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Abstract

In this paper, we describe a new Markov random field
(MRF) model for natural images in multi-scale oriented
representations. The MRF in this model is specified with
the singleton conditional densities (the density of one sub-
band coefficient given its Markovian neighbors), while the
clique potentials and joint density of this model are implic-
itly defined. The singleton conditional densities are cho-
sen to have maximum entropy and consistent with observed
statistical properties of natural images. We then describe
parameter learning for this model, and a sparse prior to
choose optimal model structure. Using this model as im-
age prior, we develop an iterative image denoising method,
and a solution to restoring images with missing blocks of
subband coefficients.

1. Introduction

Statistical models for natural images are important tools
in image processing and computer vision, which play essen-
tial roles in problems such as denoising, inpainting, super-
resolution and texture synthesis. Desirable properties of
such models include:
- consistency with observed statistical properties of natu-
ral images,

- scalability in modeling images without constraint on im-
age sizes, and

- efficiency of computation in parameter learning, sam-
pling and inference.

A case in point are the Gaussian models, which can capture
second order statistics of natural images, and afford effi-
cient computation in high dimensional data space. How-
ever, studies in the recent two decades have showed that
Gaussian models are not good models for natural images.
Especially, when transformed into multi-scale oriented rep-
resentations (e.g., wavelets), natural images exhibit strik-
ing non-Gaussian marginal statistics and statistical depen-

dencies beyond second order. For this reason, there have
been several non-Gaussian models that can match statisti-
cal properties of natural images over small blocks of pixels
or subband coefficients[22, 11, 9, 25]. These models are
easy to compute and understand, and they have achieved
state-of-the-art performance in problems such as image de-
noising [17]. The downside, however, is that there is no
straightforward extension of such models to images with
sizes beyond small blocks. In parallel, there have also been
significant advances in using global probabilistic models
such as Markov random fields (MRFs) for natural image
[10, 12, 28, 8, 21]. In an MRF, local statistical behaviors
are embedded in the global image domain in a consistent
manner, and can propagate properly across different image
locations. Their main disadvantages are that computation in
MRF models is usually much more expensive than that of
the patch based models, and the construction of MRF mod-
els usually compromise on matching statistical properties of
natural images for computation efficiency.
In this paper, we introduce a new MRF model for nat-

ural images in the multi-scale oriented image representa-
tions. Motivated by higher-order statistical regularities of
natural images, this model is constructedwith specifications
of all singleton conditional densities (the density of one sub-
band coefficient given its Markovian neighbors), which can
uniquely determine the joint density of an MRF. The single-
ton conditional densities are chosen to have maximum en-
tropy and consistent with observed statistical properties of
natural images. Because this MRF model is not directly de-
fined with clique potentials, or equivalently, the joint prob-
ability density function, we call it an implicit MRF model.
We show that the parameters of the implicit MRFmodel can
be estimated using the maximum pseudo-likelihood prin-
ciple. Furthermore, the structure of the MRF can be de-
termined with a sparse inducing prior over model parame-
ters. To evaluate its effectiveness in modeling natural image
statistics, we apply the implicit MRF model to the Bayesian
solution of image denoising and the restoration of images
with damaged blocks of subband coefficients.
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Fig. 1. Top: Conditional histogram of adjacent pairs of
subband coefficients of a natural image in a multi-scale
oriented representation, with different spatial locations,
orientations or scales. Overlaid on the conditional den-
sities, as well as in the corresponding plots in the bottom
row as red solid curves, are the estimated means (in the
middle) and the range of one standard deviation. Bottom:
Linear model fittings of the conditional means and stan-
dard deviations as blue dashed curves.

2. Statistical Properties of Natural Images in
Multi-scale Oriented Representations

Over the past two decades, multi-scale oriented represen-
tations have been widely adopted in image processing and
computer vision, notable examples include wavelets [15],
ICA bases [1], curvelets [24] and steerable pyramids [23].
Under these representations, images are projected onto ba-
sis functions that are localized in space, frequency and local
orientations. One major advantage of the multi-scale ori-
ented representations over the pixel or frequency represen-
tations is that they are very effective to reveal non-Gaussian
statistical properties of natural images. For instance, the co-
efficients within one subband (i.e., the projections of an im-
age on the basis functions within the same range of spatial
frequencies and local orientations) tend to have heavy-tail
non-Gaussian marginal distributions [6]. More importantly,
there are strong higher-order statistical dependencies across
space, orientations and scales in the multi-scale oriented de-
compositions of natural images [26, 5].
These higher-order statistical dependencies can be more

clearly illustrated if we examine the conditional distribu-
tions of two coefficients, (x1, x2), that are adjacent in spa-
tial locations, orientations or scales, as shown in the top
row of Fig.11. Specifically, the first column is for the co-
efficient pairs from the same subband with spatial separa-
tion of two samples. The second column corresponds to

1The results are obtained using the steerable pyramid [23] as image
representation. Similar observations have also been reported under other
decompositions [11, 9, 5].

two coefficients of the same spatial location and scale but
with a difference in orientation of π/8. The third column
corresponds to two coefficients of the same spatial location
and orientation but from two adjacent scales. Each vertical
slice of the images in the top row represents the conditional
density p(x1|x2) for a particular value of x2, and the bright-
ness in the images are proportional to probability. For better
visualization effects, each vertical slice is normalized inde-
pendently to fill the full range of intensities. Overlaid on the
conditional densities, as well as in the corresponding plots
in the bottom row of Fig.1 as red solid curves, are the esti-
mated means (in the middle) and the ranges of one standard
deviation for p(x1|x2). These conditional histograms have
shapes similar to a “bow-tie” [5], implying that x1 and x2

are dependent - otherwise the conditional densities should
be the same across different x2. Furthermore, such depen-
dencies are non-Gaussian, as both the conditional means
and the conditional standard deviations vary, in contrast to
the Gaussian case where the conditional standard deviations
should be a constant.
The dependencies between x1 and x2 can be quanti-

fied by fitting linear models to the mean and variance of
p(x1|x2) using values of x2 and x2

2, as E(x1|x2) ≈ ax2,
and var(x1|x2) ≈ b + cx2

2, where a, b and c can be es-
timated from data. As shown in the bottom row of Fig.1
with blue dashed curves, these linear models provide very
good fittings to the observed conditional means and vari-
ances. Note that the dependencies in the conditional means
may be removed by a linear whitening transform or with a
de-correlated representation (e.g., the orthogonal wavelets),
where the conditional means are reduced to zero. On the
other hand, no simple linear transform can remove the
higher-order non-Gaussian dependencies as presented in the
conditional standard deviations [14].

3. Implicit MRF Model for Natural Images in
Multi-scale Oriented Representations

The higher-order statistical dependencies as shown in
Fig.1 also hold for blocks of subband coefficients at adja-
cent locations, orientations and scales, where the mean of
one coefficient given a set of neighboring coefficients is ap-
proximately a linear combination of the neighboring coeffi-
cients, and its conditional variance is a linear combination
of the squared neighboring coefficients plus a constant [5].
We would like to construct a Markov random field (MRF)
model over all subband coefficients that can capture these
properties of natural images, where one coefficient is inde-
pendent of the rest of the decomposition given its neighbors
in a generalized neighborhood of adjacent coefficients in
space, orientation and scale (known as the Markov blanket,
and denoted as N (i)) as: p(xi|xj,j �=i) = p(xi|xj,j∈N (i)).
These Markov blankets correspond to cliques in the equiv-
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alent graph structure of the MRF. Most MRF-based image
statistical models [10, 12, 28, 8, 21] were constructed with
specifications of clique potentials, as they are equivalent to
the joint density of the MRF according to the Hamersley-
Clifford theorem [27]. Here, on the other hand, the statisti-
cal properties of natural images in the multi-scale oriented
representations are given in terms of conditional statistics,
it may be easier to find singleton conditional densities,
p(xi|xj,j∈N (i)), that satisfy these constraints. According
to the Brook’s Lemma [27], if we can specify all such sin-
gleton conditional densities for each coefficient xi, they can
uniquely determine the joint density of the MRF.
For the sake of subsequent description, let us denote

μi = E(xi|xj,j∈N (i)) and σ2
i = var(xi|xj,j∈N (i)) as the

conditional mean and variance of a coefficient xi given its
generalized neighborhood, respectively. The observations
on natural images suggest that μi and σ2

i have a linear rela-
tion with the value of the neighbors, as:

μi =
∑

j∈N(i)

ajxj and σ2
i = b +

∑
j∈N(i)

cjx
2
j . (1)

Note that Eq.(1) only specifies the mean and variance of
conditional density p(xi|xj,j∈N(i)), and there are many
density functions that can have the same first and second
order-statistics. To obtain a unique solution, we employ the
maximum entropy principle [7] . which advocates density
p(xi|xj,j∈N(i)) that has the maximum differential entropy
while satisfying Eq.(1). The maximum entropic density has
the intuitive interpretation that besides Eq.(1) it has no other
hidden assumptions about data. With constraints on the
mean and the variance, the maximum entropic density is
a Gaussian with the given mean and variance [7], which, in
this case, yields:

p(xi|xj,j∈N (i)) =
1√

2πσ2
i

exp
(
− (xi − μi)2

2σ2
i

)
. (2)

A complete set of singleton conditional densities can be
specified by repeating this for every coefficient xi, which
in turn determine a joint MRF model. Note that though this
MRF has Gaussian singleton conditional densities, it is not
jointly Gaussian, due to the dependencies of the conditional
variances on the neighboring coefficient magnitudes.

3.1. Learning

To use the implicit MRF model, we need to determine
the model structure (i.e., the formation of the Markov blan-
ket) and the model parameters. To reduce the number of
parameters, we assume that the implicit MRF model has
homogeneous model structure and parameters, i.e., a fixed
set of parameters, {ai, b, ci}, and the same Markov blanket
structure, independent of the spatial location.

Given the model structure, the model parameters,
{ai, b, ci}, are typically learned with maximum likelihood.
Unfortunately, two reasons make direct maximum likeli-
hood learning for the implicit MRF model very challeng-
ing. First, it requires the computation of the normalizing
partition function in the joint density, which, for high di-
mensional data, is usually very hard. More important, the
proposed implicit MRF model is defined with the ensem-
ble of all singleton conditional densities. To form the joint
density required in maximum likelihood learning, we may
have to integrate in high-dimensional space, which makes
the optimization even harder. For these reasons, in this
work, we adopt maximum pseudo-likelihood (MPL) learn-
ing [2], which maximizes the product of all singleton con-
ditional densities as: maxθ

∏
i p(xi|xj,j �=i; θ), or equiva-

lently
∑

i log p(xi|xj,j∈N(i); θ), with regards to θ, where
θ = (�a, b,�c) combines all model parameters, and �a and �c
contain the linear weights in Eq.(1) of a given order, respec-
tively. It has been shown that under some mild conditions
MPL can achieve unbiased estimation of the true model pa-
rameters [27]. For the implicit MRF model, using Eq. (2),
the MPL objective function is:

∑
i

[
log σ2

i +
(xi − μi)2

σ2
i

]

=
∑

i

⎡
⎣log(b +

∑
j∈N(i)

cjx
2
j) +

(xi −
∑

j∈N(i) ajxj)2

b +
∑

j∈N(i) cjx2
j

⎤
⎦(3)

with constraint b+
∑

j∈N(i) cjx
2
j > 0. It can be shown that

the objective function given in Eq.(3) and its constraints are
quasi-concave, which can be solved efficiently with convex
programmingwith a guarantee for the global optimum [20].
The model structure is determined by augmenting the

parameter learning procedure with a penalty on neighbor-
ing coefficients whose contribution to the overall objective
function, Eq.(3), is small. Specifically, we start with an
over-estimation of the neighborhood Ñ(i), then an objec-
tive function formed by Eq.(3) with a penalty term on the
“sparseness” of the model parameters, as:

argmin
�a,b,�c

∑
i

[
log σ2

i +
(xi − μi)2

σ2
i

]
+ ηa|�a|+ ηc|�c| (4)

with the same constraint. | · | stands for l1 vector norm,
and ηa and ηc are meta-parameters controlling the penalties
on non-sparseness of parameter �a and �c, respectively. This
augmented objective function is still quasi-concave and thus
can be solved with convex programming methods. With
the optimal solution, we discard values in vector �a and �c
that are smaller than pre-given thresholds εa and εc, and the
neighborhood is formed as N(i) = {j|(j ∈ Ñ(i)) ∧ (�aj >
εa) ∧ (�cj > εc)}. With N(i) fixed, the model parameters
are estimated by optimizing Eq.(3).
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clean noisy (σ = 20) GSM[17] (28.37dB) ICM-MAP (28.68dB)
Fig. 2. Image denoising results using GSM model based method [17] and the ICM-MAP method described in this paper for noise
level σ = 20. See texts for more detail.

4. ICM-MAP Image Denoising

In this section we describe an iterative Bayesian im-
age denoising algorithm based on the learned implicit MRF
model for natural images in multi-scale oriented represen-
tations. The observed image is assumed to be corrupted
with i.i.d Gaussian noise of zero mean and known variance
. We first transform the noise-corrupted image into a multi-
scale oriented domain, where the optimal estimation of the
“clean” image is estimated in a Bayesian inference frame-
work, using the implicit MRF model learned from a set of
natural images as prior. Denote �x, �w and �y as the “clean”
image, the additive Gaussian noise, and the noisy image in
the multi-scale oriented representation, respectively. As the
transform from pixels to the multi-scale oriented represen-
tation is linear, we have �y = �x + �w. However, in a corre-
lated or over-complete representation, white Gaussian noise
in the pixel domain will become correlated. Therefore �w, or
the conditional density of �y given �x is given as,

p(�y|�x) =
1√

2π|Cw|
exp

(
−1

2
(�y − �x)T C−1

w (�y − �x)
)

,

(5)
with Cw being the covariance matrix that obtained from the
linear transform of the multi-scale oriented representation.
The denoising procedure is performed as a Bayesian infer-
ence of �x from �y. The restored image is obtained by invert-
ing the linear transform from the multi-scale oriented do-
main back to the pixel domain. The performance of denois-
ing results is evaluated with the peak-signal-to-noise-ratio
(PSNR), defined as 20 log10(255/σe), with σe the standard
deviation (computed by averaging over spatial position) of
the difference between the restored image and the original
image.
To use the implicit MRF model for denoising, the in-

ference of �x given �y is formulated as finding the max-
imum a posterior (MAP) solution, as argmax�x p(�x|�y) =
argmax�x p(�y|�x)p(�x) = argmax�x log p(�y|�x) + log p(�x). Di-
rectly optimizing the MAP objective function using gradi-
ent based methods may be very difficult, due to the high
dimensionality and the need of a joint density for �x. In-

stead, taking advantage of the singleton conditional densi-
ties in the implicit MRF model, we use iterative conditional
mode (ICM) [3], which iteratively optimizes each xi in the
MAP objective function, while fixing the current values of
the remaining xj,j �=i, as:

- Start with an initial value for �x(0), and set t = 1.
- Repeat until convergence

- Repeat for all i
- Compute the current estimation for xi, as

x
(t)
i = argmaxxi

log p(x(t)
1 , · · · , x(t)

i−1, xi,

x
(t−1)
i+1 , · · · , x(t−1)

d |�y).
- t← t + 1.

The ICM algorithm is guaranteed to converge to a local
maximum of the MAP objective function [3]. Each step up-
dating xi reduces to a one-dimensional optimization prob-
lem that can be solved easily. Specifically, we have

argmax
xi

log p(�y|�x) + log p(�x)

= argmax
xi

log p(�y|�x) + log p(x1, · · · , xi−1, xi, xi+1, · · · , xn)

= argmax
xi

log p(�y|�x) + log p(xi|xj,j∈N(i)) + log p(xj,j∈N(i)).

We can drop log p(xj,j∈N(i)) in the last step of the
above equation as it is a constant with regards to
xi. Also, note that we use the Markovian property
to substitute log p(xi|x1, · · · , xi−1, xi+1, · · · , xn) with
log p(xi|xj,j∈N(i)). With Eq.(5) and Eq.(2), dropping con-
stant terms with regards to xi, and denotingwij = (C−1

w )ij ,
and σ2

w = 1
wii
, optimizing log p(�y|�x) + log p(xi|xj,j∈N(i))

with regards to xi is equivalent to finding

argmin
xi

∑
i�=j

wij(xi−yi)(xj−yj)+
(xi − yi)2

2σ2
w

+
(xi − μi)2

2σ2
i

.

Now taking the derivative of the above functionwith regards
to xi and setting the result to zero yield

xi =
σ2

wσ2
i

σ2
w + σ2

i

⎛
⎝ yi

σ2
w

+
μi

σ2
i

−
∑
i�=j

wij(xj − yj)

⎞
⎠

.

(6)
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A special case of this algorithm, when a de-correlatedmulti-
scale oriented representation such as orthogonal wavelet is
used where μi = 0 and wij = 0, Eq.(6) reduces to a clas-
sical Wiener filtering in removing Gaussian noise from a

Gaussian source, as: xi = σ2
i

σ2
w+σ2

i
yi. However, subsequent

changes to the values of other coefficients update the es-
timation of conditional variances of xi. Thus the iterative
ICM-MAP denoising algorithm can be interpreted as alter-
nating between estimation of local signal variance σ2

i using
Eq. (1) and removing noise based on the estimated variance
and a local conditional Gaussian image model, Eq.(2). A
similar two-step denoising method was described in [13],
though there the algorithm was described in the pixel do-
main, with two important differences: (1) there is no ex-
plicit statistical model to relate with image statistics and (2)
the algorithm runs with only one iteration.

4.1. Experiment

We evaluate the performance of the ICM-MAP de-
noising method based on the implicit MRF model with
20 grayscale images converted from the Berkeley image
database [16]. Noisy images were generated by adding
i.i.d. Gaussian noise with zero mean and standard devia-
tion of σ = 10, 20, 50. As it has been shown that over-
complete representation is particular effective for removing
noise [19], we chose the steerable pyramid [23] with 8 ori-
entations and 4 scales as the multi-scale oriented image rep-
resentation. The resulting decomposition of an image is ap-
proximately 11 times over-complete relative to the original
image size.
The implicit MRF model for “clean” images in the over-

complete steerable pyramid domain is then learned in an
off-line manner with another set of 20 images from the
Berkeley image database. Specifically, we ran the learning
algorithm as described in Section 3.1 on the steerable pyra-
mid decomposition of the training images to find the opti-
mal Markovian neighborhood and model parameters. The
initial Markovian neighborhood for a subband coefficient
for model structure learning was chosen as:

- spatial neighbors in the 5 × 5 surrounding block in the
same subband,
- 5 × 5 blocks of the corresponding spatial locations from
the two adjacent orientation subbands,
- 5 × 5 blocks of the corresponding spatial locations from
the subband of one scale higher.

As the statistical properties described in Eq.(1) apply only
to the band-pass subband coefficients, in this work, we treat
the coefficients in the residual low-pass subband as con-
stants. As the additive Gaussian noise has very low en-
ergy in the low-pass frequency range, this should not sig-
nificantly affect the denoising performance. Fig.3 illus-
trated the initial neighborhood setting, as well as the result

subband of xiprevious orientation next orientation

upper scale

xi

Fig. 3. Initial (blank) and refined (filled) neighborhood
structure for the implicit MRF image model for one sub-
band coefficient xi.

of structure learning (in shade). With the model structure
found, the MPL parameter learning was used to find the op-
timal model parameters. In our experiments, the off-line
learning ran on average about two hours to complete, using
MATLAB based convex programming package CVX2.
Table 1 shows the denoising results averaged over the 20

testing images, and compared with the wiener2 function
in MATLAB, which implements the algorithm in [13], as
well as a state-of-the-art denoising method based on a GSM
model for blocks of steerable pyramid coefficients [17]. The
results in Table 1 suggest that the proposed ICM-MAP de-
noising method based on the implicit MRF model achieved
better performances measured with PSNR. Fig.2 shows the
denoising results of a region of one testing image. As the
implicit MRF model is able to capture the local statistical
dependencies and propagates such dependencies properly to
the extend of whole image, the ICM-MAP denoised image
tends to have smoother contours and less noise residuals.

5. Restoration of Corrupted Subband

In this section, the implicit MRF model is applied to re-
store images corrupted by random missing blocks of sub-
band coefficients. This is a practical problem in image
transmission. Encoding image in the multi-scale oriented
domain (e.g., wavelet) has many advantages over the DCT
based JPEG compression [18]. However, when the com-
pressed image subbands are transmitted, they are suscepti-
ble to the transmission errors, which usually cause corrup-
tion or missing of small blocks of adjacent coefficients. To
recover the original image, we need estimate the missing
coefficients based on the intact ones.
We denote the missing coefficient blocks as C, and

the intact coefficients adjacent to C as ∂C. We assume
that coefficients in C are conditionally independent from
the rest of the image given the coefficients in ∂C, i.e.,
∀i ∈ C, N(i) ⊂ C⋃

∂C . As in denoising, we could
use the MAP criterion to find the missing coefficients, as:
argmax{xi,i∈C} log p({xi, i ∈ C}|{xj , j ∈ ∂C}), and use

2CVX is available at http://www.stanford.edu/̃boyd/cvx/index.html.
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(a) (b) (c) (d)
Fig. 4. Restoration of corrupted subband. (a) Original image. (b) Reconstructed Image with missing blocks of coefficients
being replaced with zeros. (c) Reconstructed image using recursive linear regression as in [18]. (d) Reconstructed image using
estimations of the missing subband coefficient by optimizing Eq.(7).

methods σ = 10 σ = 20 σ = 50
MATLAB wiener2 29.08 28.44 22.15
GSM [17] 34.21 32.07 27.43
ICM-MAP 34.86 32.48 28.03

Table 1. Average denoising performance measured with
PSNR (dB) of different methods on the testing images
used in this paper.

ICM to iteratively find a solution. However, in this case, this
process reduces to updating the conditional mean of each
singleton conditional density. As they are linear combina-
tions of the neighboring coefficients, Eq.(1), this is equiv-
alent to a recursive linear regression of the missing coef-
ficient using its neighbors [18]. One problem is that no
consideration is given to the uncertainties in the conditional
variances.
For this reason, we use an alternative objective function,

which is used in the MPL learning of model parameters,
where xi, i ∈ C are optimized with the model parameter
being fixed, as:

argmax
xi,i∈C

∑
i∈C

⎡
⎣log(b +

∑
j∈N(i)

cjx
2
j ) +

(xi −
∑

j∈N(i) ajxj)2

b +
∑

j∈N(i) cjx2
j

⎤
⎦ .

(7)
The neighboring coefficients of xi are split into two non-
intersecting groups, one using the set of other missing coef-
ficients, xj , j ∈ N(i)

⋂ C, and the other using uncorrupted
coefficients xj , j ∈ N(i)

⋂
∂C. The optimal solution can

be found similar to the ICM-MAP denoising method by an
iterative optimization of xi with current estimates of other
coefficients in C.
To evaluate the performance of the proposed method,

we simulate the corruption of subband coefficients due to
transmission error as missing of random blocks of coeffi-
cients. The multi-scale oriented representation is steerable
pyramid, where the implicit MRF model is learned using
algorithms in Section 4.1. The fraction of missing coeffi-
cients in the overall subband coefficients was controlled to
be 10%, 20% and 40%. We use bordering region ∂C as 3×3

methods 5% 10% 20%
zero padding 27.45 25.98 20.23
iterative linear regression 30.11 27.42 22.76
using Eq.(7) 32.39 30.01 26.27

Table 2. Average performance measured with PSNR (dB)
of restoration of images with missing subband coefficients
of different fractions.

extensions of the region corresponding to C. Shown in Table
2 are the restoration performance for different percentage of
missing coefficients evaluated with PSNR. For comparison,
we compared the result of a simple zero-padding (i.e., re-
placed the missing coefficients with zeros), the iterative lin-
ear regression as in [18], and the proposed algorithm. Fig. 4
shows an example of the results of the restoration algorithm.
It can be seen that the proposed MPL restoration restores
better structures in the subband compared to the recursive
linear regression.

6. Discussion and Future Work

In this paper, we described an implicit Markov random
field model for natural images in the multi-scale oriented
domain. Unlike many MRF-based image statistical mod-
els, this MRF model is constructed by the specification of
all singleton conditional densities, which are the maximum
entropic densities satisfying the empirically observed sta-
tistical dependencies of natural images. We give efficient
procedures to learn the model parameters and structure, and
show simple algorithms of image denoising and restoration
of corrupted subband coefficients based on this model.
There are several directions that we would like to further

extend this work. First, we are working on obtaining the
joint density from the singleton conditionals, with which, it
is easier to establish relations of the implicit MRF model to
existing models. Second, we have focused on local statisti-
cal characteristics of natural images to construct the global
MRF model. However, recent works [4] have shown that
natural images also have non-local statistical dependencies,
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i.e., similar structures tend to appear at different and usually
not adjacent locations (e.g., textures). We are thus inter-
ested in finding models that can account for local as well as
non-local image statistics. Finally, we are also working on
applications of the proposed implicit MRF image models to
other vision and image processing problems, e.g., compres-
sion and super-resolution.

References

[1] A. J. Bell and T. J. Sejnowski. The ’independent compo-
nents’ of natural scenes are edge filters. Vision Research,
37(23):3327–3338, 1997.

[2] J. Besag. Spatial interaction and the statistical analysis of
lattice systems (with discussion). Journal of the Royal Sta-
tistical Society, Series B, 36(2):192–225, 1974.

[3] J. Besag. On the statistical analysis of dirty pictures. Journal
of the Royal Statistical Society, Series B, 48:259–302, 1986.

[4] A. Buades, B. Coll, and J. Morel. A non local algorithm
for image denoising. In IEEE Int. Conf. on Computer Vision
and Pattern Recognition (CVPR 2005) .vol. 2, San Diego,
CA, 2005.

[5] R. W. Buccigrossi and E. P. Simoncelli. Image compression
via joint statistical characterization in the wavelet domain.
IEEE Transactions on Image Processing, 8(12):1688–1701,
1999.

[6] P. Burt and E. Adelson. The Laplacian pyramid as a com-
pact image code. IEEE Transactions on Communication,
31(4):532–540, 1981.

[7] T. Cover and J. Thomas. Elements of Information Theory.
Wiley-Interscience, 2nd edition, 2006.

[8] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael. Learn-
ing low-level vision. International Journal of Computer Vi-
sion, 40(1):25–47, 2000.

[9] P. Gehler and M. Welling. Products of “edge-perts”. In
Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in
Neural Information Processing Systems (NIPS), pages 419–
426. MIT Press, Cambridge, MA, 2006.

[10] S. Geman and D. Geman. Stochastic relaxation, gibbs dis-
tributions, and the bayesian restoration of images. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
6:721–741, 1984.

[11] J. Huang and D. Mumford. Statistics of natural images and
models. In Proc. IEEE Conf. Computer Vision and Pattern
Recognition, volume 1, pages 541–547, 1999.

[12] F. Jeng and J. Woods. Compound gauss-markov random
fields for image estimation. IEEE Transaction on Signal Pro-
cessing, 39(3):683–697, 1991.

[13] J. S. Lee. Digital image enhancement and noise ltering dig-
ital image enhancement and noise filtering by use of local
statistics. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2:165–168, March 1980.

[14] S. Lyu and E. P. Simoncelli. Reducing statistical depen-
dencies in natural signals using radial Gaussianization. In
Adv. Neural Information Processing Systems 21, volume 21,
Cambridge, MA, May 2009. MIT Press.

[15] S. G. Mallat. A theory for multiresolution signal decom-
position: The wavelet representation. IEEE Transactions on
Pattern Analysis andMachine Intelligence, 11:674–693, July
1989.

[16] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecologi-
cal statistics. In Proc. 8th Int’l Conf. Computer Vision, vol-
ume 2, pages 416–423, July 2001.

[17] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simon-
celli. Image denoising using a scale mixture of Gaussians
in the wavelet domain. IEEE Trans Image Processing,
12(11):1338–1351, November 2003.

[18] F. A. Pujol, H. Mora, J. L. Sánchez, and A. Jimeno. Ezw-
based image compression with omission and restoration of
wavelet subbands. In Progress in Pattern Recognition, Im-
age Analysis and Applications, Lecture Notes in Computer
Science, pages 134–141. Springer Berlin / Heidelberg, 2008.

[19] M. Raphan and E. P. Simoncelli. Optimal denoising in re-
dundant bases. In Proc 14th IEEE Int’l Conf on Image Proc,
San Antonio, TX, September 2007. IEEE Computer Society.

[20] R. T. Rockefeller. Convex Analysis. Princeton Univ. Press,
Princeton, NJ, 1970.

[21] S. Roth and M. Black. Fields of experts: A framework for
learning image priors. In IEEE Conference on Computer Vi-
sion and Patten Recognition (CVPR), volume 2, pages 860–
867, 2005.

[22] E. P. Simoncelli and E. H. Adelson. Noise removal via
Bayesian wavelet coring. In Proc 3rd IEEE Int’l Conf on
Image Proc, volume I, pages 379–382, Lausanne, Septem-
ber 16-19 1996. IEEE Sig Proc Society.

[23] E. P. Simoncelli and W. T. Freeman. The steerable pyra-
mid: A flexible architecture for multi-scale derivative com-
putation. In IEEE Int’l. Conf. on Image Proc., volume 3,
pages 444–447, 1995.

[24] J.-L. Starck, E. J. Candes, and D. L. Donoho. The curvelet
transform for image denoising. Image Processing, IEEE
Transactions on, 11(6):670–684, 2002.

[25] Y. Teh, M. Welling, and S. Osindero. Energy-based models
for sparse overcomplete representations. Journal of Machine
Learning Research, 4:1235–1260, 2003.

[26] B. Wegmann and C. Zetzsche. Statistical dependence be-
tween orientation filter outputs used in an human vision
based image code. In Proc Visual Comm. and Image Pro-
cessing, volume 1360, pages 909–922, Lausanne, Switzer-
land, 1990.

[27] P. Winkler. Image Analysis, Random Fields And Markov
Chain Monte Carlo Methods. Springer, 2nd edition, 2003.

[28] S. C. Zhu, Y. N. Wu, and D. Mumford. Minimax entropy
principle and its application to texture modeling. In Neural
Computation, volume 9, pages 1627–1660, 1997.

1925


