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Abstract

We introduce a text-based image feature and demon-

strate that it consistently improves performance on hard

object classification problems. The feature is built using

an auxiliary dataset of images annotated with tags, down-

loaded from the internet. We do not inspect or correct the

tags and expect that they are noisy. We obtain the text fea-

ture of an unannotated image from the tags of its k-nearest

neighbors in this auxiliary collection.

A visual classifier presented with an object viewed un-

der novel circumstances (say, a new viewing direction) must

rely on its visual examples. Our text feature may not change,

because the auxiliary dataset likely contains a similar pic-

ture. While the tags associated with images are noisy, they

are more stable when appearance changes.

We test the performance of this feature using PAS-

CAL VOC 2006 and 2007 datasets. Our feature performs

well, consistently improves the performance of visual ob-

ject classifiers, and is particularly effective when the train-

ing dataset is small.

1. Introduction

With the advent of the digital camera and the popular-

ity of internet photo sharing sites, we now have billions of

images at our fingertips. But what can we do with them?

These images are not annotated in a way that makes them

easy to use for training data, but they are surrounded with a

great deal of text, tags, and other supplemental information

that are indicative of their content.

The main idea of this paper is to determine which objects

are present in an image based on the text that surrounds sim-

ilar images drawn from large collections. Object-based im-

age classification is extremely challenging due to wide vari-

ation in object appearance, pose, and illumination effects.

Low-level image features like color, texture, and SIFT [10]

are far removed from the semantics of the scene, making it
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             Input Image
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Figure 1. The illustration of our approach. For the input image, we find

its similar internet images (downloaded from Flickr). The text associated

with these internet images are summarized to build the text feature repre-

sentation, which is a normalized histogram of text item counts. The Flickr

text items can be tags such as “dog”, and can be group names such as

“Dogs!Dogs!Dogs!”.

difficult to use them to infer object presence. If we had mil-

lions of training examples, these low-level features may be

sufficient, but it is unrealistic to expect such large training

sets for every object. On the other hand, we do have mil-

lions of internet images. While these are not labeled for our

task, the text associated with them provides a more direct

gateway to image analysis. The image feature represen-

tations that were too low-level for modeling objects from

hundreds of images are sufficient for finding very similar

images among millions. Their associated text can be trans-

ferred to our input image, making it easier to infer the scene

content.

Our work builds on two insights. First, it is often eas-

ier to determine the image content using surrounding text

than with currently available image features. State-of-the-

art methods in computer vision [3] are still not capable of

1367978-1-4244-3991-1/09/$25.00 ©2009 IEEE



  Test

image

 Label

   Visual

features
   Visual

classifiers

Get similar 

images

   Internet 

    images

   with text

    Text

features

     Text

classifiers

   Fusion

Figure 2. The framework of our approach. We have training and test images (here we only show the test image part). We also have an auxiliary dataset

consisting of internet images and associated text. For each test image, we extract its visual features and find the K most similar images from the internet

dataset. The text associated with these near neighbor internet images is summarized to build the text features. Text classifiers which are trained with the

same type of text features are applied to predict the object labels. We can also train visual classifiers with the visual features. The outputs from the two

classifiers are fused to do the final classification.

handling the unpredictability of object positions and sizes,

appearance, lighting, and unusual camera angles that are

common in consumer photographs, such as those found on

Flickr. Determining object presence from the text that sur-

rounds an image (tags, discussion, group names) is also far

from trivial due to polysemy, synonymy, and incomplete or

spurious annotations. Still, the text provides valuable infor-

mation that is not easy to extract from the image features.

The second insight: given a large enough dataset, we are

bound to find very similar images to an input image, even

when matching with simple image features. This idea has

been demonstrated by Torralba et al. [14], who showed that

matching tiny (32x32) images using Euclidean distance of

intensity leads to surprisingly good object recognition re-

sults if the dataset is large enough (tens of millions of im-

ages). Likewise, Hays and Efros [7, 8] showed that simple

image matching can be used to complete images and to infer

world coordinates. Our approach is to infer likely text for

our input image based on similar images in a large dataset

and use that text to determine whether an object is present.

Others have attempted to leverage internet image col-

lections to assist in image search [4, 1, 15] or recogni-

tion [5, 16, 9, 13, 12, 2]. The most common strategy is

to improve annotation quality or filter spurious search re-

sults, gathering a new collection of images that can be used

for training [5, 16, 9, 13]. While intuitive, this is a difficult

way to use internet images because the noise or ambiguity

in annotations can easily nullify any benefit resulting from

the additional data. By contrast, we propose to use the on-

line image collections to provide an alternate representation

for our input image – one that we believe more directly re-

flects the semantics of the scene. Along these lines, Quat-

toni et al. [12] use captioned images to learn a more pre-

dictive visual representation. Our work is related to this in

that we learn a distance metric that causes images with sim-

ilar surrounding text to be similar in visual feature space.

But our representation is ultimately textual, rather than vi-

sual, which we believe makes it more straightforward to in-

fer object presence. Note that our textual representation is

implicitly defined through visually similar images: no text

is provided with the input image.

Section 2 presents our approach. The experimental re-

sults are shown in section 3. Some conclusions are made in

section 4.

2. Approach

Our approach is to build text features for object image

classification. The text features are expected to capture the

semantic meaning of images and provide a more direct gate-

way to image analysis. Fig. 2 shows the feature extraction

and classification procedure. We have a dataset with train-

ing and test images. We also have an auxiliary dataset of

internet images (downloaded from Flickr), which have as-

sociated text. For each training image, we extract visual

features and find its K nearest neighbor images from the

internet dataset. Text associated with these near neighbor

internet images is used to build the text features. Text clas-

sifiers are then trained on the text features. For a test image,

we follow the same procedure to construct its text features,

and use the trained text classifiers to predict the category

labels. We also train a separate classifier on the visual fea-

tures. We obtain the final prediction from a third classifier

trained on the confidence values returned by the text and the

visual classifiers.

2.1. Visual features

We use five types of features to find the nearest neighbor

images and train visual classifiers.

The SIFT feature [10] is popularly used for image

matching and object recognition. We use it to detect and

describe local patches. We extract about 1000 patches from

each image. The SIFT features are quantized to 1000 clus-

ters and each patch is denoted as a cluster index. Each im-

age is then represented as a normalized histogram of the

cluster indices.
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The Gist feature has been proven to be very powerful in

scene categorization and retrieving [11]. We represent each

image as a 960 dimensions Gist descriptor.

We extract Color features in the RGB space. We quan-

tize each channel to 8 bins, then each pixel is represented as

a integer value range from 1 to 512. Each image is repre-

sented as a 512 dimensional histogram by counting all the

pixels. The histogram is normalized.

We also extract a very simple Gradient feature, which

can be considered as a global and coarse SIFT feature. We

divide the image to 4*4 cells, at each cell, we quantize the

gradient to 16 bins. The whole image is represented as a

256 dimensional vector.

The Unified feature is a concatenation of the above four

features. We learn weights for different feature types to

make the unified feature discriminative. Write the four fea-

tures introduced above as f1, f2, f3 and f4 respectively,

our new feature is [w1f1, w2f2, w3f3, w4f4], wj is a non-

negative number to indicate the importance of the jth fea-

ture.

We learn the weights from the training images. We aim

to force the images from the same category to be close, and

images from different categories to be far away in the new

feature space. We randomly select N pairs of images from

the training set. For the ith pair, Si = 1 if the two images

share at least one same object class, otherwise, Si = 0.

We calculate the chi-square distance with fj for the ith pair

as dj
i . Then we learn feature weights by minimizing the

following objective function:

∑

i

(e−
P

j wjd
j

i
− Si)

2 (1)

This optimization problem can be straightforwardly solved

using the “fmincon” function in Matlab.

2.2. Internet dataset

The auxiliary internet dataset provides association be-

tween images and text. With this dataset, we can build text

features for the images which do not have text by nearest

neighbor matching.

The internet is rich in multimedia, and there is strong

correlation between images and text. This is especially ap-

parent in the photo sharing web sites such as Flickr: users

tag images with some keywords, which usually describe the

visual content of the images. Users also group images by

the content. For example, there is a group called “ Dogs!

Dogs! Dogs!” which contains dog images. The group name

becomes a very strong text cue to indicate the visual content

of the images.

Our auxiliary dataset is collected from Flickr, and con-

sists of about 1 million images. About 700,000 images are

collected for 58 object categories, whose names come from

PASCAL categories such as “car” or Caltech 256 [6] such

as “penguin” and “rainbow”. The other images are collected

from a group called “10 million photos”. These images are

drawn from random categories.

2.3. Text features

Once the text features are extracted from the auxiliary

dataset, they represent the image in a way that more directly

reflects the semantics.

For each training and test image in our dataset, we find its

K nearest neighbor images from the auxiliary dataset with

the visual features. The text associated with these nearest

neighbor images is extracted to build the text features. We

treat each tag and group name as an individual item in our

text feature representation, even though it may include mul-

tiple words. For example, the group name “Dogs! Dogs!

Dogs!” is treated as a single item. We only use a set of

frequent tags and group names (about 6000) in the auxiliary

dataset. The other tags and group names are not counted.

The text feature is a normalized histogram of tag and group

name counts.

2.4. Classifier

The purpose of this paper is to show that a text feature,

computed from the auxiliary dataset, is in fact a powerful

and general descriptor. Various classifiers could be applied

to such a feature. We have chosen to use an SVM classifier

with a chi-square kernel for the text features. The same

classifier is used for the visual features.

2.5. Fusion

We now have two types of features: the standard visual

features and the text features. We do not believe there is

likely to be much interaction, in the sense that one feature

can tell when the other is unreliable. Therefore, we build

two separate classifiers, one for the text features and the

other one for the visual features. A third classifier is then

trained to combine the confidence values of the two initial

classifiers into a final prediction. This final classifier uses

logistic regression and is trained on a validation set.

3. Experiment

We perform image classification experiments on two

datasets: PASCAL VOC 2006 and PASCAL VOC 2007.

The PASCAL 2006 dataset has 10 object categories while

the 2007 dataset has 20 categories. The 2007 dataset is more

difficult because there is much more variation with the ob-

ject appearance. To ensure that there were no PASCAL

test images in our auxiliary internet dataset, we removed

all images from the auxiliary set that had a small image

distance (within a threshold) to any image in the test set.
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bicycle bus car cat cow dog horse motorbike person sheep

Gist(KNN) 0.795 0.875 0.885 0.736 0.820 0.674 0.734 0.822 0.605 0.868

Gist(V) 0.825 0.951 0.940 0.861 0.876 0.773 0.845 0.862 0.762 0.914

Gist(T) 0.818 0.915 0.932 0.812 0.843 0.744 0.820 0.878 0.733 0.875

Gist(V+T) 0.837 0.955 0.941 0.869 0.880 0.790 0.858 0.886 0.769 0.917

Gra(KNN) 0.734 0.837 0.902 0.743 0.808 0.666 0.743 0.786 0.625 0.799

Grad(V) 0.826 0.933 0.944 0.861 0.842 0.746 0.825 0.863 0.743 0.870

Grad(T) 0.810 0.931 0.935 0.806 0.830 0.725 0.776 0.817 0.722 0.855

Grad(V+T) 0.834 0.941 0.947 0.864 0.850 0.766 0.831 0.878 0.756 0.877

SIFT(KNN) 0.735 0.816 0.596 0.684 0.659 0.704 0.561 0.709 0.616 0.732

SIFT(V) 0.886 0.952 0.936 0.857 0.873 0.809 0.799 0.889 0.768 0.874

SIFT(T) 0.837 0.905 0.903 0.827 0.823 0.759 0.742 0.818 0.733 0.826

SIFT(V+T) 0.889 0.953 0.937 0.861 0.877 0.812 0.805 0.896 0.776 0.897

Color(KNN) 0.575 0.777 0.686 0.703 0.770 0.626 0.601 0.752 0.574 0.793

Color(V) 0.702 0.840 0.843 0.754 0.826 0.721 0.727 0.864 0.703 0.828

Color(T) 0.666 0.809 0.784 0.740 0.791 0.676 0.691 0.777 0.668 0.834

Color(V+T) 0.715 0.853 0.835 0.782 0.850 0.726 0.754 0.861 0.690 0.865

Unified(KNN) 0.794 0.883 0.841 0.794 0.850 0.720 0.695 0.852 0.630 0.866

Unified(V) 0.851 0.948 0.936 0.885 0.912 0.822 0.883 0.919 0.800 0.910

Unified(T) 0.873 0.924 0.933 0.826 0.877 0.788 0.826 0.901 0.785 0.873

Unified(V+T) 0.901 0.959 0.944 0.885 0.922 0.817 0.890 0.931 0.773 0.923

Combination(V) 0.891 0.966 0.953 0.902 0.918 0.823 0.892 0.933 0.816 0.917

Combination(T) 0.908 0.965 0.957 0.899 0.916 0.821 0.874 0.929 0.788 0.926

Combination(V+T) 0.910 0.965 0.959 0.908 0.919 0.827 0.887 0.938 0.824 0.930

Table 1. The AUC values with different settings on PASCAL 2006 for each object category. Take the Gist feature as an example:

“Gist(KNN)” denotes the result with a KNN classifier using the Gist feature; “Gist(V)” denotes the result with the visual SVM classi-

fier; “Gist(T)” denotes the result with the text SVM classifier; “Gist(T+V)” denotes the result by fusing the outputs of the text and visual

SVM classifiers. Our text classifier outperforms the KNN classifier. The performance of the text features depends on the strength of the

visual features. “Unified(T)” usually works best among all the text classifiers; and “Color(T)” usually works worst. We can get better

performance in almost all of the categories by combining the text and visual classifiers. The results by combining all the text classifiers, all

the visual classifier and all the text and visual classifiers, are indicated by “Combination(T)”, “Combination(V)” and “Combination(T+V)”

respectively.

According to the standard evaluation measure, the perfor-

mance is quantitatively measured by AUC (area under the

ROC curve) value on the 2006 dataset; and measured by AP

(average precision) value on the 2007 dataset. When eval-

uating the methods, we are interested in the following phe-

nomenons: (1)the performance of text features which are

built with different visual features; (2) the effects of com-

bining text and visual classifiers; (3) the effects of vary-

ing number of training images; (4)the performance of the

text features built with varying number of internet images;

(5)the effects of the category names.

3.1. Results: text features built with different types
of visual features

We could use different types of visual features to retrieve

the nearest neighbor images to build the text features. We

use 150 nearest neighbor images in all the experiments. The

performance on 2006 and 2007 for each object category is

listed in Table 1 and Table 2 respectively. We use a KNN

classifier as a baseline in Table 1 for the 2006 dataset. Each

internet image is considered to be a positive example of the

object categories whose names appear in the associated text.

Then a test image can be simply classified by the KNN clas-

sifier. Our text classifier significantly outperforms KNN for

each individual feature.

The performance of the text features is affected by the

strength of the visual features. The better KNN performs,

the better the text features are. This is because good vi-

sual features can find good nearest neighbor images to build

good text features. So the text features built by the uni-

fied visual features usually work best; and the text features

built by the color features usually work worst on both of the

datasets.

3.2. Results: combining text and visual classifiers

Text features don’t outperform visual features as shown

in Table 1 and Table 2. But text features are quite different

from visual features, so they can correct each other, and the
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aeroplane bicycle bird boat bottle bus car cat chair cow

Gist(V) 0.575 0.253 0.324 0.512 0.122 0.330 0.561 0.269 0.380 0.121

Gist(T) 0.520 0.207 0.296 0.509 0.089 0.335 0.509 0.227 0.302 0.178

Gist(V+T) 0.580 0.272 0.362 0.548 0.189 0.392 0.578 0.295 0.383 0.203

Grad(V) 0.571 0.230 0.238 0.403 0.116 0.333 0.551 0.308 0.397 0.184

Grad(T) 0.548 0.208 0.217 0.352 0.074 0.365 0.554 0.243 0.325 0.169

Grad(V+T) 0.604 0.272 0.276 0.437 0.140 0.404 0.609 0.328 0.414 0.195

SIFT(V) 0.510 0.297 0.249 0.412 0.122 0.243 0.416 0.330 0.324 0.212

SIFT(T) 0.288 0.254 0.237 0.367 0.104 0.184 0.309 0.320 0.264 0.209

SIFT(T+V) 0.517 0.348 0.310 0.437 0.192 0.241 0.431 0.365 0.336 0.240

Color(V) 0.367 0.124 0.220 0.215 0.112 0.085 0.323 0.134 0.242 0.075

Color(T) 0.400 0.084 0.215 0.215 0.078 0.107 0.332 0.112 0.154 0.098

Color(T+V) 0.431 0.179 0.239 0.261 0.179 0.129 0.369 0.140 0.260 0.117

Unified(V) 0.647 0.399 0.450 0.540 0.207 0.425 0.577 0.388 0.439 0.273

Unified(T) 0.580 0.349 0.407 0.545 0.120 0.329 0.565 0.366 0.352 0.170

Unified(V+T) 0.666 0.445 0.512 0.580 0.232 0.450 0.619 0.438 0.459 0.295

Combination(V) 0.675 0.407 0.423 0.581 0.239 0.432 0.646 0.421 0.449 0.279

Combination(T) 0.640 0.418 0.459 0.571 0.204 0.436 0.631 0.419 0.402 0.280

Combination(V+T) 0.684 0.481 0.497 0.593 0.253 0.481 0.673 0.476 0.469 0.327

table dog horse motorbike person plant sheep sofa train monitor

Gist(V) 0.289 0.270 0.652 0.364 0.679 0.173 0.167 0.281 0.541 0.316

Gist(T) 0.144 0.237 0.446 0.331 0.623 0.080 0.141 0.139 0.512 0.228

Gist(V+T) 0.290 0.281 0.652 0.405 0.704 0.130 0.170 0.284 0.586 0.335

Grad(V) 0.356 0.248 0.539 0.299 0.662 0.118 0.131 0.259 0.467 0.286

Grad(T) 0.205 0.179 0.432 0.251 0.601 0.081 0.080 0.171 0.409 0.207

Grad(V+T) 0.316 0.253 0.575 0.336 0.670 0.111 0.125 0.263 0.485 0.332

SIFT(V) 0.163 0.284 0.417 0.243 0.662 0.114 0.164 0.196 0.318 0.227

SIFT(T) 0.201 0.201 0.373 0.165 0.635 0.159 0.163 0.097 0.263 0.141

SIFT(T+V) 0.239 0.321 0.474 0.228 0.687 0.182 0.255 0.191 0.339 0.216

Color(V) 0.128 0.186 0.442 0.182 0.594 0.146 0.162 0.083 0.243 0.122

Color(T) 0.117 0.148 0.451 0.106 0.580 0.085 0.134 0.099 0.118 0.092

Color(T+V) 0.195 0.220 0.513 0.192 0.615 0.148 0.163 0.121 0.255 0.100

Unified(V) 0.373 0.343 0.657 0.489 0.749 0.330 0.324 0.323 0.619 0.322

Unified(T) 0.271 0.271 0.556 0.414 0.691 0.179 0.260 0.202 0.513 0.259

Unified(V+T) 0.413 0.375 0.681 0.526 0.782 0.355 0.344 0.346 0.661 0.379

Combination(V) 0.388 0.354 0.704 0.447 0.774 0.245 0.267 0.345 0.619 0.379

Combination(T) 0.336 0.335 0.648 0.484 0.738 0.233 0.305 0.252 0.612 0.295

Combination(V+T) 0.442 0.392 0.715 0.528 0.786 0.272 0.322 0.350 0.665 0.402

Table 2. The AP values with different settings on PASCAL 2007 for each object category. Take the Gist feature as an example: “Gist(V)”

denotes the result with the visual classifier; “Gist(T)” denotes the result with the text classifier; “Gist(T+V)” denotes the result by combining

the text and visual classifiers. The performance of the text features depends on the strength of the visual features. “Unified(T)” usually

works best among all the text classifiers; and “Color(T)” usually works worst. We get better performance consistently by combining the

text and visual classifiers. The results by combining all the text classifiers, all the visual classifier and all the text and visual classifiers, are

indicated by “Combination(T)”, “Combination(V)” and “Combination(T+V)” respectively.

combination should result in improvement.

Table 1 and Table 2 show that the combination con-

sistently outperforms separate classifiers (the best perfor-

mance in each panel is indicated in bold, look for the bold

horizontal line). In Fig. 3, we show several examples which

are misclassified by the visual classifier, but correctly clas-

sified by the text classifier on PASCAL 2006. The objects

vary widely. In the first image, the cat is in a sleeping pose,

which is unusual in the PASCAL training set. So the visual

classifier gets it wrong. However, we may find many such

images in the auxiliary dataset (there are several sleeping

cat images in the 25 nearest neighbors). Now the text cue

can make a correct prediction. The text vector also shows

that the group name is an important cue. There are several
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Figure 3. The left column shows the PASCAL 2006 images whose category labels cannot be predicted by the visual classifier, but can be predicted by the

text classifier; The center column shows the 25 nearest neighbor images retrieved from the internet dataset; the right column shows the built text feature

vectors. In the first image, the cat is in a sleeping pose, which is unusual in the PASCAL training set. So the visual classifier gets it wrong. Some sleeping

cat images are retrieved from the auxiliary dataset. Then the text features make a correct prediction.

peaky groups such as “somebody else’s cat”, “all animals”

and so on. In Fig. 4, we also show images which are mis-

classified by the text classifier but correctly classified by

the visual classifier. This happens when we fail to find good

nearest neighbor images.

At the bottom of Table 1 and Table 2, we show the per-

formance obtained by combining the different classifiers,

which is achieved by training a logistic regression classi-

fier on the validation dataset using the confidence values re-

turned by the individual classifiers as features. Combining

all the visual classifiers works better than combining only

visual classifiers or text classifiers.

3.3. Results: varying number of training images

In Fig. 5, we show the performance with different num-

ber of training images on PASCAL 2006. We randomly

select 1/40, 1/30, 1/20, 1/10, 1/5, 1/2 of the positive and

negative images respectively in the training data for each

category to do the experiments. For comparison, we also

show the results with all the training images. The perfor-

mance is shown by the average AUC values over all the

categories. We do experiments by the “Gist” and the “Com-

bination” of multiple classifiers. We observe that the text

features outperform the visual features when there are only

a small set of training images available. There is always

improvement by combining the two type of features, but

the gain is not significant when the two classifiers are not

comparable.

3.4. Result:varying number of auxiliary images

We also test the performance of the text features built

with varying number of internet images in Table 3 on PAS-
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Figure 4. The left column shows the PASCAL images whose category labels cannot be predicted by the text classifier, but can be predicted by the visual

classifier; The center column shows the 25 nearest neighbor images retrieved from the internet dataset; the right column shows the built text features of the

PASCAL images. The text features do not work here mainly because we fail to find good nearest neighbor images.

200,000 600,000 1,000,000

Gist(T) 0.7116 0.8297 0.8370

SIFT(T) 0.6975 0.8104 0.8173

Grad(T) 0.7016 0.8093 0.8207

Color(T) 0.6496 0.7370 0.7436

Unified(T) 0.7413 0.8583 0.8606
Table 3. The performance of the text features built with different

numbers internet images on PASCAL 2006. We randomly select

200,000, 600,000 images from the collection to construct the text

features. The result is based on the average AUC values over the

10 object categories.

CAL 2006. We randomly select 200,000, 600,000 images

from the collection to build the text features. The result is

based on the average AUC values over the 10 object cate-

gories.

Increasing the image number from 200,000 to 600,000

leads to a big improvement, but further increasing to 1 mil-

lion results in a negligible improvement.

This means that merely increasing the size of the auxil-

iary dataset may not have much impact. Instead, one should

create an auxiliary dataset covering more meaningful im-

ages and improve the technique to find good nearest neigh-

bor images.

bicycle bus car cat cow

W 0.818 0.915 0.932 0.812 0.843

WO 0.817 0.917 0.932 0.811 0.848

dog horse motorbike person sheep

W 0.744 0.820 0.878 0.733 0.875

WO 0.738 0.816 0.876 0.734 0.875
Table 4. When we exclude category names and their plural in-

flections from the text features, there is little effect on the per-

formance. We show results for Pascal 2006: W - with category

names; WO - without.

3.5. Result: excluding the category names

Our text features might be powerful only because our

images are tagged with category labels. To test this, we

exclude category names and their plural inflections from the

text features. This means that, for example, the words “cat”

and “cats” would not appear in the features. The effect on

performance is extremely small (Table 4). This suggests

that text associated with images is rich in secondary cues

(perhaps “mice” or “catnip” appear strongly with cats). In

future work, we will investigate directly applying semantic

measures of similarity to our features.

4. Conclusion

Text produced by matching an image to a large auxiliary

collection of images which have noisy annotations is a sur-
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Figure 5. The performance with different numbers training images on

PASCAL 2006. We randomly select 1/40, 1/30, 1/20, 1/10, 1/5, 1/2 of

the positive and negative images respectively in the training data for each

category. The performance is shown by the average AUC values over all

the categories. We do experiments by the “Gist” and the “Combination” of

multiple classifiers. The text features outperform the visual features when

there are only a small set of training images available. There is always

improvement by combining the two type of features, but the gain is not

significant when the two classifiers are not comparable.

prisingly powerful feature. One caution is necessary. It is

unwise to expect that text produced by matching with a rel-

atively weak visual feature will enhance a different, more

powerful, visual feature. For example, we have been able

to obtain the SVM score produced by the overall winner for

Pascal 2007 test images (INRIAGenetic of [3]). We fuse

this SVM with a classifier applied to a text feature. We

obtain the text features by matching using our unified vi-

sual feature (which is not as powerful as the Pascal winner),

and we observe no improvement. The situation is analogous

to fusing the unified visual feature with text produced by a

color matcher (one observes no improvement).

However, our feature is somewhat decorrelated from di-

rect visual features. It can be used to enhance any visual

feature capable of producing matches, and doing so has

consistently improved recognition performance in our ex-

periments with large standard datasets.
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