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Abstract

This work presents a discriminative training method for
particle filters in the context of multi-object tracking. We
are motivated by the difficulty of hand-tuning the many
model parameters for such applications and also by results
in many application domains indicating that discriminative
training is often superior to generative training methods.
Our learning approach is tightly integrated into the actual
inference process of the filter and attempts to directly op-
timize the filter parameters in response to observed errors.
We present experimental results in the challenging domain
of American football where our filter is trained to track all
22 players throughout football plays. The training method
is shown to significantly improve performance of the tracker
and to significantly outperform two recent particle-based
multi-object tracking methods.

1. Introduction
Particle filtering is a widely used framework for visual

object tracking that is highly extensible and offers the flex-

ibility to handle non-linearity and non-normality in the ob-

ject models. In recent years, many new particle filter-based

approaches have been proposed to solve difficult multi-

object tracking problems [13, 9, 19]. However, most of this

work has paid little attention to how to best tune the param-

eters of the proposed models and has instead relied on some

combination of manual tuning and simple generative learn-

ing to set these parameters. These approaches, though, are

often ineffective and/or extremely labor intensive.

In this work, we describe a conceptually simple parti-

cle filtering framework for multi-object tracking (Section

3). This framework is easy to extend and customize be-

cause it allows the user to define rich sets of features to cap-

ture essential properties of the tracking domain. Our main

contribution is an error-driven, discriminative algorithm for

training this model’s (Section 4). Our training is tightly in-

tegrated into the filtering process and attempts to optimize

parameters in response to observed tracking errors. In ad-

dition, we describe an important practical approximation to

this algorithm (Section 5) that can significantly reduce train-

ing time for domains where many objects must be tracked.

Our decision to use a discriminative approach is moti-

vated by several factors. First, there is a growing body of

empirical evidence from a number of fields [11, 1, 4, 20]

along with theoretical results [12] suggesting that dis-

criminative training outperforms generative training when

enough data is available. Second, unlike generative training

methods, our discriminative approach does not make strong

independence assumptions about the features, which would

ignore important dependencies. Third, our discriminative

approach is aimed at directly solving the problem we really

care about: maximizing the accuracy of the learned filter.

In contrast, generative training attempts to achieve this ob-

jective indirectly by maximizing the joint likelihood of the

training data, which does not always relate well to filtering

accuracy when the assumed model is wrong.

We apply our approach to tracking the 22 players and one

referee in low-resolution American football video (Section

6). This problem is extremely challenging due to the er-

ratic movement of players, the complexity of interactions

that sometimes involve upwards of five or ten players, and

the strong dependence of player behavior on the player’s

type and the stage of the play. To date, there has been very

limited success in tracking for American football, and our

experiments show that some state-of-the-art multi-object

tracking methods do not work well in this domain. In com-

parison, we show that filters trained using our method sub-

stantially outperform untrained filters and these other meth-

ods and, to the best of our knowledge, represent the state-

of-the-art in tracking in the American football domain.

2. Related Work
Here we discuss related work on particle filter-based

multi-object tracking and discriminative filter training.

Particle Filter-Based Multi-Object Tracking: Since

particle filter-based visual object tracking was first pro-

posed, much progress has been made on tracking single

objects using particle filters. Tracking multiple objects,

however, poses the challenge of dealing with the high-

dimensionality of the state space, which grows with the
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number of objects. A naive solution is to use an indepen-

dent single-object particle filter for each object, but this can

break down when similar objects interact, leading to objects

“hijacking” filters from other objects.

Some notable, but far from exhaustive, recent attempts

to improve upon this naive approach include Okuma et
al.’s boosted particle filter [13], which attempts to avoid hi-

jacking by using a Haar-style object detector to terminate

and resume tracks during and after an interaction; Khan et
al.’s MCMC-based particle filter [9], which tracks objects

in their joint state space and uses a Markov random field

(MRF), built at each time step, that helps prevent hijack-

ing by enforcing separation between nearby objects while

allowing far apart objects to be tracked independently; and

Yu and Wu’s mean field Monte Carlo algorithm [18, 19],

which also uses an MRF to enforce object separation but

uses Monte Carlo variational inference.

While each of the above methods has been shown to out-

perform the naive approach, there is still much room for

further improvement. For example, Okuma et al.’s method

does not explicitly reason about object interactions, but

rather attempts to improve on the purely naive approach by

using more powerful proposal and observation distributions.

As such the approach is prone to losing object identities and

locations when tracks are terminated. Khan et al.’s method

tracks in the objects’ joint state space and thus, in our ex-

perience, does not scale well when the number of objects

is large and more uncertainty exists about objects’ locations

due, for example, to erratic object motion. Similarly, the

joint inference approach employed in Yu and Wu’s method

suffers from quadratic complexity in the total number of

particles used to track all of the objects. For both of these

methods, it can be difficult to set the parameters of the inter-

acting MRF model components to maximize accuracy, and

they are currently set manually and/or learned generatively.

Discriminative Filter Training: There has been much

recent work on discriminative training of sequential fil-

ters. For example, discriminatively trained conditional ran-

dom fields (CRFs) for sequence data [10] have been shown

to outperform generatively trained hidden Markov models

(HMMs) in many domains. Collins has also proposed a gen-

eralized perceptron algorithm for sequential data [2] to train

HMMs for natural language problems. This work has been

further extended to large-margin discriminative training of

HMM-style sequential models [15, 16]. Unfortunately, all

of these methods assume small state spaces where exact, ef-

ficient filtering is possible, e.g. via dynamic programming,

and hence are not directly applicable to object tracking.

In more recent work, discriminative training was used

to set the noise parameters of continuous state extended

Kalman filters (EKFs) for robot localization [1]. How-

ever, it is generally recognized that EKFs are not powerful

enough for complex object tracking due to the normality as-

sumptions they make. Our work can be seen as extending

this approach to a more general class of process models.

In more closely related work, Limketkai et al. train large

state-space CRFs for robot localization using Collins’ per-

ceptron algorithm within a particle filtering framework [11].

As far as we are aware, this is the only prior work to attempt

any form of discriminative training of particle filters.

All of the above discriminative methods can be viewed

as driving the learning process by iteratively using the cur-

rent filter to perform inference on a set of training sequences

and then updating parameters based on some measure of

the disparity between the filter’s output and the desired out-

put. For example, Limketkai et al.’s approach computes

a MAP state sequence for each training example using the

current filter and then attempts to adjust filter parameters

so that the ground truth sequences become more probable

than the current MAP sequences. However because filters

sometimes fail badly, often early in training, the filter pa-

rameter updates these approaches make can be dominated

by the portion of the sequence that occurs after the failure

rather than focused on correcting the original point of fail-

ure. Our experience in multi-agent tracking suggests that

such parameter updates can be counterproductive.

To address this issue, the perceptron algorithm has been

extended to focus training directly on points of filter failure.

For example, recent work has proposed performing updates

based only on the part of the predicted sequence up to and

including the first failure [3]. Later work has extended this

idea by updating at successive points of failure [5, 17]. The

learning approach we describe in Section 4 can be viewed

as extending these failure-driven approaches to the particle

filtering framework.

Finally, we note that there has been work that uses dis-

criminative learning to produce certain individual compo-

nents of particle filters, for example by learning object-

detection classifiers to be included as part of the particle

filter’s proposal distribution [13]. However, such indirect

learning approaches never take into account the actual fil-

ter performance and hence offer no guidance to improve

the filter further after the original components have been

learned. Our approach is complimentary, as such learned

components could be included in a filter and the filter then

further improved based on actual filtering performance.

3. Psuedo-Independent Log-Linear Filters

Below we first review the standard Bayesian particle fil-

ter, and then describe our specific particle filter-based multi-

object tracking framework, which uses pseudo-independent

filters parameterized by log-linear models.

Particle Filters: Particle filtering is a Monte Carlo ap-
proximation to the optimal Bayesian filter [6], which moni-
tors the posterior probability of a first-order Markov process
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through the following formula:

p(xt|y1:t) = αp(yt|xt)

Z
xt−1

p(xt|xt−1)p(xt−1|y1:t−1). (1)

Here, xt is the process state at time t, yt is the observation,

y1:t is all of the observations through time t, p(xt|xt−1) is

the process dynamical distribution, p(yt|xt) is the observa-

tion likelihood distribution, and α is a normalizing factor.
The integral in (1) does not have a closed form solu-

tion, except in the most basic cases, so particle filters are
used to approximate (1) using a set of weighted samples

{x(i)
t , π

(i)
t }i=1,...,n, where each x(i)

t is an instantiation of

the process state, known as a particle, and the π
(i)
t ’s are the

corresponding particle weights. Under this representation,
the approximation to the Bayesian filtering equation (1) is

p(xt|y1:t) ≈ α p(yt|xt)

nX
i=1

π
(i)
t−1 p(x

(i)
t |x(i)

t−1). (2)

To implement a standard particle filter, one must choose

a state representation xt, which, in the case of object track-

ing might include object locations, scales, etc. In addition,

one must design three distributions: the process dynami-

cal distribution, p(x(i)
t |x(i)

t−1), which, in object tracking, de-

scribes how objects move between time steps; the proposal

distribution, q(x(i)
t |x(i)

0:t−1,y1:t), which is sampled at each

time step to update the particle distribution; and the obser-

vation likelihood distribution, p(yt|x(i)
t ), which, in track-

ing, describes how objects appear within the video data, yt.

At each time step, given the previous particle set

{x(i)
t−1, π

(i)
t−1}, a basic sequential importance resampling [6]

particle filter updates the particles as follows:

1. Sample n particles x(i)
t−1 with replacement from cur-

rent particle set according to probabilities π
(i)
t−1.

2. Generate an updated particle set by sampling from the

proposal distribution, x(i)
t ∼ q(x(i)

t |x(i)
0:t−1,y1:t).

3. Reweight each particle according to the following for-

mula and normalize so that the π
(i)
t sum to 1:

π
(i)
t ∝ p(yt|x(i)

t )p(x
(i)
t |x(i)

t−1)

q(x
(i)
t |x(i)

0:t−1,y1:t)
. (3)

In tracking and and many other applications, it is typical to

estimate the process state at each time step as the sample

mean of the particles Ê[xt] =
∑n

i=1 π
(i)
t x(i)

t .

Pseudo-Independent Filters: When multiple interact-

ing objects must be tracked, the joint state space of those

objects is high dimensional and renders the straightforward

application of particle filtering impractical. As discussed in

Section 2, extensions to the basic particle filtering frame-

work have been explored that utilize more complex MRF

dynamic models to capture important object interactions in

a more tractable way. In contrast to those methods, we use

a simple particle filtering framework for multi-object track-

ing. Specifically, we assign each object of interest its own

single-object particle filter. These filters are not completely

independent, however, but are pseudo-independent, in the

sense that each tracker estimates only a single object’s state

but has the previous state estimates of other trackers avail-

able as observations to use during inference.

Unlike the more sophisticated MRF approaches, our

pseudo-independent approach does not increase the compu-

tational complexity of filtering over that of purely indepen-

dent filters, but it still allows some amount of dependency

between trackers through observations of one another’s in-

ternal states from previous time steps. While the pseudo-

independent approach is more restricted in the types of de-

pendencies it can represent, we believe that it will be suffi-

cient for many applications because the log-linear filtering

framework described below enables straightforward repre-

sentation of rich features of both individual objects and re-

lations among objects, which the pseudo-independent filter-

ing approach can exploit for improved performance.

Log-Linear Filters: To allow for maximum flexibility,

we wish to allow the designer to devise arbitrary features

that can capture joint properties of a tracked object’s state,

its observations, and the previous state estimates of other

objects and to incorporate these features into the individ-

ual filters. For example, by including features that measure

the distance between an object’s proposed state and the pre-

dicted locations of other objects, it is possible to bias the fil-

ter against allowing two objects occupying the same space.

While in principle one can attempt to define the dynamic

and observation distributions in terms of such features, do-

ing so is quite difficult in practice. In particular, one must

decide how to weight the potentially many features against

one another and/or make the assumption that features are

independent in order to support traditional generative learn-

ing. In this work, we instead utilize a more flexible combi-

nation of features based on log-linear modeling.

From an algorithmic perspective, the main difference be-

tween our particle filtering framework and the traditional

framework is in the way we compute particle weights. The

traditional reweighting computation in equation (3) is the

result of trying to account for dynamics, observations, and

proposal bias all at once by combining their associated gen-

erative model terms. In contrast, we attempt to learn a single

reweighting function defined in terms of arbitrary features,

which can encompass all of those terms but is not restricted

to the specific form of equation (3).

In particular, our particle weighting function takes the

form of a log-linear combination of weighted features:

π
(i)
t ∝ exp

(∑
j

wjfj(yt,x
(i)
t )

)
. (4)
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Here the fj(·)’s are user-defined feature functions and the

wj’s are the weights of the features, which parameterize the

model. By including features that correspond to the loga-

rithms of the process dynamics, observation likelihood, and

proposal distribution terms in equation (3), the log-linear

model can be made strictly more expressive than the tradi-

tional formulation. Note that, for our pseudo-independent

filters, each yt contains traditional observation data as well

as information about the previous states of other filters to

allow the features to model interactions between objects. In

Section 6, we describe a number of feature functions for

multi-object tracking in the American football domain.

There are two ways to view this log-linear filtering

model. From an algorithmic perspective, it can be seen

as a more flexible parameterization of the standard parti-

cle filtering algorithm. From a modeling perspective, it can

be viewed as an undirected, log-linear probabilistic model

over sequences—as in the work on CRF-filters [11]—for

which a particle filtering inference procedure based on non-

parametric belief propagation can be derived. In either case,

the ultimate goal is to learn feature weights that optimize

filter performance as described next.

4. Error-Driven Discriminative Filter Training
We take a supervised approach to training our individual

log-linear particle filters. The training set contains exam-

ples of the form (x∗0:T ,y1:T ), where y1:T is an observation

sequence, for example, a video of a football play, and x∗0:T
is the ground-truth or target state sequence, for example,

the trajectory of a particular player in the football play. The

goal is to optimize the filter weights so that the filter output

is as close to the target state sequences as possible.

The basic training approach iterates through the train-

ing examples and, for each one, calls Algorithm 1, which

produces updated filter weights that are used as the ini-

tial weights for the next call. The iteration continues un-

til a maximum number of steps is reached or performance

no longer improves. In practice, we average the weights

learned across iterations to arrive at the final weight vec-

tor, which is a common technique that has been shown to

improve performance of online learning [2].

Algorithm 1 is identical to the log-linear filter of Sec-

tion 3 with the addition of training mechanisms in lines 6

through 12. Intuitively, each call to this algorithm mon-

itors the filter’s performance on the current example and

tunes the feature weights each time the filter fails. Specif-

ically, at each time step, a new particle set is proposed and

reweighted according to the log-linear model. After par-

ticle reweighting, the filter’s current state estimate x̂t is

compared to the ground truth state x∗t , and, if the distance

between the two is above a user-specified threshold λu, a

weight update is performed (see below). Additionally, if the

distance between x̂t and x∗t is greater than a second thresh-

Algorithm 1 Error-driven particle filter training

Input: (x∗0:T ,y1:T ) – Training sequence

w – Input feature weight vector

γ – Learning rate

λu – Update threshold

λr – Restart threshold (≥ λu)

1: Initialize particles: x
(i)
0 = x∗0 and π

(i)
0 = 1

n
, i = 1, . . . , n

2: for t = 1 to T do
3: Sample n particles x

(i)
t−1 from current particle set

4: Sample new particle set from proposal distribution:

x
(i)
t ∼ q(x

(i)
t |x(i)

0:t−1,y1:t)
5: Reweight each particle using current weights:

π
(i)
t ∝ exp

“P
j wjfj(yt,x

(i)
t )

”
6: Compute ε = ||x∗t − x̂t||, where x̂t is the current state

estimate

7: if ε > λu then
8: Update feature weights w (one of equations 5, 6, or 8)

9: end if
10: if ε > λr then
11: Reset particle filter to ground truth state at time t by

setting all particle states to x∗t
12: end if
13: end for

old λr, the filter is reset to the current ground truth state.

By updating the feature weights when an error is made

during inference and by restarting the filter when a large

enough error is made, the filter is allowed to focus its at-

tention on meaningful points of failure, resulting in more

purposeful weight updates. In addition, performing succes-

sive restarts can be seen as reducing training time by al-

lowing the filter to encounter a variety of errors within a

training iteration. If instead the filter is never reset for large

errors, which is essentially Limketkai et al.’s approach [11],

many weight updates would be performed on wildly diverg-

ing state estimates due to cascading errors. We have found

this approach to work poorly in our tracking domain where

filters often diverge badly in earlier training iterations.

Using the generic error-driven approach described

above, we can optimize a number of discriminative ob-

jective functions by specifying appropriate weight update

equations (line 8), along with the type of state estimate x̂t to

be used (line 6). In what follows, we specify these choices

for three different objective functions.

Perceptron Updates: Collins’ perceptron update [2] can

be viewed as an approximation to the gradient of the con-

ditional log-likelihood of the training data log p(x∗0:T |y1:T )
with respect to the feature weights, and thus, the perceptron

algorithm can be thought of as attempting to maximize this

probability via approximate gradient ascent.

The batch perceptron update of Collins can easily be

modified into an iterative update for use in our error-driven
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training approach. The update to weight wj takes the form:

wj = wj + γ
(
fj(x∗t ,yt)− fj(x̂t,yt)

)
, (5)

where γ is the learning rate. In this case, the state esti-

mate x̂t used by the filter is taken to be the particle with the

highest particle weight (i.e. the MAP state estimate). Thus,

filters learned with the perceptron update aim at making the

filter’s MAP state close to ground truth at every time step.
Minimizing the Squared Residual of Mean: In the

case of object tracking, the perceptron update is somewhat
unsatisfactory because it places emphasis on the MAP par-

ticle instead of on the sample mean Ê[xt], which is typi-
cally used as the state estimate in particle filter-based object
tracking and in our experience typically leads to more ro-
bust tracking. To remedy this, we can use an error-driven
learning instantiation where the sample mean is taken as

the state estimate (i.e. x̂t = Ê[xt]), and the objective func-
tion is to minimize the squared residual of the sample mean

||Ê[xt] − x∗t ||2. We update the weights upon each error in
the gradient direction of this objective, which for weight wj

yields the following update:

wj = wj + γ
`
Ê[xt]− x∗t

´T

`
Ê[xtfj(xt,yt)]− Ê[xt]Ê[fj(xt,yt)]

´
. (6)

Using this update, wj converges when the state xt is uncor-

related with feature fj(·) according to the sample distribu-

tion. Using this update in our error-driven framework can

be viewed as performing stochastic gradient descent on the

truncated squared residual, which is set equal to zero when

the residual is less than our update threshold λu.

Minimizing Mean Squared Error: The above update

has the unfortunate property of ignoring the sample variance

v̂ar(xt) of the state xt. In particular, we have

||Ê[xt]− x∗t ||2 = Ê
[||xt − x∗t ||2

]− v̂ar(xt). (7)

This shows that it is possible to minimize the mean’s resid-

ual while both the mean squared error (MSE) and the vari-

ance take on very large values, which is quite undesirable.

For example, in object tracking this would be akin to min-

imizing the residual to a ground truth location at the center

of the video frame by placing an equal number of equally

weighted particles at each of the four corners of the frame.
Thus, we here consider minimizing the MSE

Ê
[||xt − x∗t ||2

]
as a potentially more robust objec-

tive, which from (7), corresponds to minimizing the sum
of the mean’s squared residual and the sample variance. In
tracking, minimizing this objective corresponds to having
all of the particles bunched tightly around the ground truth

location. Differentiating Ê
[||xt − x∗t ||2

]
with respect to

wj yields the following gradient descending weight update:

wj = wj + γ
`
Ê

ˆ||xt − x∗t ||2fj(xt,yt)
˜

− Ê
ˆ||xt − x∗t ||2

˜
Ê [fj(xt,yt)]

´
. (8)

This update has the intuitively satisfying property of con-

verging when the MSE is uncorrelated with feature fj(·).
Again, using this update, our error-driven training process

can be viewed as stochastic gradient descent on a truncated

version of MSE.

5. Improving Training Computation Time

Since each iteration of error-driven training involves

running the particle filter once for each training example,

this approach can become computationally expensive when

each run of the particle filter has a non-trivial computational

cost. This is particularly true in tracking domains in which

a large number of objects must be tracked at once, neces-

sitating many calls to feature functions involving expensive

pixel-level operations on sizable regions of the video frame,

which form a computational bottleneck.

In order to overcome the computational burden associ-

ated with performing many of these calculations repeatedly,

we use an approximate method that operates on strategi-

cally drawn state samples with pre-computed values for

these features. Specifically, we pre-process each train-

ing example (x∗0:T ,y1:T ) by drawing a large set of sam-

ples {x̃(k)
t }k=1,...,N normally distributed around each of the

ground truth states x∗t with large variance and, for each of

these samples, pre-computing the values of all features in-

volving expensive pixel-level operations.

Then, during training, the particle filter is modified by

only allowing the proposal distribution to propose states at

time t that are represented in {x̃(k)
t }k=1,...,N . This can be

implemented by turning the continuous proposal distribu-

tion into a discrete distribution in a straightforward way. In

this way, during the particle re-weighting step, the available

pre-computed feature values are used for all of the particles,

while all other features are computed online.

This approach allows training to proceed significantly

faster than when using the full particle filter while still pro-

viding a close approximation to the way the full filter per-

forms. Performance may suffer in tracking domains where

most errors are made due to background clutter and other

factors rather than to hijacking by other objects. However,

in such domains, it is possible to use a slightly modified ver-

sion of this method that generates sample sets during actual

runs of the tracker and iteratively augments those sets after

they have been used for several iterations of training. We

are currently investigating such an approach.

6. Experiments and Results

We test our approach by tracking the 22 players and one

referee in low-resolution videos of American football. Each

video contains footage of a single football play shot from a

panning, tilting, and zooming camera with a sideline view
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Figure 1: A typical video frame from our dataset.

high above the center of the field. Figure 1 depicts a typ-

ical view from this camera. Every video is pre-processed

to register frames to an overhead model of the football field

using the method described in [7], thereby enabling us to

determine players’ locations in football field coordinates.

The football domain is an extremely challenging testbed

for any multi-object tracking algorithm. The players being

tracked in this domain move very erratically, and the charac-

teristics of players’ motion change substantially depending

on the player’s type and the time stage of the video. In the

first several seconds of each video, for example, nearly all

of the players stand virtually still, while perhaps one or two

move only gradually. However, after the ball is snapped (a

one-time event that occurs in every football play), all of the

players begin to move very quickly, and the tracker must

be able to adapt accordingly. In addition, football players

interact in complex ways, frequently in very large groups.

For example, in every play, a group of five linemen on the

offense stand shoulder to shoulder in a line and attempt to

block a group of about three to five defensive players who,

in turn, attempt to break through the offensive line. Many

other complicated interactions take place between smaller

groups of players throughout the course of a play. In what

follows, we first describe the filter models and feature func-

tions we use to capture these interactions and other salient

aspects of the football domain. We then move on to present

the results of our experiments.

6.1. Football domain modeling

In the football domain, we represent each player as

a rectangular region defined by his location in foot-

ball field coordinates and the scale of the region (i.e.

x = {x, y, sx, sy}). Players’ motion is modeled us-

ing the second-order autoregressive dynamical model that

is common in the tracking literature, in which xt ∼
N (g(xt−1,xt−2), Σd), where N (μ, Σ) is the normal dis-

tribution with mean μ and covariance Σ,

g(xt−1,xt−2) = A1xt−1 + A2xt−2, (9)

and A1 and A2 define a constant acceleration model.

The proposal distribution we use is slightly non-

standard. Specifically, it takes the form of the process

dynamical distribution above but uses the previous sam-

ple means in place of the state values xt−1 and xt−2.

In other words, under our proposal distribution, xt ∼
N (g(Ê[xt−1], Ê[xt−2]), Σd), where g(·) is as in (9). We

have found that this form of proposal distribution works

well in practice and is more stable than the motion model.

We use a variety of feature functions to describe different

aspects of players’ appearances, their motion, and the inter-

actions between players. In order to model motion patterns

that change depending on the time stage of the football play,

each feature we describe below is replicated once for each

possible time stage. All features that do not correspond to

the current time stage take on zero values. In all, each filter

uses 15 base features, described below, and 4 time stages

for a total of 60 features.

Player motion features: We use 11 different features to

describe player motion. The first of these is the logarithm

of the Gaussian probability density value of the player state

xt evaluated under the proposal distribution. The second

is the negative squared distance between the player’s cur-

rent state and the state estimate from the previous time step,

i.e. −||xt − Ê[xt−1]||2. Intuitively, these features allow for

a trade-off between rewarding a particle for being close to

the proposal’s prediction and not straying too far from the

player’s previous location.

We also use a set of binary features that indicate in

which of the eight compass directions a player is moving.

These are calculated by quantizing the player’s motion vec-

tor (xt−Ê[xt−1]). These features allow us to model motion

tendencies that occur regularly across all football plays. For

example, the quarterback nearly always moves backwards

immediately after the ball is snapped.

Appearance features: We use two features to de-

scribe players’ appearances. The first of these is an RGB

histogram-based feature, which is calculated based on the

Bhattacharyya coefficient-based histogram distance (as in

[14]) between a reference histogram and the histogram of

the region defined by xt. The second appearance feature is

based on background modeling and is computed by using a

pre-computed background color model to count the number

of foreground pixels inside the player region defined by xt

to the total area of that region.

Player interaction features: The final two features de-

scribe interactions between players. The first of these is

similar to the MRF edge potential used in [9], which penal-

izes overlap between player regions in the video frame. The

second is similar to the MRF edge potential used in [18],

which penalizes proximity between players in state space.

Intuitively, these features cause trackers to “repel” one an-

other, thereby helping them to to better cope with interac-

tions between players by avoiding hijacking.
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6.2. Results
Our dataset contains 20 videos of different football

plays, each around 400 frames long, along with hand-

labeled ground truth data for every player in every frame1.

We used a four-fold cross validation approach to evaluate

our training method on this dataset. Specifically, we divided

the entire set into four folds of five videos each and, for

each fold, trained trackers on the other three folds over 100

iterations of the method described in Section 5 using each of

the weight updates in equations (5), (6), and (8). To account

for the different characteristics of various player types, we

learned 13 separate sets of weights, one for each individual

player type, with filters for players of the same type sharing

the same set of weights in both tracking and learning.

We evaluated each fold after every 10 training iterations

using the full pseudo-independent log-linear filtering model

with averaged feature weights for each player type. In ad-

dition, we also evaluated each video using Khan et al.’s
MCMC-based particle filter [9] and Yu and Wu’s mean

field Monte Carlo algorithm [18], two state-of-the-art multi-

object particle-filter trackers. For all of these methods,

player types and initial locations are computed automat-

ically using mixture-of-parts pictorial structures [8]. We

also tried to use the CRF-Filter perceptron algorithm of

Limketkai et al. [11] on our data set and found that it did

not converge well in training. We believe that this is due to

the non-incremental nature of the updates, which are based

in large part on extremely erroneous filtering runs.

Figures 2 and 3 compare the performance of pseudo-

independent log-linear filters trained using the weight up-

dates in equations (5), (6), and (8) and of Khan et al.’s and

Yu and Wu’s methods. Figure 2 depicts the mean squared

per-frame pixel error (x̂t−x∗t )
2, while Figure 3 depicts the

failure rate, which is the proportion of frames in which a

player was considered to be lost (i.e. in which the tracker is

at least 5 yards in error). Results are given averaged over all

players for both the training and testing folds.

First, these results make it clear that the training algo-

rithm is able to significantly reduce the training error, indi-

cating that the optimization approach is effective. Further,

by both error measures, pseudo-independent log-linear fil-

ters trained using each of the weight updates achieve sub-

stantially better results than untrained pseudo-independent

log-linear filters (iteration 0) and the previous state-of-the-

art methods on the test set. It is especially important to note

that the significantly lower lost-player rates attained by our

filters indicate that our discriminative error-driven training

approach is effective in achieving its goal of improving fil-

ter performance by learning to overcome failures. This also

suggests that the approximate method described in Section

5 is a valid approximation to the full tracking process.

1Our entire hand-labeled tracking dataset is available at

http://eecs.oregonstate.edu/football/tracking/dataset.

We also see that the MSE and residual updates per-

form better than the perceptron updates on this data, with

the MSE update having an edge in peak accuracy and

the performance of perceptron-trained trackers deteriorat-

ing quickly after achieving their peak performance. As is

common for incremental learning methods, the error does

not monotonically decrease. In practice one would use a

validation set to select the best stopping point for training.

As an additional assessment of tracking performance, we

also counted the number of players that were never lost by

the tracker during testing. Interestingly, our untrained fil-

ters lost every player for at least a very small portion of

the video, while Yu and Wu’s and Khan et al.’s methods

were successful on 174 and 119 players (out of a total of

440), respectively. In comparison, the best performing fil-

ters trained with the MSE update, the residual update, and

the perceptron update were successful on 280, 264, and 223

players, respectively. Examining these players further, we

found the best performing trained filters achieved an aver-

age per-frame MSE of 74.0 (MSE update), 76.3 (residual

update), and 82.4 (perceptron update), while Yu and Wu’s

and Khan et al.’s methods respectively achieved average

per-frame MSEs of 110.0 and 100.1. These results show

that our trained filters can fully track a significantly larger

number of players more accurately. In our model 6 pixels

corresponds to one yard on the field, indicating that MSE

and residual updates achieve an error of approximately 1.5

yards for these players, which, in our experience, is more

than enough to infer many types of player behavior.

Average run times for pseudo-independent log-linear fil-

ters, Yu and Wu’s method and Khan et al.’s method are

summarized in Table 1. We can see that, in addition to

improved filter performance, pseudo-independent log-linear

filters also offer faster tracking times.

PILLFs Yu and Wu Khan et al.
Avg. run time 18.30 m 30.55 m 84.50 m

Table 1: Average run time in minutes for pseudo-independent log-linear
filters, Yu and Wu’s method [18], and Khan et al.’s method [9]. These are
computed over the entire football dataset on a standard desktop computer.

7. Summary and Future Work

We have described a framework for multi-object tracking

based on pseudo-independent log-linear particle filters. Our

main contribution is an error-driven discriminative training

algorithm for this model. We gave results in the domain of

American football that show the effectiveness of the method

in comparison to recently proposed multi-object trackers.

To our knowledge, our learned trackers are state-of-the-art

in the football domain. In future work, we plan to ex-

tend our approach to learn the parameters of more complex

MRF-style models to allow for more significant joint infer-

ence about object interactions. In addition, we plan to study

the theoretical convergence of our error-driven algorithms.
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Figure 2: Mean squared per-frame pixel error at every 10 training iterations, averaged over all players in (a) the testing and (b) the training folds for each
of the three weight update equations (5), (6), and (8). Included for reference are MSE values for Yu and Wu’s method [18] and Khan et al.’s method [9].
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Figure 3: Failure rate at every 10 training iterations, averaged over all players in (a) the testing folds and (b) the training folds. Failure rate is computed
as the proportion of a player’s frames in which the player was lost by the tracker.
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