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Abstract

Many computer vision applications, such as image clas-
sification and video indexing, are usually multi-label clas-
sification problems in which an instance can be assigned to
more than one category. In this paper, we present a novel
multi-label classification approach with hypergraph regu-
larization that addresses the correlations among different
categories. First, a hypergraph is constructed to capture
the correlations among different categories, in which each
vertex represents one training instance and each hyperedge
for one category contains all the instances belonging to
the same category. Then, an improved SVM like learning
system incorporating the hypergraph regularization, called
Rank-HLapSVM, is proposed to handle the multi-label clas-
sification problems. We find that the corresponding opti-
mization problem can be efficiently solved by the dual co-
ordinate descent method. Many promising experimental re-
sults on the real datasets including ImageCLEF and Me-
diaMill demonstrate the effectiveness and efficiency of the
proposed algorithm.

1. Introduction

In computer vision, many applications such as image
classification [6] and video indexing [22], are usually multi-
label classification problems. Multi-label classification
refers to the classification problems where an instance can
be associated with more than one category. It is different
from multi-class classification, in which an instance can
only assigned a single category. Consider an example of
multi-label classification in image classification, and an im-

Figure 1. An example image associated with a set of categories
including ’Road’, ’Car’, ’Tree’, ’Human’ and ’Building’.

age can be annotated as ’Road’, ’Car’, ’Tree’, ’Human’ and
’Building’ (See Fig 1), where these different terms repre-
sent different semantic concepts. Besides in image classifi-
cation and video indexing, such type of problems also arise
in many other practical applications, such as text catego-
rization [30] and protein function prediction[12].

The most simple method for multi-label classification is
to divide it into a set of independent binary classification
problems, one for each category. The final labels for each
instance can be determined by aggregating the classifica-
tion results from all the binary classifiers. Obviously, un-
der this framework many state-of-the-art binary classifying
techniques can be easily adopted to handle the multi-label
classification problem [8, 15, 29]. However, just as pointed
out by [19, 31], this approach does not take into account the
underlying mutual correlations among different categories,
which usually do exist and could even have significant in-
fluences to the prediction performance. For example, in Fig.
1, the two categories ’Car’ and ’Road’ often emerge in the
same image, that means ’Car’ and ’Road’ have a strong pos-
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itive relationship, i.e. the two categories are not independent
of each other. If we ignore the correlations among cate-
gories and directly apply the above method, the classifica-
tion performance might be poor.

To address the challenge how to model the category cor-
relations, some novel multi-label classification algorithms
have been proposed, a kind of which is label ranking [21,
12, 10, 11]. These approaches take ranking-based strategies
that learn a ranking function of category labels from the la-
beled instances and apply it to obtain a real-valued score
to each instance-category pair, then classify each instance
by choosing all the categories with the scores above the
given threshold. Although label ranking approaches pro-
vide a novel way to handle the multi-label learning prob-
lem, they generally do not explicitly exploit the correlations
among data categories. In addition, there are other studies
toward multi-label classification modeling the correlations
among categories [19, 25, 13, 31, 16, 17, 9, 30, 23].

Recently, researches on learning with structured outputs
where the prediction variables are interdependent in com-
plex ways have drawn considerable interests. Multi-label
classification is a kind of typical learning problems with
structured outputs and can be solved by these learning mod-
els [20], whose main idea is to learn a discriminant func-
tion F : X × Y → R over input-output joint feature pairs.
Although such a joint feature map effectively exploits the
internal structure information, it results in quite high com-
putational expenses on learning and inference [2, 24].

In this paper, we provide a novel supervised multi-label
classification approach with hypergraph regularization that
address the correlations among different categories. The
two main contributions of our paper are

• Incorporate the hypergraph regularization into Rank-
SVM and offer a general label ranking algorithm for
multi-label classification, i.e. Rank-HLapSVM.

• Apply the dual coordinate descent method to effi-
ciently solve the corresponding optimization problem,
that is much faster than Frank and Wolfe’s method
[12].

Concretely, we first construct a hypergraph where each
vertex represents a training instance, and each edge called
hyperedge for one category includes all the instances be-
longing to the same category. Thus the correlations among
categories can be effectively captured via hyperedge links.
Intuitively, the similar instances tend to have the similar la-
bels. Based on this assumption, an improved SVM like ap-
proach incorporating the hypergraph Laplacian regularizer
is proposed to give a label ranking algorithm for the multi-
label problems. We find that the corresponding optimization
problem can be efficiently solved by the dual coordinate de-
scent method. Finally, a predictor of the size of label set is
suggested to determine the label number for one instance.

The rest of the paper is organized as follows. Section 2
gives some background knowledge about hypergraph. In
Section 3, we elaborate our novel supervised multi-label
classification algorithm. The data and experiment results
are presented in Section 4, followed by our conclusions in
Section 5.

2. Background
In this section, we introduce some background knowl-

edge about hypergraph.
A hypergraph is a generalization of a graph in which

edges, called hyperedges, may connect any number of ver-
tices [5]. Formally, a hypergraph G is a pair (V, E) where
V is a set of vertices and E is a set of hyperedges. The de-
gree of a hyperedge e associated with weight w(e), denoted
as δ(e), is the number of vertices in e. In particular, for the
traditional graphs or ”2-graphs”, δ(e) = 2 .The degree d(v)
of a vertex v is d(v) =

∑
v∈e,e∈E w(e). The vextex-edge

incidence matrix H ∈ R
|V |×|E| is defined as: h(v, e) = 1

if v ∈ e and 0 otherwise. So we have

d(v) =
∑
e∈E

w(e)h(v, e) (1)

δ(e) =
∑
v∈V

h(v, e) (2)

Let De and Dv be the diagonal matrices consisting of
δ(e) and d(v), respectively. Denote W as the diagonal ma-
trix of edge weights w(e).

The graph Laplacian is the discrete analog of the
Laplace-Beltrami operator on compact Riemannian mani-
folds [3]. It has been widely used in unsupervised (e.g.
spectral clustering [27])and semi-supervised learning (e.g.
[28, 32]) problems. Next, we will briefly describe one of
the commonly used algorithms constructing the hypergraph
Laplacian, which is called the clique expansion algorithm
[1, 23].

The clique expansion algorithm constructs a traditional
2-graph Gc = (Vc, Ec) from the original hypergraph G =
(V, E) and regards the Laplacian of Gc as that of G. Sup-
pose Vc = V and Ec = {(u, v)|u, v ∈ e, e ∈ E}. The edge
weight wc(u, v) of Gc is defined by

wc(u, v) =
∑

u,v∈e,e∈E

w(e) (3)

The above definition means that the similarity matrix of Gc

can be expressed by

Wc = HWHT (4)

Let Dc be the diagonal matrix where Dc(u, u) =∑
v wc(u, v). Then the combinatorial Laplacian of Gc is

given by

Lc = Dc − Wc = Dc − HWHT (5)
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and the normalized Laplacian is given by

Lc = I − D−1/2
c WcD

−1/2
c

= I − D−1/2
c HWHT D−1/2

c (6)

From Eq. (5) and (6), we have

Lc = D−1/2
c LcD

−1/2
c (7)

3. Multi-Label Classification with Hypergraph
Regularization

We first give some notations that will be used throughout
the paper. In a typical multi-label scenario, there are n train-
ing samples (x1, y1), · · · , (xn, yn). We assume that each
instance xi is drawn from a domain X ⊆ R

m and its label
yi is a subset of the output label set Y = {1, · · · , k}. For
example, if xi belongs to category 1, 3, 4, yi = {1, 3, 4}.
Set X = (x1, · · · ,xn)T .

Our basic strategy is to first take multi-label classifica-
tion as a label ranking problem, then predict the label num-
ber of each instance and finally obtain the final labels of
each instance. Label ranking is the task of inferring a total
order over a predefined set of labels for each given instance
[11]. Generally, for each category, we define a linear func-
tion fi(x) = 〈wi,x〉 + bi (i = 1, · · · , k), where 〈·, ·〉 is
the inner product. One often deal with the bias term bi by
appending each instance with an additional dimension

xT ← [xT , 1], wT
i ← [wT

i , bi] (8)

then the linear function becomes fi(x) = 〈wi,x〉. The
goal of label ranking is to order {fi(x), i = 1, · · · , k} for
each instance x according to some predefined empirical loss
function and complexity measures. Elisseeff and Weston
[12] applied the large margin idea to multi-label classifica-
tion and presented a SVM like ranking system, called Rank-
SVM, as follows

min
1
2

k∑
i=1

‖wi‖2 + C
n∑

i=1

1
|yi||yi|

∑
(p,q)∈yi×yi

ξipq

s.t. 〈wp − wq, xi〉 ≥ 1 − ξipq, (p, q) ∈ yi × yi

ξipq ≥ 0 (9)

where C is the nonnegative penalty coefficient that reflects
the trade-off between the empirical loss and model com-
plexity, yi is the complementary set of yi in Y , |yi| is the
cardinality of the set yi, i.e. the number of elements of
the set yi, and ξipq(i = 1, · · · , n; (p, q) ∈ yi × yi) are
slack variables. The margin term

∑k
i=1 ‖wi‖2 controls the

model complexity and improves the model generalization
performance. Although this approach performs better than
Binary-SVM in many cases, it still does not model the cat-
egory correlations clearly. Next, we will introduce how to

construct a hypergraph to exploit the category correlations
and how to incorporate the hypergraph regularization into
Eq. (9).

3.1. Basic Framework

To model the correlations among different categories ef-
fectively, a hypergraph is built where each vertex corre-
sponds to one training instance and each hyperedge for one
category includes all the training instances relevant to the
same category. Here, we apply the clique expansion algo-
rithm to construct the similarity matrix of the hypergraph. It
means that the similarity of two instances is proportional to
the sum of the weights of their common categories, which
captures the higher order relations among different cate-
gories. This kind of hypergraph structure was used in the
feature extraction by spectral learning [23]. However, we
consider how to apply the relation information encoded in
the hypergraph to directly design the multi-label classifi-
cation model. Intuitively, two instances tend to have large
overlap in their assigned categories if they share high simi-
larity in the hypergraph. Formally, this smoothness assump-
tion can be expressed using the hypergraph Laplacian reg-
ularizer, trace(F̂T LF̂ ), so we introduce it into Eq. (9) and
have

min
1
2

k∑
i=1

‖wi‖2 +
1
2
λtrace(F̂T LF̂ ) +

C
n∑

i=1

1
|yi||yi|

∑
(p,q)∈yi×yi

ξipq

s.t. 〈wp − wq, xi〉 ≥ 1 − ξipq, (p, q) ∈ yi × yi

ξipq ≥ 0 (10)

where F̂ = (F (x1), · · · , F (xn))T ∈ R
n×k, F (xi) =

(f1(xi), · · · , fk(xi))T predicts the label matrix for training
data, L is the n× n hypergraph Laplacian and λ is the non-
negative constant that controls the model complexity in the
intrinsic geometry of input distribution. Our general frame-
work for multi-label classification, called Rank-HLapSVM,
has a close relation with the manifold regularization algo-
rithm [4], and more discussions can be found in Section
3.5.

3.2. The Dual Problem

Eq. (10) is a linearly constrained quadratic convex opti-
mization problem. First, we introduce a dual set of vari-
ables, one for each constraint, i.e αipq ≥ 0 for 〈wp −
wq,xi〉 − 1 + ξipq ≥ 0 and ηipq for ξipq ≥ 0. Then the
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Lagrangian of Eq. (10) can be given by

Lag(x, ξ,α,η) =
1
2

k∑
i=1

‖wi‖2 +
1
2
λtrace(F̂T LF̂ )

+C
n∑

i=1

1
|yi||yi|

∑
(p,q)∈yi×yi

ξipq

−
n∑

i=1

∑
(p,q)∈yi×yi

αipq(〈xp − wq,xi〉 − 1

+ξipq) −
n∑

i=1

∑
(p,q)∈yi×yi

ηipqξipq (11)

Here, we choose the combinatorial Laplacian that yields
F̂T LF̂ = WkXT LXWT

k with Wk = (w1, · · · ,wk)T

To find the minimum over the primal variables we re-
quire

∂Lag
∂wp

= wp + λXT LXwp −
n∑

i=1

∑
(j,q)∈yi×yi

tpijqαijqxi

= 0 (12)

where

tpijq =

⎧⎨
⎩

1
−1
0

j = p
q = p

if j 
= p and q 
= p
(13)

Similarly, let

∂Lag
∂ξipg

=
C

|yi||yi|
− αipq − ηipq = 0 (14)

To abbreviate the notations, we define

βpi =
∑

(j,q)∈yi×yi

tpijqαijq (15)

that yields

wp = (I + λXT LX)−1
n∑

i=1

βpixi (16)

where I is the (m + 1) × (m + 1) unit matrix.
So the dual problem of Eq. (10) can be expressed by

min g(α) =
1
2

k∑
p=1

n∑
h,i=1

βphβpix
T
h (I + λXT LX)−1xi

−
n∑

i=1

∑
(p,q)∈yi×yi

αipq

s.t. 0 ≤ αipq ≤ C

|yi||yi|
(17)

Note the box constraints are derived from Eq. (14) by using
the fact that ηipq ≥ 0.

Once the variables αipq are solved, wp can be calcu-
lated by Eq. (16). Compared with the primal optimization
problem, the dual decreases in the number of variables by
k(m + 1) and includes more simple box constraints. In the
following section, we will describe an efficient optimization
algorithm to solve the dual problem.

3.3. Efficient Optimization Algorithm using Dual
Coordinate Descent

In the practical multi-label problems, the amount of in-
stances is usually large (maybe a few thousand even tens of
thousands), which makes it computationally expensive to
solve Eq. (17) by off the shelf QP solvers. Hsieh et al. [14]
recently proposed a dual coordinate descent method for lin-
ear SVM that is evidently superior to other state of the art
solvers. Actually, Eq. (17) can be efficiently solved by the
coordinate descent method. Next, we will describe the co-
ordinate descent method for Eq. (17).

Coordinate descent is a popular optimization technique
which updates one variable ar a time by minimizing a single
variable subproblem. If the subproblem can be efficiently
solved, then it can be a competitive optimization method.
For the dual problem (17), the coordinate descent method
picks one variable αipq at a time and solves the following
single variable subproblem keeping all other variables fixed

min
d

g(α + deipq)

s.t. 0 ≤ αipq + d ≤ C

|yi||yi|
(18)

where eipq = (0, · · · , 0, 1, 0, · · · , 0)T . The object function
g(α + deipq) of Eq. (18) is a simple quadratic function of
d

g(α + deipq) = Aiid
2 + ∇ipqg(α)d + constant (19)

where Aii = xT
i (I + λXT LX)−1xi and

∇ipqg(α) =
∂g(α)
∂αipq

=
n∑

j=1

(βpj − βqj)〈xj , (I + λXT LX)−1xi〉 − 1

= (wp − wq)T xi − 1 (20)

It can be easily seen that Eq. (18) has an optimum at d = 0
if and only if

∇P
ipqg(α) = 0 (21)
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where ∇P g(α) is the projected gradient

∇P
ipqg(α) =

⎧⎨
⎩

∇ipqg(α)
min(0,∇ipqg(α))
max(0,∇ipqg(α))

if 0 < αipq < C
|yi||yi|

if αipq = 0
if αipq = C

|yi||yi|
(22)

If Eq. (21) holds, we do not need to update αipq and directly
move to next variable. Otherwise, the optimal solution of
Eq. (18) is

α∗
ipq = min(max(αipq − ∇ipqg(α)

2Aii
, 0),

C

|yi||yi|
) (23)

This means the subproblem can be solved analytically that
ensures the efficiency of the coordinate descent method.
Here, we need to calculate Aii and ∇ipqg(α). First, Aii

can be precomputed and stored in the memory. Second, to
evaluate ∇ipqg(α) using Eq. (20), we need to maintain w
by

wp ← wp + (α∗
ipq − αipq)(I + λXT LX)−1xi (24)

wq ← wq − (α∗
ipq − αipq)(I + λXT LX)−1xi (25)

where (I+λXT LX)−1xi can also precomputed and stored
in the memory.

The dual coordinate descent method for linear Rank-
HLapSVM is listed in Algorithm 1. Calculating ∇ipqg(α)
takes O(m) operations, where m is the average number of
nonzero elements per instance. Updating wp and wq needs
O(m) operations. Thus the cost per iteration (updating α
one time) is O(nαm). The main memory requirement is
on storing xi, Aii and (I + λXT LX)−1xi(i = 1, · · · , n).
Like [14], we can easily prove the following convergence
theorem using techniques in [18]

Theorem 1 α generated by Algorithm 1 globally converge
to an optimal solution α∗. The convergence rate is at least
linear: there are 0 < μ < 1 and an iteration t0 such that

g(αt+1) − g(α∗) ≤ μ(g(αt) − g(α∗)),∀t > t0 (26)

Due to the space limitation, we omit the proof. The linear
convergence result is remarkable, that means Algorithm 1
can achieve an ε-accurate solution α (g(α) ≤ g(α∗) + ε)
in O(log(1/ε)) iterations.

In order to speed up our algorithm, we also employ two
heuristic strategies [14] for Algorithm 1. The first is to ran-
domly permute the subproblems at each outer iteration. The
second is to apply the shrinking technique to reduce the
size of the optimization problem without considering some
bounded variables.

In addition, let A ∈ R
n×n and Aij = 〈xi, (I +

λXT LX)−1xj〉, then we have

A = X(I + λXT LX)−1XT

= XXT (I + λLXXT )−1 (27)

Algorithm 1 A dual coordinate descent method for linear
Rank-HLapSVM

Start with α = 0 ∈ R
nα (nα =

∑n
i=1 |yi||yi|), and the

corresponding wi = 0 (i = 1, · · · , k)
while 1 do

for i = 1, · · · , n and (j, q) ∈ yi × yi do
1. G = (wp − wq)T xi − 1

2. PG =

⎧⎨
⎩

G
min(0, G)
max(0, G)

if 0 < αipq < C
|yi||yi|

if αipq = 0
if αipq = C

|yi||yi|
3. If |PG| 
= 0,

α∗
ipq ← min(max(αipq − G

2Aii
, 0),

C

|yi||yi|
)

wp ← wp + (α∗
ipq − αipq)(I + λXT LX)−1xi

wq ← wq − (α∗
ipq − αipq)(I + λXT LX)−1xi

end for
if ‖α∗ − α‖ < ε then

Break
end if
α = α∗

end while

where XXT is the inner product matrix and {XXT }ij =
〈xi,xj〉. Therefore, only replacing the inner products
〈xi,xj〉 by appropriate kernels k(xi,xj), our algorithm is
easily extended to the nonlinear version. However, in our
experiments we only use the linear algorithm.

3.4. Predicting the Size of Label Set

So far we have only provided a label ranking algorithm.
To identify the final labels of data, we need to design an ap-
propriate threshold for each instance to determine the size
of its corresponding label set. Here, we adopt the strat-
egy proposed by Elisseeff and Weston [12], which takes
threshold designing as a supervised learning problem. More
concretely, for each instance x, define a threshold func-
tion h(x) and the size of label set s(x) = |{j|fj(x) >
h(x), j = 1, · · · , k}|. Our goal is to obtain h(x) through
a supervised learning method. For the training data xi, its
label ranking value f1(xi), · · · , fk(xi) can be given by the
foregoing ranking algorithm, and its corresponding thresh-
old h(xi) is simply defined by

h(xi) =
1
2
(min{fj(xi), j ∈ yi} + max{fj(xi), j ∈ yi})

Once the training data (x1, h(x1)), · · · , (xu, h(xu)) are
generated, we can use off the shelf learning methods to learn
h(x). In this paper, linear Support Vector Regression [26]
have been adopted to solve h(x).
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Actually, all the label ranking based algorithms toward
multi-label learning can apply this postprocessing approach
to predict the size of label set.

3.5. Connections to Manifold Regularization

Belkin et al. [4] extended the traditional regulariza-
tion algorithms with different empirical cost functions
and complexity measures in an appropriately chosen Re-
producing Kernel Hilbert Space (RKHS), e.g. SVM and
Regularized Least Squares (RLS), and suggested a gen-
eral semi-supervised learning framework for binary clas-
sification problems by incorporating manifold regulariza-
tion. More concretely, given a set of labeled examples
(xi, yi) (i = 1, · · · , l) and a set of unlabeled examples
xj (j = l + 1, · · · , l + u), the object model f∗ can be
obtained by solving the following optimization problem

f∗ = arg min
f∈HK

1
l

l∑
i=1

V (xi, yi, f) + γA‖f‖2
K +

γI

∫
M

(∇Mf,∇Mf) (28)

where V (xi, yi, f) is some empirical loss function, such
as squared loss (yi − f(xi))2 for RLS or the hinge loss
max{0, 1−yif(xi)} for SVM. Penalizing the RKHS norm
‖f‖2

K imposes smoothness conditions on possible solu-
tions. The manifold regularizer

∫
M(∇Mf,∇Mf) reflects

the intrinsic structure of the marginal distribution P (x), i.e.
the conditional probability distribution P (y|x) should vary
smoothly along the geodesics in the intrinsic geometry of
P (x). Note the term

∫
M(∇Mf,∇Mf) may be approxi-

mated on the basis of labeled and unlabeled data using the
graph Laplacian.

As a matter of fact, Eq. (10) can be converted into the
following formulation

minC

n∑
i=1

1
|yi||yi|

∑
(p,q)∈yi×yi

max{0, 1 − fp(xi) + fq(xi)}

+
1
2

m∑
i=1

‖wi‖2 +
1
2
λtrace(F̂T LF̂ )

where max{0, 1 − fp(xi) + fq(xi)} is the empirical loss
function,

∑m
i=1 ‖wi‖2 is the regularizer in the RKHS and

trace(F̂T LF̂ ) is the manifold regularizer that imposes the
manifold smoothness. Therefore, to some extent, our al-
gorithm can be viewed as a generalization of the original
manifold regularization from binary classification to multi-
label classification. However, an evident distinction is that
our algorithm is supervised not semi-supervised since the
hypergraph only contains the labeled examples.

4. Experiments
We performed experiments on two real world multi-label

classification problems arising in image classification and
video indexing. Comparisons are made with Binary-SVM
and Rank-SVM [12].

4.1. Methods and Experimental Setup

Here, the three models used for multi-label classification
are listed below

• Binary-SVM. In this model, first, for each category,
train a linear SVM classifier independently. Then, the
labels for each test instance can be obtained by aggre-
gating the classification results from all the binary clas-
sifiers. Here, we use LIBSVM [7] to train the linear
SVM classifiers.

• Rank-SVM [12]. In this model, first, as Eq. (9), im-
plement Algorithm 1 (λ = 0) to train a linear label
ranking system. Second, apply the prediction method
for the size of label set in Section 3.4 to design the
threshold model. Finally, for each test instance, com-
bine the label ranking and threshold models, thus infer
its labels.

• Rank-HLapSVM. This is our suggested algorithm.
First, as Eq. (10), implement Algorithm 1 to achieve a
linear label ranking system. Second, apply the method
in Section 3.4 to design the threshold model. Finally,
for each test instance, combine the label ranking and
threshold models, thus infer its labels.

In Rank-HLapSVM, we use Eq. (5) to construct the hy-
pergraph Laplacian L, where the weight w(e) of the hyper-
edge is calculated by

w(e) = exp(−νde) (29)

where ν is a nonnegative constant, and de is the average
intra-class distance (Note each hyperedge corresponds to
one category)

de =

∑
u,v∈e ‖xu − xv‖2

δ(e)(δ(e) − 1)
(30)

The smaller the average intra-class distance, the larger the
corresponding hyperedge weight.

In the above three models, it is necessary to identify the
best value of model parameters such as C, λ and ν on the
training data. Here, the grid search method with 5-fold cross
validation is used to determine the best parameter values.
For example, there is a penalty coefficient C in the linear
SVM. In order to find a good parameter C, select differ-
ent values C = 2−6, 2−5, 2−4, · · · , 20, 21, 22, · · · , 213. For
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Methods F1 Macro F1 Micro
Binary-SVM 0.7128 0.7294
Rank-SVM 0.7236 0.7457

Rank-HLapSVM 0.7453 0.7629

Table 1. Performance comparisons of three models on the Image-
CLEF dataset

each value of C, do 5-fold cross validation on the train-
ing data and compute the corresponding performance mea-
sure. Finally, select the one with the best performance as
the value of C.

In addition, all the experiments are performed on a PC
with Intel Core 2 Quad Q6600 2.40G CPU and 4G RAM.

4.2. Evaluation Metrics

We choose two measures, F1 Macro and F1 Micro, as the
evaluation metrics for multi-label learning. F1 Macro is the
arithmetic average of F1 scores over all the categories, and
F1 Micro can be seen as the weighted average of F1 scores
over all the categories that emphasizes the performance on
those categories with more positive instances (see [29] for
details). The F1 measure of the sth category is defined by

F1(s) =
2psrs

ps + rs
(31)

where ps and rs are the precision and recall of the sth cate-
gory, respectively.

4.3. The ImageCLEF Dataset

ImageCLEF 1 is a cross-language image retrieval track.
We randomly pick 3500 documents from ImageCLEF col-
lection, and choose the top 60 most popular categories. On
average, each document is assigned to 3.9 categories. The
2000 documents is randomly selected for training and the
left 1500 for test.

Table 1 shows the experimental results on the test set of
the ImageCLEF data. For Binary-SVM and Rank-SVM,
the penalty coefficient C = 8. For Rank-HLapSVM, the
parameters ν = 2, C = 8 and λ = 4. From the above
experiments, we find that Rank-HLapSVM performs better
that Rank-SVM, and Rank-SVM does better than Binary-
SVM.

4.4. The MediaMill Dataset

The MediaMill dataset 2 recently released by Snoke et
al. [22] is a challenging dataset for generic video indexing
which are extracted from the TRECVID 2005/2006 bench-
mark. The dataset includes 101 semantic concepts such

1http://ir.shef.ac.uk/imageclef/
2http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/multilabel.html

Methods F1 Macro F1 Micro
Binary-SVM 0.1865 0.2381
Rank-SVM 0.2232 0.2699

Rank-HLapSVM 0.2382 0.2836

Table 2. Performance comparisons of three models on the Medi-
aMill dataset

as ’People’, ’Meeting’ , ’Studio’ and ’Military’, and each
video instance is represented as a 120-dimensional feature
vector. Here, we randomly select a subset of the MediaMill
dataset containing 3000 instances and 42 semantic concepts
with more than 30 positive assignments. On average, each
instance is assigned to 4.3 semantic concepts. The subset is
equally split into a training set and a test set.

Table 2 lists the experimental results of three models on
the test set of the MediaMill data. For Binary-SVM and
Rank-SVM, the penalty coefficient C = 1024. For Rank-
HLapSVM, the parameters ν = 8, C = 1024 and λ = 32.
It can be seen that based on F1 Macro and F1 Micro, Rank-
HLapSVM is evidently superior to Rank-SVM, and Rank-
SVM is evidently superior to Binary-SVM. This results also
indicate that there indeed exists close correlations among
different topics of MediaMill data and Rank-HLapSVM ef-
fectively exploits these correlations so as to improve the
prediction performance.

Actually, from Eq. (10), if λ = 0, Rank-HLapSVM
reduces to Rank-SVM. As long as there is the appropri-
ate λ, Rank-HLapSVM can always perform better than
Rank-SVM. Therefore, Rank-HLapSVM is a substaintial
improvement of Rank-SVM.

4.5. Efficiency

Elisseeff and Weston [12] proposed to apply Frank and
Wolfe’s method, i.e. the conditional gradient method, to
solve Rank-SVM. Its basic idea is to transform the quadratic
optimization problem (9) into many simple linear program-
ming and linear search problems and the corresponding
time cost of each iteration is O(n2k). As depicted in Sec-
tion 3.3, the time cost per iteration of the dual coordinate
descent method is O(nαm). Therefore, the time cost of
our algorithm is approximately proportional to the amount
of the instances while that of Frank and Wolfe’s method is
proportional to the square of the amount of the instances.
Besides, our algorithm has a remarkable linear convergence
rate while Frank and Wolfe’s method does not. Hereby,
in the practical problems, especially when the number of
instances are much larger than the number of categories,
the dual coordinate method should be superior to Frank and
Wolfe’s method.

Table 3 gives the average execution time of Rank-SVM
using Frank and Wolfe’s method and the dual coordinate
descent method on the above two datasets respectively. It
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Dataset Frank and Wolfe’s Method DCD
ImageCLEF 7834.2 155.2
MediaMill 4519.8 87.3

Table 3. The average execution time (/s) of Rank-SVM using
Frank and Wolfe’s method and the dual coordinate descent method
(DCD) on the two datasets respectively

can be found that the dual coordinate descent method is
much faster than Frank and Wolfe’s method in those real
data. This sufficiently verifies the efficiency of the dual co-
ordinate descent method.

5. Conclusions and Future Work
In this paper, we have proposed a novel label ranking

algorithm, Rank-HLapSVM, for multi-label classification.
The hypergraph is constructed to capture the higher order
relations among categories. We incorporate the hypergraph
Laplacian regularizer into Rank-SVM and offer a more ef-
fective label ranking framework. The dual coordinate de-
scent method is introduced to efficiently solve the corre-
sponding quadratic optimization problem. The experimen-
tal results on the real data show that Rank-HLapSVM in-
deed performs better than Binary-SVM and Rank-SVM.

However, our current algorithm cannot handled very
large scale data, since the hypergraph Laplacian L need to
be directly calculated. In order to facilitate the multi-label
classification tasks for large scale data, we will further de-
velop some fast approximate algorithms of calculating L
and (I +λXT LX)−1 that have low time and memory cost.

In addition, it is easy to obtain the nonlinear version of
Rank-HLapSVM by the kernel method. In the future, we
will also test our algorithm and its kernel version on more
real data.
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