives in a non-Euclidean
space, e.g. the space of histograms. This can be achieved by
using kernels defined on the original non-Euclidean space,
leading to a well-defined metric for NLDSs. We use these
kernels for the classification of actions in video sequences
using (HOOF) as the output of the NLDS. We evaluate our
approach to recognition of human actions in several sce-
narios and achieve encouraging results.

1. Introduction

Analysis of human activities has always remained a topic
of great interest in computer vision. It is seen as a step-
ping stone for applications such as automatic environment
surveillance, assisted living and human computer interac-
tion. The surveys by Gavrila [14], Aggarwal et al. [1] and
by Moeslund et al., [18], [19] provide a broad overview of
over three hundred papers and numerous approaches for an-
alyzing human motion in videos, including human motion

capture, tracking, segmentation and recognition.
Related work. Recent work on activity recognition can
be broadly classified into three types of approaches: local,
global and system-theoretic.

Local approaches use local spatiotemporal features to
represent human activity in a video, e.g. [17, 10, 30].
Niebles [20] presented an unsupervised method similar to
the bag-of-words approach for learning the probability dis-
tributions of space-time interest points in human action
videos. İkizler et al. [16] presented a method whereby limb
motion model units are learnt from labeled motion capture
data and used to detect more complex unseen motions in a
test video using search queries specific to the limb motion
in the desired activity. [15] and [31] represent human activ-
ities by 3-D space-time shapes. Classification is performed
by comparing geometric properties of these shapes against
training data. However, an important limitation of the afore-
mentioned approaches is that they do not incorporate global
characteristics of the activity as a whole.

Global approaches use global features such as optical
flow to represent the state of motion in the whole frame at a
time instant. With static background, one can represent the
type of motion of the foreground object by computing fea-
tures from the optical flow. In [13], optical flow histograms
were used to match the motion of a player in a soccer match
to that of a subject in a control video. Tran et al. in [27]
present an optical flow and shape based approach that uses
separate histograms for the horizontal and vertical compo-
nents of the optical flow as well as the silhouette of the per-
son as a motion descriptor. All these approaches, however,
do not model the characteristic temporal dynamics of these
features. Moreover, comparison is done either on a frame-
by-frame basis or using other ad-hoc methods. Clearly, the
natural way to compare human activities is to compare their
temporal evolution as a whole.

System-theoretic approaches to recognition of human
actions model feature variations with dynamical systems
and hence specifically consider the dynamics of the activity.
The recognition pipeline is composed of 1) finding features
in every frame, 2) modeling the temporal evolution of these
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Figure 1. Optical flows and HOOF feature trajectories

features with a dynamical system, 3) using a similarity cri-
teria, e.g. distances or kernels between dynamical systems,
to train classifiers, and 4) using them on novel video se-
quences. Bissacco et al. used joint-angle trajectotries in [3]
as well as joint trajectories from motion-capture data and
features extracted from silhouettes in [4] to represent the
action profiles. Ali et al. in [2] used joint trajectories to
extract invariant features to model the non-linear dynamics
of human activities. However, these approaches are mostly
limited to local feature representations and to our knowl-
edge, there has been no work on modeling the dynamics of
global features, e.g. optical flow variations.

Paper contributions. In this paper, we propose the His-
togram of Oriented Optical Flow (HOOF) features to repre-
sent human activities. These novel features are independent
of the scale of the moving person as well as the direction
of motion. Extraction of HOOF features does not require
any prior human segmentation or background subtraction.
However, HOOF features are non-Euclidean, and thus the
evolution of HOOF features creates a trajectory on a non-
linear manifold. Traditionally, Linear Dynamical Systems
(LDSs) have been used to model feature time series that are
Euclidean, e.g. joint angles, joint trajectories, pixel inten-
sities, etc. Non-Euclidean data like histogram time series
need to be modeled with Non-Linear Dynamical Systems
(NLDS). Hence, similarity criteria designed for LDSs can-
not be used to compare two histogram time series. In this
paper, we extend the Binet-Cauchy kernels [29] to NLDS.
This is done by replacing an infinite sum of output feature
inner products in the kernel expression by a Mercer kernel
[23] on the output space. We model the proposed HOOF
features as outputs of NLDS and use the Binet-Cauchy ker-
nels for NLDS to perform human activity recognition on the
Weizmann database [15] with encouraging results.

Paper outline. The rest of this paper is organized as fol-
lows. §2 briefly reviews the LDS recognition pipeline for
Euclidean time-series data. §3 proposes the Histogram of
Oriented Optical Flow (HOOF) features, which are used to
model the activity profile in each frame of a video. Ev-
ery activity video is thus represented as a non-Euclidean
time-series of HOOF features. §4 introduces NLDS and de-
scribes how NLDS parameters can be learnt using kernels
defined on the underlying non-Euclidean space. §5 presents
the Binet-Cauchy kernels for NLDSs which define a sim-
ilarity metric between two non-Euclidean time-series. §6
gives experimental results for human activity recognition
using the proposed metric and features. Finally, §7 gives
concluding remarks and future directions.

2. Recognition with Linear Dynamical Systems
A LDS is represented by the tuple M =

(µ,x0, A,C,B,R) and evolves in time according to
the following equations{

xt+1 = Axt +Bvt
yt = µ+ Cxt + wt

. (1)

Here xt ∈ Rn is the state of the LDS at time t; yt ∈ Rp is
the observed output or feature at time t; x0 is the initial state
of the system; and µ ∈ Rp is the mean of {yt}N−1

t=0 , e.g. the
mean joint angle configuration, etc. A ∈ Rn×n describes
the dynamics of the state evolution, B ∈ Rn×nv models the
way in which input noise affects the state evolution andC ∈
Rp×n transforms the state to an output or observation of the
overall system. vt ∈ Rnv and wt ∈ Rp are the system noise
and the observation noise at time t, respectively. We assume
that the noise processes are zero-mean i.i.d. Gaussian, such
that vt ∼ G(vt, 0, Inv

) and wt ∼ G(wt, 0, R), R ∈ Rp×p,
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where G(z, µz,Σ)=(2π)−n/2|Σ|−1/2 exp(− 1
2‖z− µz‖2Σ)

is a multivariate Gaussian distribution on z with ‖z‖2Σ =
z>Σ−1z. By this definition, Bvt ∼ G(Bvt, 0, Q) where
Q = BB> ∈ Rnv×nv . We also assume that vt and wt are
independent processes.

Given a set of T training videos, the first task is to learn
the parameters Mi, i = 1, . . . , T , from the feature trajecto-
ries of each video. There are several methods to learn these
system parameters e.g. [25], [28] and [11]. Once these pa-
rameters are identified for each of the videos, various met-
rics can be used to define the similarity between these LDSs.
In particular, three major types of metrics are 1) geomet-
ric distances based on subspace angles between the observ-
ability subspaces of the LDSs [9], 2) algebraic metrics like
the Binet-Cauchy kernels [29] and 3) information theoretic
metrics like the KL-divergence [6].

Given a metric, all pairwise similarities are evaluated on
the training data, and used for classification of novel se-
quences using methods such as k-Nearest Neighbors (k-
NN) or Support Vector Machine (SVM).

3. Histogram of Oriented Optical Flow (HOOF)
As we alluded to in the introduction, existing system-

theoretic approaches to action recognition have been mostly
applied to joint angles extracted from motion capture data.
If one were to apply such approaches to video data, one
would be faced with the challenging problem of accurately
extracting and tracking the joints of a person in the presence
of self-occlusions, changes of scale, pose, etc.

Inspired by the recent success of histograms of features
in the object recognition community, we posit that the natu-
ral feature to use in a motion sequence is optical flow. How-
ever, the raw optical flow data may be of no use, as the num-
ber of pixels in a person (hence the size of the descriptor)
changes over time. Moreover, optical flow computations are
very susceptible to background noise, scale changes as well
as directionality of movement.

To avoid these issues, one could use instead the distribu-
tion of optical flow. Indeed, when a person moves through a
scene with a stationary background, it induces a very char-
acteristic optical flow profile. Figure 1 shows some optical
flow patterns for a sample walking sequence. However, no-
tice that the observed optical flow profile could be different
if the activity was performed at a larger scale. For exam-
ple a zoomed in walking person versus a far-away walking
person. The magnitude of the optical flow vectors would
be larger in the zoomed in case. Similarly, if a person is
running from the left to the right, the optical flow observed
would be a reflection in the vertical axis to that observed if
the person was running from the right to the left. We thus
need a feature based on optical flow that represents the ac-
tion profile at every time instant and that is invariant to the
scale and directionality of motion.

To overcome these issues, in this paper we propose the
Histogram of Oriented Optical Flow (HOOF), which is de-
fined as follows. First, optical flow is computed at every
frame of the window. Each flow vector is binned according
to its primary angle from the horizontal axis and weighted
according to its magnitude. Thus, all optical flow vectors,
v = [x, y]> with direction, θ = tan−1( yx ) in the range

−π
2

+ π
b− 1
B
≤ θ < −π

2
+ π

b

B
(2)

will contribute by
√
x2 + y2 to the sum in bin b, 1 ≤ b ≤

B, out of a total of B bins. Finally, the histogram is nor-
malized to sum up to 1.

1
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3
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Figure 2. Histogram formation with four bins, B = 4

Figure 2 illustrates the procedure. Binning according to
the primary angle, the smallest signed angle between the
horizontal axis and the vector, allows the histogram repre-
sentation to be independent of the (left or right) direction of
motion. Normalization makes the histogram representation
scale-invariant. We expect to observe the same histogram
whether a person is moving from the left to the right or
in the opposite direction, whether a person is running far
away in the scene or very near the camera. Since the contri-
bution of each optical flow vector to its corresponding bin
is proportional to its magnitude, small noisy optical flow
measurements have little effect on the observed histogram.
Assuming a stationary background, there is no optical flow
in the background. Using the magnitude-based addition to
each bin, we can simply compute the optical flow histogram
on the whole frame rather than requiring to pre-compute a
segmentation of the moving person. The number of bins,
B, is a parameter of choice. Generally we observe that with
histogram time-series of at least 30 bins per histogram, we
are able to achieve good recognition results.

3.1. Kernels for comparing HOOF

HOOF features provide us with a normalized histogram
ht = [ht;1,ht;2, . . . ,ht;B ]> at each time instant t. In order
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to use such histograms for recognition purposes, we need
to have a way of comparing two histograms. To that end,
notice that histograms cannot be treated as simple vectors
in a Euclidean space. Histograms are essentially probabil-
ity mass functions, hence they must satisfy the constraints
B∑
i=1

ht;i = 1 and ht;i ≥ 0,∀i ∈ {1, . . . , B}. At first sight,

one may think that this space is still simple enough. How-
ever, the space of histograms H is actually a Riemannian
manifold with a nontrivial structure.

The problem of equipping the space of probability den-
sity functions (PDFs) with a differential manifold structure
and defining a Riemannian metric on it has been an ac-
tive area of research in the field of information geometry.
The work by Rao [21] was the first to introduce a Rieman-
nian structure to this statistical manifold by introducing the
Fisher-Rao metric. The Fisher-Rao metric, however, is ex-
tremely hard to work with due to the difficulty in computing
geodesics on this space [26].

Even though the spaceH turns out to be difficult to work
with, we know that it is not the only possible representation
for PDFs. There are many different re-parameterizations of
PDFs that are equivalent. These include the cumulative dis-
tribution function, log density function and square-root den-
sity function. Each of these parameterizations will lead to
a different resulting manifold. Depending on the choice of
representation, the resulting Riemannian structure can have
varying degrees of complexity and numerical techniques
may be required to compute geodesics on the manifold.

For the sake of computational simplicity, in this paper
we will restrict our attention to similarity measures built by
mapping the histogram h ∈ H to a high dimensional (possi-
bly infinite) Euclidean space,F , using the map Φ : H → F .
Since F is a Euclidean space, all the natural notions of find-
ing distances between two points can be employed for com-
parison. Most of the time, however, the map Φ cannot be
found. Mercer kernels [23] have the special property of be-
ing positive definite kernels that induce an inner product in
a higher dimensional space under the map Φ. More specif-
ically, for points lying on the non-linear manifold H, the
Mercer kernel is given by k(h1,h2) = Φ(h1)>Φ(h2) and
hence a similarity measure between the high-dimensional
space can be computed by simply computing the kernel
function on the original representation without knowing the
mapping Φ. We now briefly describe some popular kernel
measures used on the space of histograms.

The histogram, ht = [ht;1, . . . ,ht;B ] can be reparam-
eterized to the square root representation for histograms,
√

ht := [
√

ht;1, . . . ,
√

ht;B ] such that
B∑
i=1

(
√

ht;i)2 = 1.

This projects every histogram onto the unit B-dimensional
hypersphere or SB−1. The Riemannian metric between

two points R1 and R2 on the hypersphere is d(R1, R2) =
cos−1(R>1 R2). Thus a kernel between two histograms can
be defined as an inner product on their square root represen-
tations:

kS(h1,h2) =
B∑
i=1

√
h1;ih2;i. (3)

Note that this is precisely the kernel that can be achieved by
using the RBF kernel, k(h1,h2) = exp(−d(h1,h2)), on
the Bhattacharya distance between the two histograms.

Minimum Difference of Pairwise Assignment (MDPA)
[5] is similar to the Earth Mover’s Distance (EMD) [22]
and is a metric on the space of histograms that implicitly is
a summation of distances between points on an underlying
metric space from which the histograms were created. For
ordinal histograms, i.e., histograms created from linearly
varying data (as opposed to modular data, e.g. the modu-
lar group Zp

.= {0, 1, . . . , p− 1}), the MDPA distance is

dMDPA(h1,h2) =
B∑
i=1

∣∣∣∣∣∣
i∑

j=1

(h1;j − h2;j)

∣∣∣∣∣∣ . (4)

Another popular distance between two histograms is the
χ2 distance which is defined as

dχ2(h1,h2) =
1
2

B∑
i=1

|h1;i − h2;i|
h1;i + h2;i

(5)

We can use the RBF kernel to create kernels as similarity
measures from these distances.

Finally, the Histogram Intersection Kernel (HIST) [12] is
another Mercer kernel [23] on the space of histograms and
is defined for normalized histograms as

kHIST =
B∑
i=1

min(h1;i,h2;i). (6)

The inner product of the square-root representations is
by construction an inner product and hence is a Mercer ker-
nel. Also, the χ2 and HIST kernels are provably Mercer
kernels [32], [12]. However, to the best of our knowledge,
the positive-definiteness of the MDPA kernel has not been
established [32].

3.2. Kernels for comparing HOOF time series

Since HOOF features ht = [ht;1,ht;2, . . . ,ht;B ]> are
defined at each frame of the video, our actual representa-
tion is a time series of these histograms {ht}N−1

t=0 . Our goal
is to compare these time series in order to perform classi-
fication of actions. But rather than comparing these time
series directly, we want to exploit the temporal evolution
of these histograms in order to distinguish different actions.
We posit that each action induces a time-series of HOOF
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with specific dynamics, and that different actions induce
different dynamics. Therefore, we propose to recognize ac-
tions by comparing the dynamics of HOOF time series.

There are two important technical challenges in develop-
ing a framework for the classification of HOOF time series.
The first one is that, because each histogram ht lives in a
non-Euclidean spaceH, we cannot model its temporal evo-
lution with LDSs. We address this issue in §4 by using the
previously defined kernels inH to define a NLDS. The sec-
ond challenge is how to compute a distance between HOOF
time series. We address this issue in §5, where we extend
Binet-Cauchy kernels to NLDSs.

4. Modeling HOOF Time Series with Non-
Linear Dynamical Systems

Modeling Euclidean feature trajectories with LDSs has
been very useful for dynamical system recognition. How-
ever we need NLDSs to model non-Euclidean feature tra-
jectories like histograms.

Consider the Mercer kernel, k(yt,y′t) = Φ(yt)>Φ(y′t)
on the non-Euclidean space such that the implicit map, Φ,
maps the original non-Euclidean space H to a high dimen-
sional (possibly infinite) Euclidean space F . Since k is a
Mercer kernel, it represents an inner product in the higher
dimensional Euclidean space. Using the map Φ, we can
therefore transform the non-Euclidean features, {yt}N−1

t=0 ,
to the high-dimensional Euclidean space {Φ(yt)}N−1

t=0 and
assume that the higher dimensional trajectories follow a lin-
ear dynamical system{

xt+1 = Axt +Bvt
Φ(yt) = Cxt + wt

(7)

The main difference between (7) and (1) is that we do
not necessarily know the embedding Φ, hence we cannot
identify (A,C) as before. Moreover, even if we knew Φ,
C : Rn → F is now a linear operator, rather than simply a
matrix, because F is possibly infinite dimensional.

Therefore, the goal is to identify the parameters (A,B),
the sequence xt, and some representation for C by exploit-
ing the fact that we only know the kernel k. In [7], an
approach based on Kernel PCA (KPCA) [24] that paral-
lels the PCA approach for learning LDS parameters in [11]
was proposed to learn the system parameters for equation
(7). Briefly, given the output feature sequence, {yt}N−1

t=0 ,
the intra-sequence kernel matrix, K = {k(yi,yj)}N−1

i,j=0 is
computed, where k(yi,yj) = Φ(yi)>Φ(yj). The centered
kernel matrix, that represents the kernel between zero-mean
data in the high-dimensional space, is thus computed as
K̃ = (I − 1

N ee>)K(I − 1
N ee>) where e = [1, . . . , 1]> ∈

RN . After performing the eigenvalue decomposition K̃ =
V DV >, the j-th eigenvector vj can be used to obtain the

j-th kernel principal component as
N∑
i=1

αi,jΦ(yi), where

αi,j represents the i-th component of the j-th weight vector,
αj = 1√

λj

vj , assuming that the eigenvectors are sorted in

descending order of the eigenvalues {λj}Nj=1.
Given α and K̃, the sequence of hidden states X =

[x0,x1, . . . ,xN−1] and the state-transition matrix, A, can
be estimated as

X = α>K̃ (8)
A = [x1,x2, . . . ,xN−1][x0,x1, . . . ,xN−2]† (9)

The state noise at time t is estimated as v̂t = xt − xt−1,
and the noise covariance matrix as Q = 1

N−1

∑N−1
i=1 v̂tv̂>t .

Using a Cholesky decomposition on Q, B is estimated as
BB> = Q. For details on estimating R and other parame-
ters, refer to [7].

Notice, however, that we have not shown how to esti-
mate C or a representation of it, though it is clear that C
is somehow implicitly represented by the kernel matrix K̃.
Since our goal is to use the NLDS in (7) for recognition,
rather than synthesis, we do not actually need to compute
C. All we need is a way of comparing two linear opera-
tors C, which can be done by comparing the corresponding
kernel matrices K̃, as we show in the next section.

5. Comparing HOOF Time Series with Binet-
Cauchy Kernels for NLDS

Vishwanathan et al. [29] presented the family of Binet-
Cauchy kernels for LDSs. In this section we briefly review
the main concepts of the Binet-Cauchy kernels for LDSs
and then develop extensions for the case of NLDSs.

From the family of Binet-Cauchy kernels, the trace
kernel, KT

LDS, for comparing two infinitely long zero-
mean Euclidean time-series generated by the LDSs M =
(x0, A,C,B,R), and M′ = (x′0, A

′, C ′, B′, R′) is defined
as

KT
LDS({yt}∞t=0, {y′t}∞t=0) = KT

LDS(M,M′)

:= Ev,w

[ ∞∑
t=0

λty>t y′t

]
. (10)

Here 0 < λ < 1 and E represents the expected value of the
infinite sum of the inner products w.r.t. the joint probability
distribution of vt and wt. It was shown in [29] that if the
two LDSs have the same underlying and independent noise
processes, with covariances Q and R for the state and out-
put, respectively, then the Binet-Cauchy trace kernel can be
computed in closed form as

KT
LDS(M1,M2) = x>0 Px′0 +

λ

1− λ
trace(QP +R), (11)
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where

P =
∞∑
t=0

λt(At)>C>C ′A′t (12)

If λ|||A||| |||A′||| < 1, where |||.||| is a matrix norm, then P
can be computed by solving the Sylvester equation [29],

P = λA>PA′ + C>C ′. (13)

Notice that as a result of the system parameter learning
method [11], the second term on the right side of equation
(13), C>C ′, is the matrix of all pairwise inner products of
the principal components of the matrix Y = [y0 − ȳ,y1 −
ȳ, . . . ,yN−1 − ȳ] and the matrix Y ′ = [y′0 − ȳ′,y′1 −
ȳ′, . . . ,y′N ′−1 − ȳ′], where ȳ is the mean of the sequence
{yt}N−1

t=0 and so on. Hence, the (i, j)-th entry of C>C ′ is
c>i c
′
j , where ci is the i-th principal component of Y and c′j

is the j-th principal component of Y ′.
We now develop the Binet-Cauchy trace kernel for

NLDSs. From equation (10), we see that the Binet-Cauchy
trace kernel for LDSs is the expected value of an infinite
series of weighted inner products between the outputs of
two systems. We can similarly write the Binet-Cauchy trace
kernel for NLDSs as the expected value of an infinite series
of weighted inner products between the outputs after em-
bedding them into the high-dimensional (possibly infinite)
space using the map Φ. Specifically,

KT
NLDS(M,M′) := Ev,w

[ ∞∑
t=0

λtΦ(yt)>Φ(y′t)

]

= Ev,w

[ ∞∑
t=0

λtk(yt,y′t)

]
, (14)

where k is the kernel defined on the non-Euclidean space of
outputsH.

If we look at eq (13), we see that in the case of NLDSs
the equivalent form for the trace kernel is not immediately
obtainable, because C and C ′ are unknown, and hence the
term C>C ′ cannot be evaluated directly. However, notice
that C>C ′ is now the product of the matrices formed from
the kernel principal components from the NLDS identifica-
tion process as opposed to the principal components as in
the case of LDSs. Thus, similar to the approach used in [7],
the (i, j)-th entry of C>C ′ can be computed as

[C>C ′]i,j = v>i v
′
j

=

[
N∑
k=1

αk,iΦ(yk)

]>  N ′∑
l=1

α′l,jΦ(y′l)


= α>i Sα

′
j (15)

where S is the matrix of all inner products of the
form [Φ(yk)>Φ(y′l)]k,l = [k(yk,y′l)]k,l, where k ∈

{1, . . . , N}, l ∈ {1, . . . , N ′}. Before computing the entries
ofC>C ′ in equation (15), we need to center the kernel com-

putation S. This is done by computing, α̃i = αi −
e>αi
N

e

and α̃′j = α′j −
e>α′j
N ′

e and evaluating, F = α̃>Sα̃′

Hence, the Binet-Cauchy kernel for NLDS requires the
computation of the infinite sum,

P̄ =
∞∑
t=0

λt(At)>FA′t, (16)

If λ|||A||| |||A′||| < 1, where |||.||| is a matrix norm, then
P̄ can be computed by solving the corresponding Sylvester
equation:

P̄ = λA>P̄A′ + F (17)

and the Binet-Cauchy trace kernel for NLDS is

KT
NLDS(M1,M2) = x>0 P̄x>0 +

λ

1− λ
trace(QP̄+R) (18)

Notice that equation (18) is a general kernel that takes
into consideration the dynamics of the system encoded by
(A,C), the noise processes, Q and R, and the initial state,
x0. The effect of the initial state in a periodic time series is
to simply delay the time series. Since in activity recognition
it does not matter, e.g., at which part of the walking cycle
the video begins, we would like a kernel that is independent
of the initial states and the noise processes. Hence we de-
fine the Binet-Cauchy maximum singular value kernel for
NLDS as

Kσ
NLDS = maxσ(P̄ ) (19)

which is the maximum singular value of P̄ and is a ker-
nel only on the dynamics of the NLDS. Furthermore, we
can show that the Martin distance used by [7] (and all sub-
space angles based distances between dynamical systems)
are special cases of the Binet-Cauchy kernels [8].

6. Experiments
To test the performance of our proposed HOOF features

on activity recognition using the Binet-Cauchy kernel for
NLDS, we perform a number of experiments on the Weiz-
mann Human Action dataset [15]. This dataset contains 94
videos of 10 different actions each performed by 9 differ-
ent persons. The classes of actions include running, side
walking, waving, jumping, etc. Optical flow was computed
using OpenCV on each of the sequences and HOOF his-
tograms were extracted from each frame leading to a HOOF
time series for each video sequence.

6.1. Classification Results

We use each of the kernels described in section §3.1 to
perform Kernel PCA on the HOOF time series extracted
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Figure 3. Misclassification rates when using distances between
HOOF means

from each video. We then use the Binet-Cauchy maxi-
mum singular value kernel, Kσ

NLDS, to compute all pair-
wise similarity values. We normalize the similarity val-
ues such that K(M,M′) = 1, if M = M ′ by comput-

ing, K ′(M,M′) =
K(M,M′)√

K(M,M),K(M′,M′)
and find-

ing pair-wise distances between systems by computing,
d(M,M′) = 2(1 − K(M1,M2)). Classification is then
performed with Leave-one-out, 1-Nearest Neighbor classi-
fication using these distance values.

As a baseline, Figure 3 shows the performance of using
the distance between the temporal means to perform classi-
fication. The temporal means were computed by averaging
the histogram time-series h̄ = 1

N

∑N−1
i=0 hi. Notice that h̄

is also a histogram and we can apply the distance metrics
in section §3.1 to compare them. Although using the mean
histograms to represent the activity profile ignores any dy-
namics of the motion, we see that the HOOF features give
low error rates.

Figure 4 shows the error rates for the inner product of the
square root representations, or the Geodesic kernel, across
all bin sizes. We can see that the Binet-Cauchy maximum
singular value kernel gives the lowest error rate of 5.6%
achieving a recognition rate of 94.4%. The corresponding
confusion matrix is shown in Figure 5. One sequence each
is misclassified for the classes jump and run and three se-
quences of class wave1 were misclassified as wave2. Table
1 compares the performance of three state of the art activ-
ity recognition algorithms on the Weizmann database with
similar experimental setups. We can see that the proposed
method performs better than two of the methods with any
choice of the Mercer kernel on the space of histograms. Fur-
thermore, the proposed method performs almost as well as
the best method in [15]. The small decrease in performance
is because of the fact that [15] requires the accurate extrac-
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Figure 4. Misclassification rates with Geodesic kernel on NLDS

Proposed method - Geodesic kernel 94.44
Proposed method - MDPA distance 93.44
Proposed method - χ2 distance 95.66
Proposed method - HIST kernel 92.33
Gorelick et al. [15] 97.83
Ali et al. [2] 92.60
Niebles et al. [20] 90.00

Table 1. Comparison of recognition rates with state of the art meth-
ods on the Weizmann database

tion of the silhouette of the moving person at every time
instant which is a very strong assumption. Our method, on
the other hand, is very general and does not require any pre-
processing steps and still gives better results than all state-
of-the-art methods, except [15].

Riemannian metric with Binet Cauchy kernel, Leave−one−out 1−NN
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Figure 5. Confusion matrix for recognition on Weizmann database,
average recognition rate is 94.4%
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7. Conclusions and Future Work
We have presented an activity recognition method that

models the activity in a scene as a time-series of non-
Euclidean Histograms of Oriented Optical Flow features.
We have shown that these features do not need any pre-
processing, human detection, tracking and prior back-
ground subtraction and represent the activity comprehen-
sively. The HOOF features are scale-invariant as well as
independent to the direction of motion. Since the space of
histograms is non-Euclidean, we have modeled the tempo-
ral evolution of HOOF features using NLDSs and learnt the
system parameters using kernels on the original histograms.
More importantly, we have extended the Binet-Cauchy ker-
nels for measuring the similarities between two NLDSs and
shown that the Binet-Cauchy kernels can also be computed
by evaluating pairwise Mercer kernels on the non-Euclidean
space of features. We have applied our framework to our
proposed HOOF features and have achieved state of the art
results on the Weizmann Human Gait database. Currently
we are working on extending our method to multiple dis-
connected motions in a scene by tracking and segmenting
optical flow activity in the scene as well as accounting for
the motion of the camera.
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