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Abstract

We propose a novel approach for improving level set seg-

mentation methods by embedding the potential functions

from a discriminatively trained conditional random field

(CRF) into a level set energy function. The CRF terms can

be efficiently estimated and lead to both discriminative lo-

cal potentials and edge regularizers that take into account

interactions among the labels. Unlike discrete CRFs, the

use of a continuous level set framework allows the natural

use of flexible continuous regularizers such as shape priors.

We show promising experimental results for the method on

two difficult medical image segmentation tasks.

1. Introduction

We consider the task of image segmentation, a funda-

mental problem in the field of computer vision and medical

image analysis. The goal of image segmentation is to par-

tition the image into meaningful, consistent regions. For

example, separating different objects from the background,

or differentiating tumors from normal tissue in medical im-

ages.

There has recently been substantial advances in weakly

supervised approaches to image segmentation, owing to

models that take advantage of graph-cut algorithms [18] and

variational level set methods [6, 7]. In many tasks, these

methods can produce surprisingly good results with only a

small amount of human guidance, typically by iterating be-

tween segmentation and re-estimation of model parameters.

In this paper we consider the problem of using super-

vised segmentation to build an automatic segmentation tool,

where labeled training images are used to guide estimation

towards parameters that reproduce the semantically mean-

ingful labels in the training data. Discriminative models that

address this problem, such as Vapnik’s support vector ma-

chines (SVMs) [4] and boosting algorithms [9], have had

a significant impact in recent vision work and form key

components in many state of the art vision systems (see

[8], for example). However, these methods typically as-

sume that the labels of different pixels in an image are sta-

tistically independent, and this assumption is clearly vio-

lated in image data; neighboring pixels are likely to receive

the same value. This drawback has motivated the explo-

ration of structured discriminative models like conditional

random fields (CRFs) [16, 15]. Unlike discriminative clas-

sifiers like SVMs that make independent decisions at each

pixel location, CRFs model the joint distribution of discrete

label configurations; CRFs represent the affinities between

neighboring pixel’s labels. However, for tractability, CRFs

must define a set of Markov independences with respect to

an underlying undirected graph. These required Markov in-

dependences make it difficult to model the complex label

interactions present in image data, such as the shapes of la-

beled regions.

In contrast, continuous level set segmentation methods

can model non-local dependencies; it is straightforward

and computationally tractable to incorporate priors on the

shapes of labeled regions [7]. Despite this added modeling

power, level set methods often underperform state-of-the-

art discriminative models such as SVMs that make much

simpler assumptions about the labels.

We believe this is a result of the parameter estimation

methods typically used by level set methods, and the use

of image-based regularization. In particular, level set meth-

ods typically train a generativemodel that assumes indepen-

dence among the labels of neighboring pixels. Further, the

regularization functionals between neighboring pixels are

often based on image gradients, but smoothness in the im-

age gradient may not necessarily correspond to smoothness

in the labels.

To alleviate these problems, we propose to embed CRF

potential functions within a level set framework. This leads

to a simple model that has several appealing properties:

• Correlations in the labels of neighboring pixels are

taken into account during parameter estimation.

• The edge regularization term uses features to estimate

a potential function that is related to the image labels.
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• It does not require a generative model that accounts for

the observed image (nor its features).

• It allows the incorporation of non-local continuous

regularizers.

The next two Sections review level set methods and

CRFs. We then show to how to embed an “associative” CRF

within a level set framework in §4, and present experimental

results in §5.

2. Level Set Segmentation

Level set methods consider segmentation in the continu-

ous space of the image plane Ω ⊂ ℜ2. The segmentation of

an image X : Ω → ℜ is regarded as an infinite-dimensional

optimization and is achieved by using variational methods

to evolve a contour in the direction of the negative gradient

energy. The implicit contour representation is the zero level

set of an embedding function Φ : Ω → ℜ

C = {x ∈ Ω|Φ(x) = 0}, (1)

where Φ is typically chosen as a signed distance function

that has negative values inside the contour and positive val-

ues outside [7].

We consider an extension of the Chan-Vese active region

method [6]. It partitions an image into two disjoint regions

Ω1 and Ω2, based on their appearance. Similar to texture

segmentation approaches [7, 17], appearance is character-

ized using a statistical model defined on a set of image fea-

tures f(X) (e.g. image gradient, filter responses, etc.). The

energy functional in the Chan-Vese model can be written as

E(Φ, f(X),w) =

∫

Ω

−H(Φ) log p1(f(x),w)

− (1 − H(Φ)) log p2(f(x),w)

+ v|∇H(Φ)|g(X, α)dx, (2)

where the data energy log pi is the probability mass func-

tion (with parametersw) of region Ωi defined over features

f(x) associated with each pixel location. The regulariza-

tion energy g(X, α) is a non-decreasing function with pa-

rameter α that has low values at image edges to penalize

less when the contour coincides with an image edge, such

as g(X, α) = 1
1+α|∇X| . This anisotropic curve length reg-

ularization can be interpreted as the length of the contour

in a Riemannian space with a metric induced by the image

intensity (through g(X, α)) [17]. The parameter v controls

the strength of the regularization energy relative to the data

energy. Finally, H(Φ) denotes the regularized Heaviside

function

H(φ) =

{

1 if φ ≥ 0

0 otherwise

Minimizing the energy from Equation 2 is equivalent to

solving the following Euler Lagrange equation (that defines

the contour evolution):

∂Φ
∂t

= δ(Φ)( log p2(f(x),w) − log p1(f(x),w)

+v div
(

g(X, α) ∇Φ
|∇Φ|

)

),
(3)

where δ(Φ) is a regularized Dirac delta function.
A convenient and widely used strategy for estimating the

parameters w is to build a generative model for each class,

by holding the regions Ω1 and Ω2 fixed and assuming that

the labels of neighboring pixels are independent [7]. How-

ever, this assumption is clearly violated in most image seg-

mentation tasks. A further problem with this model is that

the edge regularization is based exclusively on image gradi-

ents (depending on the scalar parameters v and α, that are
typically manually tuned). In image segmentation problems

where object boundaries are not clearly defined by image

edges, the discontinuities in the labels do not directly corre-

spond to image discontinuities, and this regularization may

not be appropriate.

3. Conditional Random Fields

CRFs are probabilistic models for segmenting data with

structured labels [16]. CRFs directly model the distribution

P (Y |X,w,v) of the labels Y (indexed as yi for element i)
conditional on fixed features f(X) of the image data X (for

node parameters w and edge parameters v). In this work,

we consider binary CRFs with weighted Ising potentials. In

this model, the conditional probability is written as:

P (Y |X,w,v) =
1
Z

exp
(

∑

i∈N yiw
T
fi(X) +

∑

i,j∈E yijv
T
fij(X)

)

=

1
Z

exp
(

∑

i∈N Ai +
∑

i,j∈E Iij

)

,

(4)

where fi(X) denotes features for node i, fij =
F ((fi(X), fj(X)) denote features for the edge between i
and j, the binary node labels are yi = ±1, and the binary

edge labels are yij = yiyj . We have used N to denote

the set of pixels, E to denote the set of edges between ad-

jacent pixels, Ai to denote yiw
T
fi(X), and Iij to denote

yijv
T
fij(X).

The termAi, sometimes referred as the association func-

tion, is a local discriminative model that outputs the associ-

ation between a label yi and the dataX for site i; this term is

analogous to the data energy in the active regionmodel. The

second term Iij , referred as the interaction function, can be

seen as a data dependent smoothing term that discriminates

between discontinuity and uniformity in the labels for an

edge (i, j); this term is analogous to the regularization en-

ergy in the active region model. The normalizing constant

Z sums the numerator over all possible assignments of Y .
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Equation 4 is jointly log-concave in w and v. We

can thus find the global maximum of (4) in terms of

w and v using efficient iterative optimization algorithms.

Unfortunately, computing the gradient of log(Z) requires

inference (ie. computing marginal probabilities such as

P (yi|X,w,v) and P (yi, yj |X,w,v)), and this is in-

tractable. Although other approximations like loopy be-

lief propagation and Monte Carlo methods are also appli-

cable, in this work we used a conditional variant of Besag’s

pseudo-likelihood [1]:

P (yi|X, y−i,w,v) =
1
Zi

exp
(

yiw
T
fi(X) +

∑

j|(i,j)∈E yijv
T
fij(X)

)

,
(5)

where y−i is the labels of all nodes except i and is consid-

ered fixed in each of the conditionals. The local normaliz-

ing constant Zi only sums over assignments to yi, making

this expression efficient to compute. This approximation

remains log-concave in w and v, and it is asymptotically

consistent (it converges to the true parameters as the size of

the training set increases).

Formulating parameter estimation as a joint optimization

of w and v has several key advantages. First, the parame-

ter estimation now takes into account that the pixel’s labels

are not independent, leading to a model where the node and

edge parameters are appropriately scaled. Second, although

the interaction term in the CRF serves a similar purpose

to the regularization energy in the active region method,

the parameters of the regularization are now learned from

training data and therefore seek to define discontinuities di-

rectly connected to label discontinuities, rather than to im-

age edges. This is an important difference in applications

where the object boundary is not very well defined by im-

age edges.

4. Active Regions with an Embedded CRF

This Section discusses embedding the potential func-

tions from a trained CRF model into a level set segmen-

tation framework, allowing the level set method to exploit

CRF training methods. The first part of this Section dis-

cusses two minor modifications of the CRF model that are

needed in order to embed it in the level set framework. We

then present the new method, and finally discuss the incor-

poration of shape priors.

4.1. Associative CRF

To embed the node and edge potential functions learned

by the CRF model into a level set segmentation framework,

we require two modifications of the CRF model: (i) We

must make the CRF labels consistent with the continuous

labels given by the Heaviside function, and (ii) the interac-

tion terms Iij must be non-negative since they correspond

to a curve length. We refer to a CRF with the second prop-

erty as an associative CRF, in analogy with associative max-

margin Markov networks [21].

We first consider changing the CRF labels from

yi = ±1 to correspond with the Heaviside labels

that are in {0, 1}. By multiplying P (Y |X,w,v) by

exp(wT
fi(X))/ exp(wT

fi(X)) for each node i in N , we

can write the association function concisely as Ai =
2yiw

T
fi(X) with y in {0, 1}. By similarly multiply-

ing P (Y |X,w,v) by exp(vT
fij(X))/ exp(vT

fij(X)) for
each edge {i, j} in E, the interaction function can be writ-

ten in the yi ∈ {0, 1} representation as Iij = 2(1 − |yi −
yj |)v

T
fij(X).

We now consider enforcing the needed condition that the

interaction function Iij is always non-negative. In the {0, 1}
representation, it is clear that Iij will be non-negative as

long as both fij(X) and v are non-negative. To ensure that

fij(X) ≥ 0, we choose non-negative edge features that rep-
resent a measure of association between the two pixels in-

volved in an edge. In particular, we used edge features of

the form (for each node feature k):

fijk(X) ,
1

1 + |fik(X) − fjk(X)|
(6)

giving F (fi(X), fj(X)) = {fijk(X), k = 1 . . .K}. Since
v is non-negative, these edge features have the intuitive ef-

fect that they encourage the most smoothing at locations

where the features are most similar.

Ensuring that v is non-negative can be done by changing

the optimization procedure. In particular, rather than opti-

mizing the unconstrained pseudo-likelihood, we maximize

the pseudo-likelihood subject to v ≥ 0. The global opti-

mum under this constraint can still be computed efficiently

even with a very large number of variables by using bound-

constrained limited-memory quasi-Newtonmethods such as

L-BFGS-B [5]. An interesting consequence of the form of

the interaction function Iij and the convex polytope that re-

sults from these constraints is that the model performs ‘as-

sociative feature selection’. That is, it will set vk to exactly

0 (effectively ignoring the feature) for any edge feature k
that does not have an associative (smoothing) effect.

By putting everything together and dividing out the con-

stant factor two from every term, the final formulation for

the associative CRF with yi in {0, 1} is the following:

p(Y |X) =
1
Z

exp
(

∑

i yiw
T
fi +

∑

ij(1 − |yi − yj |)
∑

k vkfijk

)

subject to v ≥ 0
(7)
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Active

Regions

CRF

Continuous

Data Energy Regularization Energy Segmentation
Figure 1. Example of corresponding data and regularization energies in the continuous CRFmodel (bottom) and the traditional active region

model with Gaussian region statistics and the the usual edge based regularization g = 1

1+α|∇X|
(top). The task is to denoise a simple

binary image corrupted with independent Gaussian noise. Notice how the CRF regularization energy picks the correct label discontinuities

(bottom middle) as compared to the usual edge detection function (top middle).

CRF cont. CRF

node labels yi H(Φ(x))
edge labels 1 − |yi − yj| 1 − |∇H(Φ(x))|
node features fi(X) f(x)
edge features fij = F (fi(X), fj(X)) F (∇f(x))

Table 1. Corresponding terms between CRF and continuous CRF

4.2. Continuous Domain CRF

The proposed associative CRF can now be fully embed-

ded into a continuous model that has the same energy:

E(Φ) =
∫

Ω −H(Φ)(wT
f) + (1 − H(Φ))(wT

f)
+|∇H(Φ)|

∑

k vk
1

1+|∇fk|
dx

(8)

Table 1 presents the corresponding entities between the

two models, with x corresponding to the location i in the

discrete representation.

The CRF association term models the class asso-

ciation potential and differentiates the two classes ob-

ject(inside)/background(outside). This term corresponds to

the level set data energy log p1, log p2 of a point being in-

side or outside the contour.

The interaction term corresponds to the regularization

energy in the continuous formulation. The discrete CRF in-

teraction is defined on pairs of neighboring locations and

on the corresponding values for the data. The correspond-

ing regularization in the continuous model is defined on

∇H(Φ) and it depends on pairwise features (defined us-

ing the gradient of the features∇f ). In two-dimensions, we

work with a 2 neighborhood system for the finite difference

approximation, using differences between a pixel’s north-

ern and eastern neighbors in the image. Figure 1 illustrates

the difference between the regular, edge based anisotropic

regularization used in level set segmentation methods, and

the proposed regularization based on the CRF interaction

potential that encourages discontinuities at label disconti-

nuities rather than image edges (as discussed in Section 3).

The Euler-Lagrange evolution equation corresponding to

the continuous CRF energy from Equation 8 is:

∂Φ
∂t

= −2δ(Φ)wT
f

+δ(Φ)div
((

∑

k vk
1

1+|∇fk|

)

∇Φ
|∇Φ|

)

(9)

An outline of the continuous CRF segmentation algo-

rithm is:

Training:

Given: a set of images X1, X2, . . . , Xn

Extract features f(X1), f(X2), . . . , f(Xn)
Compute optimal node and edge params v,w

by maximizing the constrained

pseudo-likelihood of the CRF (Equation 7)

Segmentation:

Given: one image X
Extract features f(X)
Compute segmentation by evolving a curve

driven by Equation 9

4.3. Shape priors

As will see in Section 5.2 for the task of muscle seg-

mentation in CT abdominal images, in some cases we can
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Figure 2. Test image Jaccard scores (A ∩ B/A ∪ B) for brain

tumor segmentation in MR images with three different methods

for 12 different patients. The patients are sorted by the maximum

score achieved across the methods.

substantially improve performance by adding a shape prior

to the model. Incorporating shape information in a discrete

CRF model is not trivial, as either the graph structure has

to be changed (to include factors on regions of nodes and

suffer the corresponding computational expense), or shape

information must be incorporated into the local potentials

(see [14], for example).

As we show here, one of the advantages of embedding

the CRF within a continuous model is that we can incorpo-

rate terms like continuous shape priors into the energy. In

particular, we used a shape energy of the following form

[20]

Es(Φ) =

∫

Ω

βH(Φ) (sΦ − Φs(A(x)))
2
dx, (10)

where A(x) represents an affine transformation with scale

s of the shape prior level set Φs, and β is the strength of the

regularizer.

The shape prior is easily incorporated into the continu-

ous CRF by adding (10) as an additional term in the en-

ergy function (8) during the segmentation phase of the al-

gorithm. The scalar parameter β weighing the influence of

the shape prior against the CRF energy terms is selected

by cross-validation, and for our experiments we chose the

shape prior as being the mean of the labels in the training

set.

5. Experimental Results

We evaluated the proposed continuous CRF model on

two difficult medical imaging problems: (1) brain tumor

segmentation in MRI images (2) muscle segmentation in

CT abdominal images. Our results are compared with a

traditional level set active region [19] and a discrete CRF.

Dataset (1) shows the superiority of the proposed condi-

tional model over the generative active region model for

data with a complex appearance. Dataset (2) shows the ad-

vantage of the continuous model over discrete CRFs when

a shape prior is available. In our experiments, we compared

the following three models:

Continuous CRF: We first train the discrete CRF (Equa-

tion 7) on a set of features extracted from the training set

and then evolve the continuous CRF (Equation 8) with fixed

parameters on the test images.

Active regions: We learned Parzen histograms for in/out

regions from the training set using the same features as the

CRF. Segmentation is done using traditional level set evo-

lution [19] with fixed region statistics.

CRF: The CRF was trained in the same way as the contin-

uous CRF (Equation 7). In this model we find the optimal

segmentation using a graph cut algorithm [3].

5.1. Brain tumor segmentation

We consider the problem of brain tumor segmentation in

3D MRI images. The data consists of FLAIR and contrast-

enhanced T1 MRI images of dimension 128 × 128 × 20,
from 12 patients having either a grade 2 astrocytoma, an

anaplastic astrocytoma, or a glioblastoma multiforme. The

tumor area was manually segmented slice-by-slice in each

data set by an expert radiologist.

We used the following image features: the two MRI

modalities, corresponding symmetry images (difference be-

tween the image and the vertically flipped image) and the

normalized distance from the skull. Training was done on

two folds (6 training images and 6 testing images), and the

level set was initialized with the whole skull (for both the

continuous CRF and the active regions). On this data set,

we used a three-dimensional lattice graph structure and per-

formed all operations (CRF training, level evolution, graph

cut segmentation, and evaluation of performance) in three-

dimensions.

The Jaccard scores achieved by the three methods across

all patients are summarized in Figure 2. Three example

segmentation are shown in Figure 3 (selected slices from

the 3D segmentation). Corresponding Jaccard scores are

displayed in the top left corner of each figure. The main

difficulty in this dataset is the complex and varying appear-

ance of the tumor. Our results show that for some patients

the generative active region is less successful in capturing

this appearance than the discriminative models. Although

both CRF models have the same energy and the discrete

CRF finds the global minimum of this energy, the contin-

uous CRF tended to yield better solutions on this data set

(obtaining the highest score among the three methods in 8

of the 12 volumes). We suspect that this is because the opti-

mal decoding may be unstable (ie. due to its discrete nature
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Active Regions CRF Cont CRF Expert Label
Figure 3. Comparative results for brain tumor segmentation. Selected slices are shown while the segmentation was done in 3D. Jaccard

scored are displayed at the top left.

it can change drastically with minor changes in the model).

A more robust estimate would be to use the most likely la-

bel for each pixel (rather than the jointly most likely assign-

ment of labels), but currently we know of no exact meth-

ods for finding the marginally most likely labels for image-

sized data (we tried to approximate this using loopy belief

propagation, and found that in roughly half the patients it

achieved a similar score to the continuous CRF). In contrast

to the optimal discrete decoding that can potentially change

drastically with small changes to the model, there must be

continuity around a (local) minimum found by continuous

energy minimization, indicating that the minimum is insen-

sitive to minor perturbations.

5.2. Skeletal muscle segmentation

Our second medical imaging application was skeletal

muscle segmentation in 37 CT abdominal scans of 18 can-

cer patients. Two consecutive 2D axial CT images at the

level of L3 were selected for each patient and manually seg-

mented by medical experts. These images have a resolution

of 200 × 150.

We used two features: the original CT image and the nor-

malized distance from the outer body boundary. Training

was again done in two folds and the level set was initialized

with the body boundary. Both continuous models incorpo-

rate the shape prior discussed in Section 4.3, while the CRF

does not. The shape prior is shown in Figure 4 (Left).

A selection of results with corresponding Jaccard scores

are displayed in Figure 4, while scores across the patients

are summarized in Figure 5. The muscle tissue has a

very similar appearance to the enclosed internal organs and

therefore cannot be segmented entirely based on its appear-

ance signature, as shown by the poor performance of the

discrete CRF model. The shape prior used in the continuous

models helps disambiguate muscle from organ tissue, while

the discriminative model has a better appearance model and
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Shape prior Active Regions CRF Cont CRF Expert Label
Figure 4. Comparative results for skeletal muscle segmentation. Left: Shape prior used by the continuous models. Jaccard scores are

displayed on the top left.
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Figure 5. Test image Jaccard scores (A ∩ B/A ∪ B) for muscle

segmentation in CT images with three different methods for 37

different scans across 18 patients. The scans are sorted by the

maximum score achieved across the methods.

outperforms the generative one. For this data set, the con-

tinuous CRF obtained the highest score in 31 of the 37 vol-

umes.

6. Discussion

There has been a previous attempt to couple a CRF with

an active contour model [22], extending previous work on

integrating probabilistic deformable models with Markov

random fields [11]. The main difference between our work

and this previous work is subtle but very important; in [22],

the model requires an ‘image prior’ that represents the dis-

tribution over images, and due to the complexity of images

this is extremely complicated to specify. In [22], they use

an image prior that factorizes into independent Gaussians

at each pixel (ie. an ‘average’ image is scaled white noise,

and realistic images are extremely unlikely). The model in

[11] similarly requires a distribution over images given the

labels. The key feature of CRFs is that they condition on

the image (treating it as a fixed observation), and do not

need an image prior. Although [22] uses a CRF as part of a

larger model, the model doesn’t take advantage of this key

feature because the full model still needs an image prior.

This distinction is important when we want to enhance dis-

crimination by using relevant ‘features’ instead of just pixel

values. In [22] you would need a ’feature prior’, specify-

ing the distribution over the features, which might be even

harder than specifying a realistic distribution over images.

In our model, we can use arbitrary features without needing

to account for their probability, and we obtain a standard

CRF model (at the appropriate discretization level) in the

special case where no additional continuous regularizer is

incorporated.

We would like to note another important differences be-

tween our method and the previous work. We address

the issue of joint parameter estimation from training data,

formulating it as a convex optimization. The quantitative

evaluation in [22] used manual initialization of the contour

for each image to be segmented (similar to most previous

work on level set methods), while our experiments tested on

the arguably much more difficult task of segmenting com-

pletely new images with automatic initialization of the con-

tour.

The edge potentials defined by the associative model

in Section 4 obey the submodularity constraint I(0, 0) +
I(1, 1) ≥ I(1, 0) + I(0, 1) (since v

T
fij(X) ≥ 0), and

therefore the optimal decoding of this model can be for-

mulated as a graph cut problem [13]. Our continuous in-

terpretation of the CRF is therefore connected to the work

of Boykov and Kolmogorov on geo-cuts [2, 12], graph cuts
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that approximate continuous energies (the work in [10] is

also closely related). They solved a related inverse problem

and showed how to design a graph such that a cut approxi-

mates a Riemannian metric with edge weights wk = ρ2g
2|ek|

,

where ρ is the cell size and ek is a vector associated with

an edge. For a 2 × 2 neighborhood system with unit cells

the edge weight is wk = g/2. As we are using only 2 edges
for each node the edge weight is therefore wk = g. This

corresponds to the edge potential in the CRF model that is

correctly used as a metric for the continuous regularization.

We have presented a method to improve the robustness

of level set models for supervised segmentation. In partic-

ular, we have proposed taking advantage of an embedded

CRF model whose parameters are learned from an equiv-

alent discrete CRF. The model takes advantage of several

appealing aspects of CRFs; it does not require a generative

model of the image, it does not assume label independence

during training, and it estimates a conditional regulariza-

tion term that is related to the labels rather than simply the

image gradient. In contrast, the model is advantageous over

discrete CRFs in cases where an additional continuous regu-

larizer can incorporate non-Markov prior knowledge, which

we demonstrated though the use of a shape prior.

There are numerous directions of future exploration. In

particular, the use of a trivial shape prior is only a simple ex-

ample of the additional flexibility afforded by augmenting a

CRF model with a continuous regularizer. For example, we

are exploring applications in medical imaging where a CRF

model is augmented with not only a shape prior but a model

of the continuous spatial intensity inhomogeneity field.

Acknowledgements

We would like to thank Dr. Albert Murtha from the Al-

berta Cross Cancer Institute for help in acquiring and seg-

menting the MRI brain images, Dr. Vickie Baracos for help

in acquiring and segmenting the CT muscle images, and the

anonymous reviewers for helpful comments that improved

the paper.

References

[1] J. Besag. Spatial interaction and the statistical analysis of

lattice systems. RoyalStat, B-36(2):192–236, 1974.

[2] Y. Boykov and V. Kolmogorov. Computing geodesics and

minimal surfaces via graph cuts. In ICCV, pages 26–33,

2003.

[3] Y. Boykov and V. Kolmogorov. An experimental comparison

of min-cut/max-flow algorithms for energy minimization in

computer vision. IEE PAMI, 26(9):1124–1137, 2004.

[4] C. J. C. Burges. A tutorial on support vector machines for

pattern recognition. Data Min. Knowl. Discov., 2(2):121–

167, 1998.

[5] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory

algorithm for bound constrained optimization. SIAM J. Sci.

Comput., 16(5):1190–1208, 1995.

[6] T. Chan and L. Vese. Active contours without edges. IEEE

Trans. Image Processing, 10(2):266–277, 2001.

[7] D. Cremers, M. Rousson, and R. Deriche. A review of statis-

tical approaches to level set segmentation: integrating color,

texture, motion and shape. IJCV, 72(2), April 2007.

[8] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and

A. Zisserman. The PASCAL Visual Object Classes Chal-

lenge (VOC2007).

[9] Y. Freund and R. E. Schapire. A decision-theoretic general-

ization of on-line learning and an application to boosting. In

EuroCOLT, pages 23–37, 1995.

[10] L. Grady and C. Alvino. Reformulating and optimizing the

mumford-shah functional on a graph - a faster, lower energy

solution. In ECCV, pages 248–261, 2008.

[11] R. Huang, V. Pavlovic, and D. N. Metaxas. A graphical

model framework for coupling mrfs and deformable models.

In CVPR, pages 739–746, 2004.

[12] V. Kolmogorov and Y. Boykov. What metrics can be approx-

imated by geo-cuts, or global optimization of length/area and

flux. In ICCV, pages 564–571, 2005.

[13] V. Kolmogorov and R. Zabih. What energy functions can be

minimized via graph cuts? PAMI, 26(2):147–159, 2004.

[14] M. P. Kumar, P. H. S. Torr, and A. Zisserman. Obj cut. In

CVPR, pages 18–25, 2005.

[15] S. Kumar and M. Hebert. Discriminative random fields. Int.

J. Comput. Vision, 68(2):179–201, 2006.

[16] J. Lafferty, A. McCallum, and F. Pereira. Conditional ran-

dom fields: Probabilistic models for segmenting and labeling

sequence data. In ICML, pages 282–289, 2001.

[17] N. Paragios and R. Deriche. Geodesic active regions: A new

paradigm to deal with frame partition problems in computer

vision. Visual Communication and Image Representation,

13:249–268, 2002.

[18] C. Rother, V. Kolmogorov, and A. Blake. ”grabcut”: inter-

active foreground extraction using iterated graph cuts. ACM

Trans. Graph., 23(3):309–314, 2004.

[19] M. Rousson, T. Brox, and R. Deriche. Active unsupervised

texture segmentation on a diffusion based feature space. In

CVPR, 2003.

[20] M. Rousson and N. Paragios. Shape priors for level set rep-

resentations. In ECCV (2), pages 78–92, 2002.

[21] B. Taskar, V. Chatalbashev, and D. Koller. Learning associa-

tive markov networks. In ICML, page 102, 2004.

[22] G. Tsechpenakis and D. Metaxas. Crf-driven implicit de-

formable model. In CVPR, 2007.

335


