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Abstract
Image blur and noise are difficult to avoid in many situ-

ations and can often ruin a photograph. We present a novel
image deconvolution algorithm that deblurs and denoises
an image given a known shift-invariant blur kernel. Our al-
gorithm uses local color statistics derived from the image as
a constraint in a unified framework that can be used for de-
blurring, denoising, and upsampling. A pixel’s color is re-
quired to be a linear combination of the two most prevalent
colors within a neighborhood of the pixel. This two-color
prior has two major benefits: it is tuned to the content of the
particular image and it serves to decouple edge sharpness
from edge strength. Our unified algorithm for deblurring
and denoising out-performs previous methods that are spe-
cialized for these individual applications. We demonstrate
this with both qualitative results and extensive quantitative
comparisons that show that we can out-perform previous
methods by approximately 1 to 3 DB.

1. Introduction
Two of the most common problems in photography are

image blur and noise, which can be especially significant in
light limited situations, resulting in a ruined photograph.

Image deconvolution in the presence of noise is an in-
herently ill-posed problem. The observed blurred image
only provides a partial constraint on the solution—there ex-
ist many “sharp” images that when convolved with the blur
kernel can match the observed blurred and noisy image. Im-
age denoising presents a similar problem due to the ambigu-
ity between the high-frequencies of the unobserved noise-
free image and those of the noise. Thus, the central chal-
lenge in deconvolution and denoising is to develop meth-
ods to disambiguate solutions and bias the processes toward
more likely results given some prior information.

In this paper, we propose using priors derived from im-
age color statistics for deconvolution and denoising. We
also perform up-sampling as a case of deblurring and de-
noising, using a minor extension, as discussed in Section 3.
Our prior models an image as a per-pixel linear combination
of two color layers, where the layer colors are expected to
vary more slowly than the image itself. Edges and textures
in an image are accounted for by blending the colors of the
two layers. Our approach places priors on the values used
for blending between the two colors, in essence creating a
robust edge prior that is independent of gradient magnitude.

A central part of deconvolution is properly handling im-
age noise. As a result, denoising can be considered a sub-
problem of deblurring, and deconvolution methods can be
used purely for denoising by considering the blurring ker-
nel to be a delta function. Thus, we treat denoising as a sub-
problem of deconvolution and present a non-blind deconvo-
lution algorithm that can be used for both applications.

Our unified algorithm for deblurring and denoising out-
performs previous methods that are specialized for these in-
dividual applications. We demonstrate this with both qual-
itative results and quantitative comparisons that show that
we can out-perform previous methods by around 1 to 3 DB
at high noise levels.

2. Related Work
Image deblurring and denoising have received a lot of

attention in the computer graphics and vision communities.
Basic approaches for denoising, such as Gaussian and me-
dian filtering, have a tendency to over-smooth edges and re-
move image detail. More sophisticated approaches use the
properties of natural image statistics to enhance large inten-
sity edges and suppress lower intensity edges. This property
has been used by wavelet based methods [16], anisotropic
diffusion [15], bilateral filtering [21], and Field of Experts
models [19]. Our method shares some similarities with
these approaches in that we consider natural image statis-
tics in the form of a prior on the distribution of image gra-
dients [12]; however, we go beyond this and additionally
incorporate a prior derived from local color statistics. This
allows us to avoid the over-smoothing that can occur with
gradient-based methods.

The denoising aspect of our work is most similar to that
of Liu et al. [14] in that we both use a local-linear color
model. Where our methods differ is that we build a color
model per pixel, while Liu et al. segment the image first
and then build the model per segment. A further distinction
between our work and previous work is that we address de-
noising in the larger context of image deconvolution, while
most denoising work considers this problem in isolation.

To address image deblurring, some researchers have
modified the image capture process [3] or used multiple im-
ages [2, 22] to aid in deblurring. Image blur due to limited
resolution has lead to the development of up-sampling al-
gorithms [9, 7]. Determining the blur kernel from a single
image, which is a critical sub-problem for deblurring nat-
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(a) (b) (c) (d)
Figure 1: (a) Input blurry image (the 9x9 PSF is displayed (enlarged by 4×) in the top right corner, the noise level is estimated
per-pixel with the median σ = 0.0137), (b) image deblurred using the Lucy-Richardson algorithm, (c) using a sparse gradient
prior, and (d) using our method (λ2 = 0.5). Result (b) is sharp but noisy and has ringing artifacts; (c) is overly-smoothed;
our result (d) has the sharpness of Lucy-Richardson (most notably in the red/white checkerboard) with significantly reduced
noise and ringing.

ural images, has also been studied [8, 11]. One area that
has received less attention, yet is critical for the above tech-
niques, is that of non-blind deconvolution.

Non-blind image deconvolution is the process of recov-
ering a sharp image from an input image corrupted by blur-
ring and noise, where the blurring is due to convolution with
a known kernel and the noise level is known. Most deblur-
ring approaches rely on decades old deconvolution tech-
niques such as the Lucy-Richardson algorithm [18], Wiener
filtering, and least-squares deconvolution. Many of these al-
gorithms were developed for applications where the images
are quite different than those taken by an everyday photog-
rapher. Consequently, these methods are not always well
suited to the desired task and often generate unwanted ar-
tifacts such as ringing. One approach to overcome these
shortcomings is that of Levin et al. [12], which incorpo-
rates priors derived from natural image statistics. Other
methods have explored the use of graph cuts to reduce over-
smoothing [17], deconvolution using multiple blurs [10],
and energy minimization functions using wavelets for de-
convolution [6].

Levin et al. [12] perform non-blind deconvolution using
a prior based on assumptions about the edge content of im-
ages. The authors assume that images are piecewise smooth
and thus the gradient distribution of an image is zero-peaked
with high kurtosis. They enforced this property using a
hyper-Laplacian prior on image gradients during deconvo-
lution. In our work, we show that when this prior is used
alone it has a tendency to overly smooth results.

Yuan et al. [23] use a multi-scale Lucy-Richardson de-
convolution combined with a bilateral filter to suppress
ringing artifacts. While their method suppresses ringing,
the noise sensitivity of Lucy-Richardson remains. A further
difficulty is their method’s use of ten parameters of which
four are user-specified. In contrast, our method is quite ro-
bust to noise and only has three parameters with one user-
specified parameter. Yuan et al. do not address denoising or
up-sampling.

3. Deconvolution and Denoising Overview
We model a blurred, noisy image as the convolution of a

latent sharp image with a known shift-invariant kernel plus
additive white Gaussian noise, whose result is potentially
down-sampled. Specifically, blur formation is modeled as:

B = D(I ⊗K) +N, (1)

where K is the blur kernel, N ∼ N (0, σ2) is the noise,
and σ2 potentially varies spatially. D(I) down-samples an
image by point-sampling IL(m,n) = I(sm, sn) at a sam-
pling rate s for integer pixel coordinates (m,n). The down-
sampling function allows us to perform up-sampling, by
solving on a sub-pixel gird. In regular deblurring, s = 1,
and for up-sampling, s > 1.

Our goal is to recover the unobserved sharp image I from
only the observed blurred input image B given the kernel
K. We use the method of Liu et al. [14] to estimate the
level-dependent noise level σ2.

We formulate the image deconvolution problem using a
Bayesian framework and find the most likely estimate of
the sharp image I , given the observed blurred image B, the
blur kernelK, and the recovered noise level σ2 using a max-
imum a posteriori (MAP) technique.

We express this as a maximization over the probability
distribution of the posterior using Bayes’ rule. The result is
a minimization of a sum of negative log likelihoods:

P (I|B,K) = P (B|I)P (I)/P (B) (2)
argmax

I
P (I|B) = argmin

I
[L(B|I) + L(I)]. (3)

The problem of deconvolution is now reduced to defining
and minimizing the negative log likelihood terms. Given
the blur formation model (Equation 1), the “data” negative
log likelihood is:

L(B|I) = ||B − I ⊗K||2/σ2. (4)

We incorporate the down-sampling function in Equation 1
by modifying the likelihood term to be ||B − D(IH ⊗
KH)||2, where the up-sampled latent image and kernel
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are IH and KH , respectively, and BH = IH ⊗ KH .
D(I) is formed as a simple point-sampling matrix such that
B(m,n) = BH(sm, sn) for a sampling rate s.

To perform denoising alone, we set the kernel K in
Equation 4 to a delta function, which reduces the data neg-
ative log likelihood to:

L(B|I) = ||B − I||2/σ2. (5)

The form of the remaining negative log likelihood term,
L(I), in Equation 2 depends on the image prior that is used.
Defining this term is the main focus of this work.

4. Gradient Priors
In image deconvolution, the data likelihood is inherently

ambiguous, i.e., there are many “sharp” images that when
blurred match the observed blurred image. The range of am-
biguity increases with the amount of blur, and image noise
further complicates the issue. The role of the image prior
is to disambiguate among the set of possible solutions and
to reduce over-fitting to the noise. A common approach is
to assume that the image is smooth or piecewise smooth,
resulting in priors on image gradients. In the following
section, we discuss the limitations of gradient priors and
present a novel prior derived from image colors statistics.

Gradient priors are typically enforced between neighbor-
ing pixels in an image. These interactions can be modeled
using a Markov Random Field (MRF) in which the value of
an individual pixel is conditionally dependent on the pixel
values in a local neighborhood. One possible prior on the
gradients is a smoothness prior in which large image gradi-
ents are penalized. Thus, neighboring pixels are favored to
have values similar to their neighbors. Typically, this is en-
forced under a assumption of a Gaussian distribution on the
image gradients. While such a prior does disambiguate the
solution, it can result in an overly-smooth solution and in-
troduce ringing artifacts [12]. This occurs as a result of the
quadratic penalty term, which enforces a Gaussian distribu-
tion on gradients. Unfortunately, “natural” images have a
decidedly non-Gaussian gradient distribution.

Levin et al. [12] address this by modifying the gradient
penalty to enforce a hyper-Laplacian distribution:

L(I) = λ||∇I||0.8. (6)

The value ∇I indicates the spatial gradients of the image,
and λ is a regularization parameter that controls the weight
of the smoothness penalty. This “sparse” gradient prior bet-
ter models the zero-peaked and heavy tailed gradient distri-
butions seen in natural images. As the penalty function is
no longer a quadratic, the minimization is performed using
iterative re-weighted least-squares [20].

Deconvolution using a sparse gradient prior is a signif-
icant step towards producing more pleasing results, as it
reduces ringing artifacts and noise relative to more tradi-
tional techniques. However, this prior has some limitations.

While it biases the deconvolution to produce images with a
hyper-Laplacian distribution on gradients, this prior is im-
plemented as a penalty on gradient magnitudes. Thus, it is
essentially a “smoothness prior” with a robust penalty func-
tion. Using this function, larger gradients still incur larger
penalties. This results in a preference for finding the lowest
intensity edges that are consistent with the observed blurred
image. This is particularly an issue with “bar” type edges
and high-frequency texture, as illustrated in Figure 2.

The second limitation of the sparse gradient prior arises
in the presence of significant image noise. The implication
of the Levin et al.’s [12] sub-linear gradient penalty function
is that a single large gradient is preferred over many small
gradients when accounting for intensity variations. This can
result in the preservation and sharpening of the noise. As il-
lustrated in Figure 3, the presence of high-frequency noise
that varies on a per-pixel level produces mid-frequency tex-
ture patterns, Figure 3c, that can be more objectionable than
the original noise. The noise may be removed by increasing
the weight of the sparse gradient prior, but over-smooths the
result, Figure 3d.

5. Color Priors
We propose an additional term in the sparse prior that

uses a color model built from local color statistics of the
sharp latent image. This overcomes over-smoothing as it
allows for sharp edges as long as they are consistent with
local color statistics.

5.1. The Two-Color Model

Recently, researchers have further noted that images can
locally be described as a mixture of as few as two colors
for use in alpha-matting [13, 1], image denoising [14], and
Bayer demosaicing [4]. The two-color model states that any
pixel color can be represented as a linear combination of
two colors, where these colors are piecewise smooth and
can be derived from local properties:

I = αP + (1− α)S. (7)

P and S are the respective primary and secondary colors
and α is the linear mixing parameter. For notational conve-
nience, the primary color Pi is always assigned to the color
that lies closest to the pixel i’s color Ii. Some pixels may
only be described by a single color, in which case Pi = Si.

The two-color model has several benefits when used to
provide an image prior for deconvolution. First, given the
two colors for a pixel, the space of unknowns is reduced
from three dimensions (RGB) to one (α). The second ben-
efit is that the α parameter provides an alternative for pa-
rameterizing edges, where the edge sharpness is decoupled
from edge intensity—a single pixel transition in α from 1
to 0 indicates a step edge (an single step from primary to
secondary) regardless of the intensity of the edge. Thus, we
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Figure 2: (a) Many sharp edges can blur to match an observed blurred (and potentially noisy) edge (in tan). The sparse prior
always prefers the smallest intensity gradient that is consistent with the observation (in red). Our method picks the edge that
is more likely given the dominant primary and secondary colors in the pixel’s neighborhood. (b) The thin blue areas between
the white letters are deconvolved to a mid-level blue with the sparse prior. With our method the blue spaces are more distinct
and edges are sharper.

can control an edge’s strength with a prior on α while main-
taining local smoothness with a separate prior on P and S.

A significant benefit of the two-color model is its ability
to capture local color statistics. We observe that local color
statistics can provide a strong constraint during deconvolu-
tion. These constraints help reduce over-smoothing around
“bar edges” and high-frequency texture as shown in Fig-
ure 2b. In contrast with a gradient prior, which prefers the
lowest intensity edges that are consistent with the observed
blurred image, a two-color model can result in higher inten-
sity edges if such edges are more consistent with local color
statistics.

Our two-color model is a Gaussian Mixture Model that
is a modified version of the approach used by Bennett et
al. [4]. We model pixel data for a local neighborhood
around each pixel as a mixture of four components. A pixel
may belong to the primary color, the secondary color, a mix-
ture of the two colors, or be an outlier. The primary and sec-
ondary are modeled using a 3D Gaussian. The model for a
mixed color is a 1D Gaussian based on the distance between
the pixel’s color and the line segment between the primary
and secondary colors. The variance is computed as as func-
tion of the image noise σ. A small uniform distribution set
to 0.1 is used to model outliers.

The primary and secondary Gaussians are initialized by
first performing 10 iterations of k-means clustering (with
k=2). In the maximization step, when each Gaussian’s stan-
dard deviation is recomputed, we clamp the minimum for
the primary and secondary Gaussians to be the noise’s stan-
dard deviation σ. As a result, after several iterations the
Gaussians will merge if the standard deviation is less than
the noise’s standard deviation. In this case, we consider the
pixel to be modeled by one color, otherwise it is marked as
a being a two color pixel. A binary variable indicating one
vs. two colors is stored for each pixel. We use a 5× 5 win-
dow around each image pixel and perform 10 iterations of
EM clustering.

5.2. Using the Two-Color Model for Deconvolution

The two color model provides a significant constraint for
deblurring; there are two ways such a model can be used
for deconvolution. The first is to use the model as a hard
constraint, where the sharp image I must always be a linear
combination of the primary and secondary colors P and S.
The second is to use a soft-constraint to encourage I to lie
on the line connecting P and S in RGB space (Figure 4a).
We believe that the hard-constraint is too limiting and there-
fore use the soft-constraint.

Our image negative log-likelihood term is defined as:

L(I|P, S) = λ1||I − [αP + (1− α)S]||2 (8)
+ λ2ρ(α) + λ3||∇I||0.8. (9)

The first likelihood term minimizes the distance between
the recovered intensity I and the line defining the space of
the two color model (Figure 4a). In the above equation, α
is not a free variable and is computed for a pixel i as:

αi =
(

(Pi − Si)
(Pi − Si)T (Pi − Si)

)T

(Ii − Si). (10)

For the “one-color” model, in which P = S, we do not use
the two color model and the negative log likelihood falls
back to using the sparse prior only:

L(I) = L(I|P ) = λ3||∇I||0.8. (11)

The second likelihood term, ρ(α), allows us to enforce a
prior on the distribution of alpha values that are a function
of the normalized distances from I to P and S. The shape
of this prior plays a crucial role in enforcing sharpness dur-
ing deconvolution. For a sharp image, we expect the alpha
distribution to be peaked around 0 and 1, which enforces
sharp transitions between colors by minimizing the number
of pixels with partial α values.

To confirm this expectation and to recover the exact
shape for the alpha distribution, we measured the distribu-
tion of α values for several hundred images. We computed
P and S for a set of sharp images and then fit a piece-
wise hyper-Laplacian penalty function, b|α|a, to the shape
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PSNR=21.02 PSNR=26.85 PSNR=26.43 PSNR=27.38

(a) (b) (c) (d) (e) (f)
Figure 3: Blurred, noisy image (the PSF is 31x31 pixels and σ = 0.01), deconvolution with Lucy-Richardson, the sparse
prior, our result using the two-color prior, and the groundtruth. A smaller weight on the sparse gradient penalty gives noisy
results. Increasing the gradient penalty over-smooths the image. In our results the blue spaces are more distinct and edges
are sharper. In these results λ2 = 0.2.

of the negative log likelihood of the measured α distribu-
tions, shown in Figure 4b. The fit parameters are:

b = 1.6216, a = 0.0867 α ≥ 0
b = 2.2712, a = 0.2528 α < 0. (12)

Note that we consider α distributions to be symmetric about
α = 0.5 and accordingly reflect the data in our measure-
ments and penalty function about this value. As expected,
the measured distributions and our penalty function reflect
that α values near 0 are more likely.

Note that in Equation 8, we retain the sparse prior of
Levin et al. as it helps remove small spatial variations in
α that are otherwise not heavily penalized by our model.
Thus we find an image with sparse gradients that is most
consistent with the two-color model. For both equations,
we set λ1 = 0.5, λ3 = 1, and λ2 in the range of [0.01, 0.5].

6. Recovering the Sharp Image
In the previous sections, we derived negative log-

likelihood terms that when minimized allow us to recover
a latent sharp image using a prior derived from a two-color
model. Unfortunately, minimizing this error function in one
step is not straightforward due to the interdependence of I ,
P , and S. Fortunately, the problem can be decomposed into
two more easily solvable sub-problems, which we minimize
using an EM-style method.

The minimization is initialized by computing a deconvo-
lution of the image I0 using the sparse gradient prior alone.

d

I
P

*
Measured data
Mean of measured data
Fit penalty function

S α

(a) (b)

Figure 4: (a) One prior is on the perpendicular distance from
a sharp pixel’s color value to the (3D) line defined by the
two colors, and a second prior is on the distribution of α; (b)
the measured negative log distributions of alpha values for
images from the Berkeley and ICDAR 2003 databases and
our piecewise hyper-Laplacian fit to the mean distribution.

We reduce the amount of regularization used by the sparse
prior for this initialization to preserve sharpness (λ3 = 0.25
for this initialization step and λ3 = 0.5 for the subsequent
steps). The noise artifacts that result from the reduced regu-
larization are later suppressed when the color model is built.
We then iterate the following two steps:

• Estimate Pj and Sj from Ij−1 by local EM clustering
(using a 5x5 window for each pixel).

• Deconvolve the blurred image using Pj and Sj to get
Ij by minimizing Equation 2 with Equation 8 as the
prior on Ij (using Ij−1 as an initial guess).

The full definition of our model has two minima in the
α penalty function—one at 0 and the other at 1. The only
way to properly minimize this exact error function is using
a costly non-linear optimization.

Given a few observations about our error function and
one approximation, we can use a much faster iterative-least-
squares (IRLS) approach. As in the Levin et al.’s [12]
work, we minimize the hyper-Laplacian α prior using a
re-weighting function. Furthermore, due to our alternat-
ing minimization that recovers P and S separately from I ,
terms consisting of P and S can be considered constant and
pulled out of the α penalty.

Lastly, instead of using the full bimodal alpha prior, we
make an approximation that assigns the identities of Pj and
Sj such that Pj is the closest to the initial guess Ij−1. We
then enforce a unimodal α penalty that biases the values
of Ij to be close to Pj . While this now prevents the op-
timization from allowing the values of Ij to flip between
being closer to Pj or Sj , since we perform an alternating
minimization, this flip can still happen during the alterna-
tion between color estimation and deconvolution. The final
alpha penalty term for the IRLS minimization is:

ρ(αi)=

∣∣∣∣∣∣∣∣[b|αi|a−2 (Pi − Si)(Pi − Si)
T

((Pi − Si)T (Pi − Si))
2

]
(Ii − Si)

∣∣∣∣∣∣∣∣2. (13)

The square brackets indicate the “re-weighting” term,
which is a 3 × 3 matrix, for a pixel i. It weights the dis-
tance from Ii to Si by the distance between the Pi and Si

and enforces the shape of our alpha-penalty function. The
re-weighting matrix is constant and is pre-computed when
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Figure 5: A sweater (the PSF is 30x30 pixels and the median noise is σ = 0.0127) from Yuan et al. and a fountain (the
PSF is 39x39 pixels and the median noise is σ = 0.0104) from Fergus et al. We show the blurred image and results from
Lucy-Richardson, the sparse prior, and our method. Here λ2 = 0.05. Both our results are sharper (e.g, the sweater holes and
fountain water streams).

solving for Ii, as it only dependents on the values of Pi and
Si . We have found no significant difference between using
a full non-linear optimization and using IRLS. Two to three
iterations (between color estimation and deconvolution) are
sufficient for convergence. In most cases, the perceptual
difference after the second iteration is minimal.

7. Results
To validate our deconvolution algorithm, we tested our

method on synthetic cases, where the blur kernel and
ground-truth sharp image are known, as well as several real
images, where the blur kernel was estimated using previ-
ously developed methods [8, 22, 11]. For each result, we
compare our method to Lucy-Richardson and deconvolu-
tion using the sparse-prior. For the sparse prior method, we
used the code available online by Levin et al. [12].

Figure 3 shows results for the CVPR 2009 logo and text
synthetically blurred with a “squiggly” motion-blur kernel
with 5% additive white Gaussian noise. These images ex-
hibit numerous “bar edge” type features between the let-

B100075 B134052 B23084 B35008

B22013B113009B65010 B105053 B108073

I2633 I2673 I2483 I2666 I2531 I2530

I2542 I2669 I2629 I2469 I2468

I2471 I2485 I2630 I2506 I2460

Figure 6: Berkeley and ICDAR Images used for testing.

ters. Our method separates and sharpens the letters much
more than the Lucy-Richardson and the sparse prior alone.
We also perform the same experiment for several images
from the Berkeley and ICDAR Databases. Table 2 shows
that the PSNR values for our results are consistently higher
than those of the other methods. For natural images (the
Berkeley database) we out-perform the sparse prior on av-
erage by 0.41 DB and up to 0.59 DB for the highest noise
case. For text-like images from the ICDAR database, we
have an average of a 2.39 DB improvement with our largest
improvement at 3.43 DB, which is quite significant. These
results further show that our method deblurs better than the
previous methods as amount of noise increases.

In Figure 1, we show a result using a real image of a map
and PSF from Joshi et al. [11]. Our result has the sharpness
of the Lucy-Richardson result and is not overly smoothed,
as in the result when using the sparse-prior alone. If the
regularization weight for using the sparse prior alone is re-
duced, more textured noise appears creating an effect simi-
lar to that in Figure 3. Our result has minimal noise artifacts
and no ringing.

In Figure 5, we show results for two real images. The
first blurry image and kernel are from the work by Yuan et
al. [22]. In their work, the authors obtain accurate PSFs
for blurry images using a sharp, noisy image and a blurry
image. We have used their PSFs for deblurring the blurry
images alone. The second result is using an image and PSF
from the work of Fergus et al. [8]. As in the previous re-
sults, in comparison with the other methods, our results are
sharper.

To test denoising with our algorithm, we added 5% and
10% additive gaussian noise to several images from the
Berkeley Image Database, shown in Figure 6, and ran our
algorithm. Table 1 shows a comparison of the PSNR val-
ues for our results compared to the results of using Liu et
al.’s [14] and Portilla et al.’s [16] methods – two recent,
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Denoising σ = 5% Denoising σ = 10%
Image 0th 1st Port. Sparse Ours 0th 1st Port. Sparse Ours

B22013 32.17 32.33 31.31 32.50 32.54 27.14 28.84 27.12 27.53 27.91
B23084 32.04 32.64 32.14 33.01 33.15 27.04 29.23 27.24 27.20 27.74
B35008 34.84 35.97 35.74 35.88 35.67 30.24 33.27 31.23 32.16 32.49
B65010 31.99 32.18 30.95 32.26 32.36 27.18 28.41 26.73 27.07 27.55
B100075 31.69 31.68 31.27 32.36 32.41 28.14 28.96 28.31 28.51 28.80
B105053 33.77 34.02 34.01 34.79 34.66 30.63 31.95 31.41 31.73 31.91
B108073 31.94 31.98 31.48 32.49 32.54 28.33 29.21 27.94 27.94 28.31
B113009 32.31 32.61 32.89 33.62 33.64 28.89 30.19 29.91 29.87 30.27
B134052 32.58 32.88 32.09 33.01 33.02 28.61 29.55 28.20 28.15 28.68

Mean 32.59 32.92 32.43 33.32 33.33 28.47 29.96 28.68 28.91 29.30

Table 1: For denoising, our PSNR value are higher than when using Portilla et al.’s method, Liu et al.’s 0th order denoising,
and the sparse prior. Liu et al.’s 1th order method results in slightly higher PSNR values than our method for the 10% noise
images; however, Liu et al.’s results have artifacts (see Figure 7). For all of our results λ2 = 0.02.

state of the art color denoising methods. Figure 7 shows a
visual comparison for two images. Table 1 also compares
our work to denoising using the sparse prior alone. (Note
that while denoising using the sparse prior alone is the same
as Levin et al.’s deconvolution with the data term in Equa-
tion 5, Levin et al. never specifically address denoising.)
PSNR values are consistently higher with our method than
when using Portilla et al.’s method, Liu et al.’s 0th order
denoising, and the sparse prior in the higher noise case. Liu
et al.’s 1th order method results in slightly higher PSNR

Deblurring σ = 2% Deblurring σ = 5%
Image LR Sparse Ours LR Sparse Ours

B22013 24.26 27.87 28.19 19.10 25.08 25.51
B23084 22.88 26.16 26.60 28.49 22.93 23.52
B35008 26.93 33.70 33.86 19.08 31.08 31.57
B65010 24.11 26.54 26.87 18.61 24.52 24.83
B100075 25.70 28.90 29.20 18.85 27.13 27.34
B105053 27.00 32.80 32.98 18.84 30.78 31.01
B108073 24.79 27.24 27.58 18.77 24.32 24.81
B113009 26.62 31.18 31.31 19.22 28.56 28.90
B134052 25.39 27.72 28.31 18.71 24.80 25.44

I2460 27.17 33.22 33.03 20.13 28.09 30.59
I2468 22.29 26.66 27.77 18.36 22.80 24.89
I2469 25.98 31.69 32.49 19.34 26.35 29.38
I2471 24.54 29.37 30.09 19.09 24.39 27.31
I2483 27.33 35.55 34.02 19.54 31.79 33.13
I2485 25.41 30.93 31.45 19.51 26.41 28.81
I2506 22.56 32.75 32.62 18.62 28.87 30.25
I2530 24.80 34.35 34.00 19.23 28.96 31.72
I2531 26.42 31.83 32.02 19.54 26.33 29.76
I2542 22.93 26.19 27.54 18.84 22.60 24.61

B Mean 25.30 29.12 29.43 19.96 26.58 26.99
I Mean 24.94 31.25 31.50 19.22 26.66 29.05

Table 2: For deblurring, our PSNR values are higher than
the results of using the Lucy-Richardson algorithm. For
natural images from the Berkeley database (images start-
ing with B) we out-perform the sparse prior on average by
0.41 DB for the highest noise case. For text-like images
from the ICDAR database (images starting with I), we have
an average of a 2.39 DB improvement. For the “B” results
λ2 = 0.02 and for the “I” results λ2 = 0.2.

values than our method for the 10% noise images; how-
ever, Liu et al.’s results show significant blocking artifacts,
as shown in Figure 7.

Given our formulation, it is also possible to do more tra-
ditional up-sampling. We up-sample a low-resolution im-
age by deconvolving it on an up-sampled grid where the
PSF is a down-sampling (7-tap binomial filter) anti-aliasing
filter. The application of our method to upsampling shares
similarities with the work of Fattal [7] and Dai et al. [5], in
that we all consider alpha priors. Figure 8 shows a 4x up-
sampling results using data from Fattal. Our result is signif-
icantly sharper than the result of bi-cubic interpolation and
is similar to Fattal’s result.

To view full resolution versions of our results, in-
cluding additional examples, visit http://research.microsoft.
com/ivm/twocolordeconvolution/.

8. Discussion and Future Work
We have developed a unified framework to deblur, de-

noise, and up-sample images using a novel prior that incor-
porates local color statistics. Our method produces sharper
results with less noise and quantitatively out-performs pre-
vious methods.

Our results suggest several areas for future work. Per-
haps the largest limitation of our method is not in its theory,
but in its practice. For deblurring, recovering both the color
model and deconvolving the image is a non-linear problem.
Furthermore, the error function we use can suffer from lo-
cal minima due to the necessary existence of two minima
in the alpha prior. Two obvious routes exist for improve-
ment, the first being to investigate alternative optimization
techniques. The second is to improve the initialization for
the color model; we have experimented with both the Lucy-
Richardson algorithm and using the sparse prior alone. We
found that using the sparse prior alone with a low weighting
provides a good initial guess; however, due to our current
optimization method, the quality of our results is somewhat
bound by this initialization. Other choices may yield im-
proved results.
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PSNR = 30.63 PSNR = 31.9510% AWGN

NOISY LIU ET AL. (0TH ORDER) LIU ET AL. (1ST ORDER)
PSNR 31 41 PSNR 31 91PSNR = 31.41 PSNR = 31.91

OURS GROUNDTRUTHWAVELET

Figure 7: Our result has the sharpness of the Liu et al. re-
sults in the face region, but does not have the blocking arti-
facts in the low-frequency background region (see the areas
indicated with yellow rectangles). For all of the denoising
results λ2 = 0.02.

In our experience, we have found that varying the
weighting of the alpha priors can help create better results.
Most often, text-like images require a higher weight than
natural images. We are interested in exploring the alpha
prior and weighting values in a class-specific way. We be-
lieve that there may be a consistent, but different, set of
weights for text versus natural images.
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