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Abstract

Many computer vision problems can be formulated in
a Bayesian framework with Markov Random Field (MRF)
or Conditional Random Field (CRF) priors. Usually, the
model assumes that a full Maximum A Posteriori (MAP) es-
timation will be performed for inference, which can be re-
ally slow in practice. In this paper, we argue that through
appropriate training, a MRF/CRF model can be trained to
perform very well on a suboptimal inference algorithm. The
model is trained together with a fast inference algorithm
through an optimization of a loss function on a training set
containing pairs of input images and desired outputs. A
validation set can be used in this approach to estimate the
generalization performance of the trained system. We ap-
ply the proposed method to an image denoising application,
training a Fields of Experts MRF together with a 1-4 iter-
ation gradient descent inference algorithm. Experimental
validation on unseen data shows that the proposed training
approach obtains an improved benchmark performance as
well as a 1000-3000 times speedup compared to the Fields
of Experts MRF trained with contrastive divergence. Us-
ing the new approach, image denoising can be performed
in real-time, at 8fps on a single CPU for a 256× 256 image
sequence, with close to state-of-the-art accuracy.

1. Introduction

Many computer vision problems are approached by con-
structing models based on Markov Random Field (MRF) or
Conditional Random Field (CRF) energy functions and in-
ferring the solution through an optimization procedure such
as gradient descent, Belief Propagation [27], Graph Cuts
[3], Iterated Conditional Modes [2], etc. Such an approach
faces two challenges when applied to real-world problems.

First, the energy function must be computationally feasi-
ble in the sense that the minimum should be found in poly-
nomial time. This does not usually happen in reality, since
finding the global minimum for most energy functions asso-
ciated to real-world applications is NP hard. For example,
finding the global minimum of the Potts model [17], used in
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Stereo Matching as a prior term [3, 19, 20], is NP hard [3].
In such cases, polynomial algorithms are not expected to be
found.

Second, it is hard to find energy functions that always
have a global minimum exactly at the desired solution. Re-
cent work [1, 13, 22] introduced methods for training the
MRF parameters such that the MRF energy minimum is as
close as possible to the desired output on a training set.

Figure 1. A MRF/CRF model trained together with a fast inference
algorithm can obtain surprising speed and accuracy. Training is
an optimization of a loss function and a training set of input and
desired output images.

Wainwright [24] suggested that in computational lim-
ited settings, MAP estimation is not the best choice and a
”wrong” model could be beneficial. In this paper, we pro-
pose a method to train such a model for solving MRF/CRF
based problems where fast inference is desired. In the pro-
posed approach, the MRF/CRF model is trained together
with a fast and suboptimal inference algorithm to best col-
laborate in solving the given task. The MRF/CRF param-
eters are learned through an optimization procedure illus-
trated in Figure 1, using a supervised training set and a loss
function to monitor progress towards the goal.

This idea is illustrated on an image denoising applica-
tion, using the Fields of Experts [18] Markov Random Field
(MRF) model and a simple gradient descent inference algo-
rithm, previously used together for image denoising. The
algorithm is restricted to be 1000-3000 times faster than
usual and the best model-algorithm parameters are trained
using a dataset of training pairs consisting of input images

1
1574978-1-4244-3991-1/09/$25.00 ©2009 IEEE



corrupted with noise and the desired denoised output (the
images without the noise). A comprehensive evaluation
on 68 standard benchmark images that were not used for
training revealed that the trained model-algorithm combina-
tion obtains improved denoising performance compared to
the equivalent MRF model while being thousands of times
faster.

The goal of this paper is to demonstrate that training a
MRF/CRF model together with a very fast inference algo-
rithm could offer very good results in both speed and accu-
racy.

2. Markov Random Fields and Conditional
Random Fields

Let G = (V,E) be a graph, x = (xv)v∈V be a set of
random variables representing some hidden attributes (e.g.
labels) of the graph nodes v ∈ V , and C be a set of cliques
(fully connected subgraphs) ofG. In a Bayesian framework,
the probability of the hidden variables x given input data
(image, signal) y is

P (x|y) ∝ P (y|x)P (x) (1)

The Markov Random Field (C, φ) models the prior on the
hidden variables x

P (x) =
1
Z

exp[
∑
c∈C

φc(xc)] (2)

where φc(xc) are potential functions that enforce the reg-
ularization between the variables xc corresponding to the
clique c. The cliques can be as small as graph edges (order
2), however larger cliques are often preferred, being capable
of representing more complex relationships.

Quite recently, Conditional Random Fields (CRF) [12,
11] were developed as an extension of the MRF so that the
clique potentials depend on the observed data y. A CRF is
also a pair (C, φ) with the φ depending on y.

P (x|y) =
1

Z(y)
exp[

∑
c∈C

φc(xc,y)] (3)

The MRFs and CRFs have the following advantages and
disadvantages:

+ They are capable of encoding complex relationships
between the graph attributes x resulting in flexible yet
powerful models

- Inference is computationally demanding. For exam-
ple, the exact inference even for one of the simplest
pairwise MRF priors such as the Potts model [17] is
NP hard [3]. Hence, approximate solutions are usually
sought and obtained.

- Training the MRF requires the knowledge of the nor-
malization constant Z for comparing different MRF
models. The normalization constant Z usually has no
closed form solution and is expensive to compute.

3. Energy Based Models and Loss Functions
Recent work [1, 13, 22] deals with the challenges related

to the normalization constant by training the MRF param-
eters θ so that the maximum probability MRF points are
as similar as possible to the corresponding desired outputs.
The differences between the maximum probability MRF
points xi and the desired outputs ti are measured using a
loss function L(xi, ti) and the training procedure can be
written as:

min
θ

∑
i

L(xi, ti), with xi = arg max
x

p(x|yi; θ) (4)

This approach solves some of the difficulties related to the
MRF training, eliminating the need to compute the normal-
ization constant, by comparing models using the loss func-
tion. However, these methods still deal with an idealized
situation, since in reality the minimum energy MRF point is
often too expensive to compute (e.g. NP-hard for the Potts
model) and a suboptimal point is usually obtained instead.

4. Proposed Method
Since most fast inference algorithms obtain a sub-

optimal solution anyway, we propose a different approach
in which the model parameters are trained such that the in-
ference algorithm output (and not the ”ideal” most likely
MRF point) is close to the desired output. This way, we in-
troduce the inference algorithm in the learning loop. This
combined approach can be written as:

min
θ

∑
i

L(xi, ti), with xi = A(yi, θ) (5)

where x = A(y, θ) is the result of applying the algorithmA
based on the model and algorithm parameters θ = (θm, θa)
to the input image y. As in Section 3, the training data
consists of pairs (yi, ti) of input images yi and the corre-
sponding desired outputs ti. The loss function L is used to
evaluate the performance of the model-algorithm combina-
tion on the training set.

The algorithm A is picked from a family A that can in-
clude any type of MRF/CRF inference algorithm: gradient
descent, Belief Propagation [27], Graph Cuts [3], etc. How-
ever, in contrast to the standard MRF/CRF approaches, the
algorithms in the family A should be very fast, by sacrific-
ing accuracy. For example, the number of gradient descent
iterations in our image denoising application is kept very
small, on the order of 1 to 4, even though usually 3000-
10000 iterations are used in applications. The deficit in ac-
curacy of the algorithm will be compensated by training the
model to give best results on this algorithm, resulting in a
fast and incredibly accurate combination.

The trained MRF model and its inference algorithm can
no longer be separated, because they cannot work well with-
out each other. We call this model-algorithm combination
an Active Random Field (ARF).
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The loss function L is chosen to measure the progress to-
ward solving the given vision task. For image denoising, we
used the average PSNR (peak signal-to-noise ratio) over the
set of images evaluated (training or testing) and we replaced
the minimization in (5) with a maximization. Alternatively,
we could have used the Mean Square Error as a loss func-
tion.

Depending on the problem, different optimization algo-
rithms (coordinate descent, conjugate gradient, simulated
annealing, genetic algorithm, etc) could be appropriate.

The proposed approach raises two concerns.

1. The main concern is overfitting, where an increased
performance on the training set is reflected in a de-
creased performance on an unseen dataset. It can be
detected using a validation set and appropriate mea-
sures can be taken. Possible measure include increas-
ing the number of training examples or changing the
type of the training examples (e.g. larger images to
avoid boundary effects).

2. Another concern is the computational complexity of
executing the algorithm on all the training examples
for each optimization iteration. This is addressed us-
ing effective design strategies (e.g. memorization of
partial results) and through efficient optimization al-
gorithms such as conjugate gradient or genetic algo-
rithms that can make good use of each function eval-
uation. Moreover the exponential growth in computa-
tional power of a standard PC makes the computation
less of an issue.

4.1. Related Work

In the literature, a substantial amount of work combines
models with algorithms in different ways. Active Appear-
ance Models [5] are iterative algorithms driven by the data
and a PCA-like model to find objects of interest in the im-
age. The solution depends on the initialization inside the
image, so they can only be used in cooperation with other
algorithms or with user initialization. A more complete so-
lution for object or shape detection is offered by the Shape
Regression Machine [29], in which an image based regres-
sion algorithm is trained to find a vector toward the object of
interest from any random location inside the image. By us-
ing hundreds of random initialization and a verification step
based on Adaboost, a fast and robust object detection sys-
tem is obtained. The Shape Regression Machine can thus be
seen as a trained model-algorithm combination for object or
shape detection. Our work differs from the Regression Ma-
chine because it is aimed at training models and algorithms
for MRF/CRF inference instead of object/shape detection.

Similar goals in obtaining good results with low compu-
tational expense are explored in cost-sensitive learning. In

[23], a decision tree was trained to minimize a cost func-
tion with terms for accuracy and computational expense for
each feature. Also related is [26], where for each instance of
the well-known SAT problem, the most efficient algorithm
is selected from a pool of SAT solvers using regressors that
estimate the algorithm running time. These regressors have
been trained beforehand on a dataset of SAT instances.

The proposed method bears similarity to the energy
based models [13], in that only the energy part of the MRF
is used without the normalization constant, and a loss func-
tion is used for training. The energy based models are mod-
els trained in such a way that the MAP is at the desired
location on the training set, independent of the optimization
(inference) algorithm that will be used to obtain that min-
imum. In contrast, the proposed training finds the model
parameters that give best results on a training set using a
preselected fast inference algorithm.

The same method from Eq. (5) is used in [21] for im-
age denoising, but as an attempt to obtain a stronger MAP
optimum than the gradient descent. For that, a more com-
plex inference algorithm, based on variational optimization,
is derived. In this paper, we do not aim at obtaining a MAP
optimum and focus on preventing and avoiding overfitting
instead. Even when using a very fast inference algorithm
such as one iteration of gradient descent, through appro-
priate training, the model will adapt to the simple descent
algorithm. Consequently, the image denoising results pre-
sented in this paper surpass any previous results based on
MRF models.

In general, parameter tuning for a specific application
based on a training dataset can be viewed as related work,
but we are unaware of any work specifically aimed at study-
ing parameter tuning and ways to prevent overfitting.

The differences from the standard MRF/CRF approaches
and the proposed approach are

1. In our approach, the normalization constant Z is not
important anymore, since different models are com-
pared using the loss function L instead of the likeli-
hood or posterior probability.

2. In a fully supervised way, the proposed approach uses
training sets consisting of pairs of input images and
desired results. This gives a better idea on when the
training is completed or whether overfitting occurs.

3. A complex and well-trained model can complement
some of the algorithm’s weaknesses, obtaining a fast
yet accurate system.

5. Application: Image Denoising

We apply the proposed method to image denoising,
where given an image corrupted with noise, the goal is to
obtain an image from which the noise was removed. Im-
age Denoising can be viewed as a graph-based optimization
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Figure 2. Image denoising example. From left to right: original image, image corrupted with additive Gaussian noise with σ = 25,
PSNR=20.17; our result, PSNR=28.94, 0.6 seconds and Fields of Experts result [18], PSNR=28.67, 2280 seconds; wavelet denoising [16],
PSNR=29.05, 16 seconds; overcomplete DCT, PSNR=28.81, 38 seconds, and BM3D [6], PSNR=29.60, 4.3 seconds.

problem, with the graph nodes being the pixels of the im-
age. This problem has been addressed using wavelets in
[16, 15] and by learning a MRF prior model named Fields
of Experts on 5 × 5 pixel cliques in [18]. Non-local image
denoising methods include [4] and especially 3D collabo-
rative filtering (BM3D) [6], the latter obtaining very good
results with low computational expense.

An example of an image denoising problem and results
obtained using the above mentioned methods as well as the
approach proposed in this paper are shown in Figure 2, to-
gether with the CPU time required to obtain each result.
Another approach [7] uses a sparse representation based on
a learned dictionary of primitives, and it is more computa-
tionally involved.

We apply the approach proposed in this paper on the
Fields of Experts MRF model and the gradient descent al-
gorithm that were presented in [18] and will be briefly men-
tioned in the next section. The loss function used for train-
ing is the average PSNR (Peak Signal to Noise Ratio) over
the training set.

5.1. Fields of Experts

The Fields of Experts [18] is a Markov Random Field
prior model with potential functions based on a collection
of convolution kernels (filters) Jf , f = 1, ..., N and coeffi-
cients αf , f = 1, ..., N

pFOE(x, θ) =
1

Z(θ)
exp(−EFOE(x, θ)),

EFOE(x, θ) =
∑
k

N∑
f=1

αf log(1 +
1
2
(JTf x(k))2)

(6)

The first sum is taken over the cliques k of the denoised
image x, and x(k) are the pixels of x corresponding to
clique k. There is a clique centered at each pixel location
inside the image. Basically, each expert is a convolution
followed by a nonlinearity.

For image denoising, this prior is used together with a
likelihood that assumes i.i.d. Gaussian noise:

p(y|x) ∝ exp(−Edata), Edata =
1

2σ2

∑
j

(yj − xj)2

(7)where xj is the value of pixel j of image x.
The beauty of the Fields of Experts formulation consists

of an analytical solution for the gradient of the energy with
respect to x.

∇xEFOE(x, θ) =
N∑
f=1

αfJ
−
f ∗

JTf x

1 + 1
2 (JTf x)2

(8)

where J−f is the mirror image of filter Jf around its center
pixel.

Given a noisy image and learned parameters θ, the
denoising is obtained by gradient descent in the energy
Edata(x) + EFOE(x, θ). Thus, by taking small steps in
the direction of the energy gradient, a denoised image x̂
is obtained in about 3000 iterations. For more details, see
[18].

5.2. Supervised Training of the FOE Model

We will use the FOE model presented above,
parametrized by the number n of kernels, the convolution
kernels Jf , f = 1, ..., n, their corresponding coefficients
αf . Together with the FOE model, we also use the family
of algorithms A from above. By ignoring the normaliza-
tion constant and the Gaussian likelihood, from the energy
gradient equation (8) results the gradient descent inference
algorithm:

x← x + δ

N∑
f=1

αfJ
−
f ∗

JTf x

1 + 1
2 (JTf x)2

(9)

These iterative algorithms will form the algorithm family
A, parametrized by the number niter of gradient update it-
erations (9), and the update parameter δ of equation (9).
Therefore

θ = (θm, θa) = (n, J1, α1, ..., Jn, αn, niter, δ). (10)

The algorithm family A is restricted to have a small num-
ber of iterations niter ∈ {1, 2, 3, 4} with δ = 400/niter.
Since the number of iteration is small, the result is obtained
between 800 and 3000 times faster than the FOE. At the
same time we will observe that the denoising performance
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actually increases compared to FOE, for an appropriately
trained system.

In [18], the Fields of Experts model is trained using
Contrastive Divergence [9] and Markov Chain Monte Carlo
sampling. The procedure involves gradient descent in the
parameter space to minimize the KL divergence between
the model probability and the empirical prior probability
obtained from the training examples. The parameters are
updated based on expected values with respect to the cur-
rent probability distribution, values obtained using MCMC
sampling. The training procedure is computationally inten-
sive and yields a generic prior model for natural images.

In [21], the same FOE model is used and trained using
a loss function and stochastic gradient descent. With the
help of a family of upper bounds of the nonlinear function
log(1 + x2), another inference algorithm is obtained, with
the hope that it can obtain a stronger optimum than the gra-
dient descent (9).

In what follows, we will show that this is not necessary,
since by appropriate training of the FOE model together
with the steepest descent algorithm, the model will adapt to
make the simple gradient descent work very well, making it
unnecessary to use a more powerful inference algorithm.

Dataset. The same images as [18] are used for training,
namely 40 natural images from the Berkeley dataset [14].
The training examples consist of the 40 pairs (yi, ti) of
input images yi and desired results ti, i = 1, ..., 40. The
desired results ti are the original noise-free training im-
ages. The input images yi are the original training images
ti corrupted with Gaussian noise of similar variance as ex-
pected at testing time. Since each training example con-
tains about 150, 000 cliques(pixels), the training set con-
tains about 6, 000, 000 cliques.

Instead of using the original images as training exam-
ples, we experimented with smaller patches (e.g. of size
15×15 as in [18]) and observed on a validation set that over-
fitting occurs when the patches are smaller than 250 × 250
pixels. This could be due to the boundary effect, since
smaller patches a higher percentage of boundary pixels.

Figure 3. The thirteen 5×5 FOE filters trained using our approach
for the level of noise σ = 20 and for a three iteration (niter = 3)
steepest descent inference algorithm.

For testing, we use the same 68 natural images from the
Berkeley dataset as [18] as well as some standard image
denoising test images. These testing images were not used
for training.

Loss Function. The learning is achieved by optimizing
the same criterion that is used for evaluating the denoising
system performance, namely the average PSNR over the im-
ages in the set. Thus the loss function is chosen as

L(x, t) = 20 log10(255/std(t− x)) (11)

where std(t−x) is the standard deviation of the difference
between the original image t and the denoised image x.

Learning is an optimization on the parameters θ to max-
imize M(θ) = 1

n

∑n
i=1 L(A(yi, θ), ti), the average PSNR

obtained after running the denoising algorithm A(yi, θ)
with parameters θ on the 40 training examples yi.

Optimization. In this work, coordinate ascent was used
for maximizing the loss function. Coordinate ascent is a
greedy iterative optimization algorithm in which at each
step, one of the variables θi of the current state θ is cho-
sen at random and its value is modified by a small amount
(0.0001 to 0.001 in our experiments) if M(θ) does not de-
crease. If the M(θ) decreases, the variable θi is rolled back
to its old value. We also experimented with gradient ascent,
conjugate gradient and the simplex method. For this par-
ticular application, we observed that these other methods
could not find such a strong optimum as the coordinate as-
cent. This could be because the path toward the optimum is
very narrow and a fast algorithm could not follow it properly
or because the gradient cannot be computed analytically and
hence was approximated.

Other optimization methods such as genetic algorithms
[8] or simulated annealing [10] could be more appropriate
for avoiding local optima and are subject to further investi-
gation.

The one iteration parameters were trained first, for the
level of noise σ = 25. For the one iteration parameters, the
coefficients αf can be well approximated analytically as the
solution of the least squares problem:

40∑
i=1

||ti − xi − δ
N∑
f=1

αf (J−f ∗
JTf xi

1 + 1
2 (JTf xi)2

)||2 (12)

This leaves only the value of the filters Ff , f = 1, ..., N for
optimization. At each step of the optimization, the coeffi-
cients αf are obtained by solving the above least squares
problem and then M(θ) is evaluated. This technique is
know as Rao-Blackwellization.

The one iteration filters for σ = 25 are trained using
Marginal Space Learning [28]. Marginal Space Learning is
an effective optimization procedure that finds the modes of
a high-dimensional distribution by propagating a set of par-
ticles through a sequence of marginal probabilities in sub-
spaces of increasing dimensions. This procedure was cho-
sen to deal with the difficulty of finding strong optima in
the large parameter space of the filters and their coefficients
(325 parameters for 13 filters of size 5× 5).
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For training the one iteration filters, the subspaces
parametrize models with different numbers of filters and
filter sizes, as shown in Figure 4. Only one particle (the
maximum PSNR configuration) is propagated between the
subspaces. The first subspace parametrizes models with
one filter of size 3 × 3. The particle is obtained by PSNR
optimization with coordinate ascent, starting at the loca-
tion where the filter parameters are all 0 except F1(1, 1) =
0.1, F1(1, 2) = −0.1. As shown in Figure 4, the second
subspace parametrizes models with two-filters of size 3×3.

Figure 4. Diagram for training the MRF parameters for the level
of noise σ = 25 and the one iteration (niter = 1) steepest descent
inference algorithm. Also displayed is the PSNR evolution on the
training and test set observed during the training.

The search for the max PSNR particle in the second sub-
space is initialized by setting the first filter from the first
subspace particle and second filter with 0 and the PSNR
optimization was run again. The process of increasing the
marginal space (either by adding one more filter initialized
with zeros or by increasing the filter sizes by padding zeros)
and seeking the particle of maximum PSNR in that subspace
was repeated until there were a total of N = 13 filters of
size 5 × 5, as shown in Figure 4. This number was chosen
by observing on the training set (or the validation set since
the curves are almost identical) that no further improvement
in PSNR was obtained. The evolution of the PSNR over all
this training, starting with one 3×3 filter and ending with 13
filters of size 5× 5 is plotted in Figure 4. As one could see
from the plot, the training seems very robust to overfitting.

Training the 5 filters of size 3× 3 takes about 7 hours on
a dual-core 2.4Ghz PC, while the whole training for the one
iteration σ = 25 filters takes about 3 days.

Since the optimization is prone to be stuck in local op-
tima, the other filters are initialized from already trained fil-
ters in the order presented in Figure 5. The 3-iteration filters
also work very well for 4-iterations, so the 4-iteration filters
were just copied from the 3-iteration filters.

Training each of the arrows in Figure 5 takes about one

day on a 8-core 2Ghz PC. We believe that by using better
optimization algorithms, the training time can be further im-
proved. The trained 5 × 5 filters for σ = 20 and niter = 3
are shown in Figure 3.

Figure 5. Diagram of the training of the model parameters for dif-
ferent levels of noise and numbers of iterations of the steepest de-
scent inference algorithm.

5.3. Results

The performance of the proposed method is evaluated
on the same datasets as [18]. First, results on some standard
images - Lena, Barbara, Boats, House and Peppers - at the
noise level σ = 25 are shown in Table 1. Note that these
images were not used for training. Our results are obtained
between 7 and 3000 times faster than the other methods.
Table 1. Performance evaluation and comparison of our ARF
method (1-4 iterations) with other methods on some standard
benchmark images, σ = 25. Our method is 7-3000 times faster.

Image Lena Barbara Boats House Peppers Average
FOE [18] 30.82 27.04 28.72 31.11 29.20 29.38
Ours, 1 iter 30.15 27.10 28.66 30.14 28.90 28.99
Ours, 2 iter 30.66 27.49 28.99 30.80 29.31 29.45
Ours, 3 iter 30.76 27.57 29.08 31.04 29.45 29.58
Ours, 4 iter 30.86 27.59 29.14 31.18 29.51 29.66
Wavelet [16] 31.69 29.13 29.37 31.40 29.21 30.16
DCT [7] 30.89 28.65 28.78 31.03 29.01 29.67
Dictionary[7] 31.20 27.57 29.17 31.82 29.84 29.92
KSVD [7] 31.32 29.60 29.28 32.15 29.73 30.42
BM3D [6] 32.08 30.72 29.91 32.86 30.16 31.15

For further comparison, Table 2 and Figure 6 present re-
sults on the same 68 test images from the Berkeley dataset
as [18]. Note that these images were also not used for train-
ing. We present results for 1: Wiener filter, 2: nonlinear
diffusion [25], 3: Non-local means [4], 4: Fields of Ex-
perts (FOE) [18] with 3000 iterations, 5,6,7,8: our algo-
rithm with 1,2,3,4 iterations, 9: wavelet based denoising
[16], 10: Overcomplete DCT [7], 11: KSVD [7] and 12:
BM3D [6]. Since this evaluation is on 68 images, it should
be regarded as a more thorough evaluation than the results
on 5 specific images.

From the evaluation, it is clear that the one iteration ARF
trained as proposed is on par with the FOE, while being
3000 times faster. Therefore, training the MRF model to-
gether with the inference algorithm offers significant advan-
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Figure 6. Average PSNR in dB for different image denoising algorithms at different noise levels on 68 images from the Berkeley dataset.
1: Wiener Filter, 2: nonlinear diffusion, 3: Non-local means [4] 4: Fields of Experts [18], 5,6,7,8: Our ARF algorithm with 1,2,3 and 4
iterations, 9: wavelet based denoising [16], 10: Overcomplete DCT [7], 11: KSVD [7] and 12: BM3D [6]. The results are also shown in
Table 2.

tages in speed and accuracy. One could also observe that the
ARF trained using our method is within 0.5dB from the best
method, and it is outperformed by two methods: KSVD [7],
BM3D [6] and for some noise levels by wavelet denoising
[16] and overcomplete DCT [7].

We also evaluated the FOE model with one iteration on
the same 68 images from the Berkeley dataset, choosing the
step size δ to maximize the PSNR. For the level of noise
σ = 15, the obtained average PSNR was 25.44, which is
inferior to all the approaches presented in Table 2.

For different applications, different trade-offs between
speed and accuracy might be important. Figure 7 shows
a plot of the PSNR performance in dB of the algorithms
compared above as a function of the processing speed in fps.
From the figure, one can see that the proposed approach is
very competitive when high processing speeds are required,
such as in real-time medical applications.
Table 2. Performance evaluation of different denoising methods
on 68 images from the Berkeley dataset. Average PSNR of the
denoising results obtained by the methods at different noise levels.

Level of Noise σ 10 15 20 25 50
1.Wiener Filter 31.65 29.18 27.53 26.37 22.94
2.NL Diffusion[25] 32.03 29.83 28.28 27.25 24.73
3.Non-local [4] 31.48 29.86 28.62 27.59 24.22
4.FOE [18] 32.68 30.50 28.78 27.60 23.25
5.Ours, 1 iter 32.74 30.57 28.92 27.77 24.58
6.Ours, 2 iter 32.74 30.70 29.23 28.10 24.88
7.Ours, 3 iter 32.84 30.76 29.29 28.17 25.11
8.Ours, 4 iter 32.82 30.76 29.33 28.24 25.14
9.Wavelet [16] 33.05 30.73 29.18 28.03 25.37
10.DCT [7] 33.19 30.75 29.15 27.98 24.86
11.KSVD [7] 33.30 30.96 29.43 28.33 25.20
12.BM3D [6] 33.53 31.21 29.71 28.63 25.47

The computation complexity of the FOE image denois-
ing algorithm trained with the proposed approach is due to
the necessity of performing 2N convolutions (where N is
the number of filters) for each iteration. A standard Mat-
lab implementation takes about 0.8s for each iteration on a
256×256 image and a 2.4GHz PC. A better C++ implemen-
tation using IPL (Intel Image Processing Library) brings the
computation time down to 0.12s per iteration for the same
image size. In addition, a parallel implementation on multi-
ple CPUs or a GPU implementation could further bring this

algorithm to real-time performance.

Figure 7. PSNR (dB) vs speed (fps) of different denoising algo-
rithms on the 68 Berkeley test images. The colors are the same as
in Figure 6.

6. Conclusions
In this paper we observed surprising advantages of a su-

pervised training approach for a MRF/CRF using a fast and
suboptimal inference algorithm. The proposed approach is
an optimization of a loss function on a training set consist-
ing of pairs of input and desired outputs. This method does
not need the MRF normalization constant Z and can use a
validation set to detect when the training is completed and
whether overfitting occurs.

Applied to image denoising with a Fields of Experts
MRF and a 1-4 iteration steepest descent, experiments
showed that the supervised training obtains a model that is
more accurate and thousand of times faster than its counter-
part trained in an unsupervised way. Moreover, the obtained
results are competitive in terms of accuracy with the state of
the art while being much faster.

A direct practical application of this method is the de-
noising of fluoroscopy (X-ray) sequences, where one could
use pairs of low-dose (noisy) and high-dose (good quality)
X-rays obtained from cadavers or phantoms to train a simi-
lar FOE based real-time image denoising system.

This type of supervised training can be applied to other
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application where fast MRF inference is desired on models
with a large number of parameters.
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