
Real-Time Learning of Accurate Patch Rectification

Stefan Hinterstoisser1, Oliver Kutter1, Nassir Navab1, Pascal Fua2, Vincent Lepetit2

1Department of Computer Science, Technical University of Munich (TUM)
Boltzmannstrasse 3, 85748 Garching, Germany

2École Polytechnique Fédérale de Lausanne (EPFL), Computer Vision Laboratory
CH-1015 Lausanne, Switzerland

{hinterst,kutter,navab}@in.tum.de, {vincent.lepetit}@epfl.ch

Abstract

Recent work [5, 6] showed that learning-based patch
rectification methods are both faster and more reliable than
affine region methods. Unfortunately, their performance im-
provements are founded in a computationally expensive of-
fline learning stage, which is not possible for applications
such as SLAM. In this paper we propose an approach whose
training stage is fast enough to be performed at run-time
without the loss of accuracy or robustness. To this end,
we developed a very fast method to compute the mean ap-
pearances of the feature points over sets of small variations
that span the range of possible camera viewpoints. Then,
by simply matching incoming feature points against these
mean appearances, we get a coarse estimate of the view-
point that is refined afterwards. Because there is no need to
compute descriptors for the input image, the method is very
fast at run-time. We demonstrate our approach on tracking-
by-detection for SLAM, real-time object detection and pose
estimation applications.

1. Introduction

The recent years have seen the development of affine re-
gion detectors [9]. Coupled with a region descriptor such
as SIFT [8], they proved to be very useful for many types
of applications. More recently, an approach based on learn-
ing instead of ad hoc detectors was developed by Hinter-
stoisser et al. [6, 5]. This approach appears to be more
reliable and much faster, but relies on an extensive train-
ing stage. That makes it unqualified for applications such
as relocalisation in Simultaneous Localization and Mapping
(SLAM), which requires on-the-fly integration of new fea-
ture points as they become visible.

In this paper, we propose an approach that removes this
limitation. It also relies on training and has the same perfor-
mances at run-time than [5], but training it for new points

is much faster and can be done in real-time. As Fig. 1
shows, it is very useful for SLAM applications in poorly
textured environments. Given a frontal view such as the
one of Fig. 1(a) of a locally planar part of the scene and the
camera internal parameters, we can estimate the six degrees
of the camera in the next frames (Fig. 1(b-d)) in real-time,
despite the near complete absence of feature points. Since
the patches are detected and their poses estimated in ev-
ery frame independently, the method is very robust to fast
motion and occlusion. If frontal views are not available or
can not be identified, we retrieve a displacement relative to
some reference frame, which can be useful for 3D detection
and recognition of low-textured objects, such as the ones
in Fig. 1(e,f). Another possible application illustrated by
Fig. 1(g,h) is the registration of deformable surfaces.

The approach of [6, 5] is made of two steps. The first
step matches an incoming feature point against a database
of feature points. It retrieves the “identity” of the point, i.e.
the feature point in the database it corresponds to, as well
as a coarse estimation of its pose, defined as the homogra-
phy between a reference patch and the patch centered on
the point. The second step refines the pose using the inverse
compositional algorithm [1] and linear regressors [7]. For
the first step, [6] uses the Ferns classifier [11] while [5] re-
lies on linear classifiers. Both methods require a significant
amount of time for training.

We keep here this two steps approach, but our main con-
tribution makes the training of the first step much faster.
We use an approach closely related to geometric blur [4]
to recognize and estimate the pose of the feature points.
Each point is characterized by a set of mean patches, where
each mean is computed by warping the patch centered on
the point over a small range of poses. We used this ap-
proach because it allows us to retrieve quickly and reliably
the incoming point identities and poses, but also because
we developed a method to very quickly compute the mean
patches. While the geometric blur approach uses spatially

1
2945978-1-4244-3991-1/09/$25.00 ©2009 IEEE

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Real-Time Learning of Accurate Patch Rectification. Our method learns new feature points and how to estimate their perspective
orientation on-the-fly. As a result, it is a very useful tool for applications such as SLAM relocalisation in poorly textured environments, and
detection of of poorly textured objects or deformable objects. In the images (a)-(h) we see rectified patches with coordinate axes attached
to them which reflect the retrieved poses.

variant Gaussian kernels and is too slow for our purpose, we
use a method based on the linearity of the warping function
and the principal components decomposition of the origi-
nal patch. Computing a mean patch then only requires the
computation of a linear combination of precomputed vec-
tors. Another difference to geometric blur [4] is that we
directly match the original patches of the incoming points
against the mean patches stored in the database. We found
it to give good results, and has the advantage of not requir-
ing the computation of the mean patches for the incoming
points. For this reason, we call the set of means for a given
point a one-way descriptor.

Our second step is similar to the one in [6] and [5] but we
show that the precomputation of the sample points for each
training sample makes real-time computation of the linear
regressors possible.

In the remainder of the paper we start by discussing re-
lated work before we explain the design of the one-way
descriptor. We show how an appearance independent of-
fline training stage helps the real-time composition of an
appearance dependent descriptor and compare it to existing
rectification methods on synthetic data. Finally, we show
real world applications of the method including tracking-
by-detection for SLAM applications, real-time object de-
tection and pose estimation applications.

2. Related Work
Affine region detectors are very attractive for many ap-

plications since they allow getting rid of most of the image
warpings due to perspective transformations. Many differ-
ent approaches have been proposed and [9] showed that the
Hessian-Affine detector of Mikolajczyk and Schmid and the

MSER detector of Matas et al. are the most reliable ones. In
the case of the Hessian-Affine detector, the retrieved affine
transformation is based on the image second-moment ma-
trix. It normalizes the region up to a rotation, which can
then be estimated based on the dominant gradient orienta-
tion of the corrected patch. This implies using an ad hoc
method, such as considering the peaks of the histogram of
gradient orientations over the patch as in SIFT [8]. How-
ever, applying this heuristics on a warped patch tends to
make the retrieved pose relatively unstable. In the case of
the MSER detector, many different approaches exploiting
the region shape are also possible [10], and a common ap-
proach is to compute the transformation from the region
covariance matrix and solve for the remaining degree of
freedom using local maximums of curvature and bitangents.
After this normalization, SIFT descriptors are computed in
order to match the regions.

The method proposed in [6] performs the other way
around, in two steps. During the first step, the patch iden-
tity and a coarse pose are retrieved using a method close
to [11]. During the second step, a linear predictor is ap-
plied to estimate a fine perspective transformation. In con-
trast, [5] proposes to simultaneously retrieve the pose and
the identity by first assuming a feature point identity, then
retrieving and refining a coarse pose estimate using linear
predictors and finally confirming the identity and the com-
puted pose if the similarity between the rectified patch and
the predicted one is close enough. These approaches are
robust and retrieve a very accurate pose, however in both
cases the first step requires time consuming training. In this
paper we follow a similar general approach as [5], however
the first step we propose requires almost no time for train-

2946

ing, making possible the integration of new feature points
in real-time.

3. Proposed Approach
Given an image patch at run-time, we want to match it

against a database of possible patches defined around fea-
ture points and accurately estimate its pose represented by
a homography. Contrary to [5, 6], we do not want to learn
the patches in a long computational expensive offline train-
ing phase, but online and in real-time without loosing the
ability to accurately estimate the pose of the patches under
large viewpoint changes.

We show in the following how to get very quickly a
coarse estimate of the pose of assumed keypoints at run-
time without relying on a heavy training stage. The re-
finement of the keypoint pose is performed very similarly
to [5, 6] with linear predictors but we use a simple trick to
speed up the predictors training. We also describe this sec-
ond step for the sake of completeness.

3.1. A One-Way Descriptor

As depicted by Fig. 2, our starting idea to estimate the
identity and pose of a feature point is to first build a set
of mean patches from different reference views of the fea-
ture point. Then, by matching the incoming feature points
against these mean patches, we get a coarse estimate of the
pose with respect to the assumed identity. Computing a sin-
gle mean patch over the full range of poses would result
in a blurred irrelevant patch, but because we compute the
means over only a small range of poses, they are meaning-
ful and allow for reliable recognition. Another advantage
that comes for free is that the means are robust to image
noise and blur. Using the mean patches instead of using the
simply blured versions of the original warped patches sub-
stantially improves the matching as we show in Fig. 2(c).

As we will show below, this approach has the same per-
formance in terms of speed and accuracy as the linear classi-
fiers of [5]. Its main advantage is the much shorter training
stage it requires. However, this reduction is made possible
only thanks to a technique based on the Principal Compo-
nent Analysis of the patches as we describe in this section.

Compared to more standard approaches [9], we do not
have to extract an estimate of the feature point pose such
as an affine region, nor compute a descriptor for the incom-
ing points, and that makes the approach faster and easier
to implement. The set of means that characterizes a fea-
ture point in the database can be seen as a descriptor, which
we call a “one-way descriptor” since it does not have to be
computed for the new points. Our approach increases the
number of vectors that have to be stored in the database,
but fortunately, efficient methods exist for nearest-neighbor
search in large databases of high-dimensional vectors [2].

ki

pi

h

pi,h

(a) (b)

(c)

Figure 2. Our one-way descriptor. (a) Our descriptor for a feature
point ki is made of a set of mean patches {pi,h}, each computed
for a small range of poses Hh from a reference patch pi centered
on the feature point ki. (b) Some other mean patches for the same
feature point. The examples shown here are full resolution patches
for visibility, in practice we use downscaled patches. (c) Comput-
ing a set of mean patches clearly outperforms simple blurring of a
set of warped patches.

More formally, given a feature point ki in a reference im-
age, we compute a set of mean patches {pi,h} where each
mean pi,h can be expressed as

pi,h =

∫
H∈Hh

w(pi, H)dH∫
H∈Hh

dH
(1)

• where H represents a pose, in our case a homography,

• pi is the patch centered on the feature point ki in the
reference image,

• w(pi, H) is the same patch but seen under pose H ,
and

• Hh is a range of poses, as represented in Figure 2. The
Hh’s are defined so that they cover small variations
around a fixed pose Hh but together they span the set
of possible poses

⋃
hHh.

In practice, the integrals in Eq. (1) are replaced by finite
sums and the expression of pi,h becomes

pi,h =
1
N

N∑
j=1

w(pi, Hh,j) (2)

2947

where the Hh,j are N poses sampled fromHh.
Once the means pi,h are computed, it is easy to match in-

coming feature points against the database, and get a coarse
pose. Given a patch p centered on such an incoming point
with assumed identity îd, its coarse pose indexed by ĥ is
obtained by looking for:

ĥ = argmin
i=îd,h

‖n(p)− n(pi,h)‖2 , (3)

with n(·) a normalizing function that subtracts the mean co-
ordinate and divides by the standard deviation of the vec-
tors. This function makes the matching robust to light
changes.

However, computing the pi,h using Eq.(2) is very inef-
ficient because it would require the generation of too many
samples w(pi, Hh,j). In practice, to reach decent results,
we had to use at least 300 samples. This takes 1.1 seconds
to generate 1, which was not acceptable for interactive ap-
plications. We show below that these means can actually
be computed very quickly, independently of the number of
samples used. We first decompose the reference patch pi

into its principal components:

pi ∝ v +
L∑

l=1

αlvl (4)

where v and the vi are respectively the mean and principal
components —computed offline— of a large set of image
patches centered on feature points and L is the dimension
of the principal components. The expression of pi,h from
Eq.(1) becomes

pi,h ∝
1
N

∑
j

w(v +
L∑

l=1

αlvl, Hj,h) . (5)

A crucial remark that will make our approach efficient is
that the warping function w(·, H) is a linear function, as
discussed in the following section.

3.2. Warping is a Linear Function

As illustrated by Fig. 3, we show in this section that the
warping function w(., H) is a linear function. This prop-
erty will be very useful to simplify Eq.(5) and speed up the
computation of the pi,hs.

If a simple intensity interpolation strategy is used when
warping, for example picking the intensity of the pixel clos-
est to the warped location, then the warping can be ex-
pressed by a simple permutation of the pixel intensities
between the original patch and the patch after warping.

1All times given in this paper were reached on a on a standard note-
book (Intel(R) Centrino Core(TM)2 Duo with 2.6GHz and 3GB RAM and
an NVIDIA quadro FX3600M with 512MB).

() ()=M

. . .

. . .

p w(p, H)

...
(b)

...
(c)

(a)

Figure 3. Warping is a linear function. (a) There is a linear trans-
formation M between the vector made of the intensities of a patch
p, and the vector made of the intensities of the same patch after
warping w(p, H). To be complete, for this property to be true,
we have to make sure that no new parts appear in w(p, H), and
we consider a large enough original patch p. (b) To experimen-
tally check this property, we took a large set of pairs of original
patches and their warped version under a given pose, and com-
puted the matrix M by regression. (c) By applying M to the in-
tensity vectors of new original patches, we retrieve the vectors for
their warped versions, which validates the hypothesis.

The permutation transformation itsself is a linear function.
When a more complex interpolation method is used, warp-
ing is not as simple as a permutation. However most of the
intensity interpolation functions, if not even all, are linear in
the pixel intensities, and the function w(., H) is therefore
still linear. Even if a more complex intensity interpolation
function is considered and w(., H) is not “exactly linear”,
the linear approximation is good enough for our purpose.

One issue remains. When warping the image to create a
new patch, new parts can sometimes appear in the generated
patch, compared to the original one, making the function
w(., H) nonlinear. To solve this issue, we can simply take
the original patch larger than the warped patch, and large
enough so that there are never parts in the generated patch
which were not present in the original patch. The function
w(., H) then becomes a permutation followed by a projec-
tion, and this composition remains a linear transformation.

To convince the reader of the linearity of the warping
function, we performed the following experiment, illus-
trated by Fig. 3. We first picked a transformation H , and
warped many random patches under this transformation.
This gave us a set of pairs of original patches and their
warped versions. We then computed by regression the ma-
trix that transforms the vectors made of the intensities of
the original patches into the vectors made of the intensi-
ties of the patches after warping. By applying this matrix
to the intensity vectors of new original patches, we retrieve
the vectors for their warped versions, which validates the
hypothesis.

2948

Figure 4. Comparison of correct identity and coarse pose estima-
tion percentage against viewpoint change on the Graffiti image
set, for different numbers of principal components. Using only
150 components over 14400 gives results comparable to the full
method but is more than 70 times faster.

3.3. An Efficient Way to Compute the Means

Since w(., H) is a linear function, Eq.(5) becomes

pi,h ∝
1
N

N∑
j=1

w(v +
L∑

l=1

αi,lvl, Hj,h) (6)

=
1
N

N∑
j=1

(
w(v, Hj,h) +

L∑
l=1

αi,lw(vl, Hj,h)

)
(7)

=
1
N

N∑
j=1

w(v, Hj,h) +
L∑

l=1

αi,l

N

N∑
j=1

w(vl, Hj,h)(8)

= vh +
L∑

l=1

αi,lvl,h (9)

where vh is the mean of the patches created by warping v
under poses from Hh. The vl,hs are similar but obtained
from the vls:

vl,h =
1
N

N∑
j=1

w(vl, Hj,h) . (10)

This implies that we can precompute the vl,hs during an of-
fline stage, and when we have to insert a new feature point
in the database at run-time, we simply have to project it into
the eigenspace to compute its αi,ls coefficients, and com-
pute its associated means as the linear combinations given
by Eq.(9).

Computing the means pi,h becomes therefore very fast,
and does not depend on the number of pose samples Hj,h.
In addition, we can limit the number of components to a
small value. In practice, as the graph of Fig. 4 shows, using

only 150 components and 575 means on 3 different scales
already gives reasonably good results. The computation
time is then 15 milliseconds for 12 × 12 patches includ-
ing the αis computation while using directly Eq.(2) takes
1.1 seconds. This should also be compared to the compu-
tation time for geometric blur. In [4], the authors claim a
computation time of “less of 1 second” for only one mean,
which makes our approach much faster. Using the GPU we
can reduce the processing time even further to only 5.5 mil-
liseconds 1.

3.4. Refinement Step

Once the coarse pose Hĥ is obtained for an incoming
point with assumed identity îd, we use the Inverse Com-
positional (IC) [1] algorithm together with the hyperplane
approximation of [7] to obtain a fine estimate of the pose.
This step is similar to what was done in [5, 6]. We describe
it quickly for completeness but more details can be found in
these papers. We obtain the corrective homography param-
eters x using the formula:

x = Aîd

(
n(w(p, H−1

ĥ
))− n(pîd)

)
, (11)

where Aîd is the matrix of a linear predictor that depends
on the patch identity îd, n(pîd) is the normalized vector of
the patch in the reference image, and n(w(p, H−1

ĥ
)) is a

normalized vector of the patch in the input image, rectified
using the coarse pose estimate, as done in the IC algorithm.

This method is very efficient and robust. The Ai matri-
ces are computed by regression from a set of couples made
of small random transformations Hs and the correspond-
ing warped patches w(pi, H

−1
s). The Ai matrices must be

computed at run-time, for each new feature point inserted
in the database. In practice, we precompute the transforma-
tionsHs and the warped pixel locations in order to compute
very quickly the w(pi, H

−1
s) patches. An ultimate refine-

ment is done using the ESM algorithm [3].
In practice, for one patch we train four matrices Ai

with different ranges of variation from coarse to fine, us-
ing downscaled patches of 13 × 13 = 169 pixels and 300
training samples. The whole process takes about 29 mil-
liseconds 1.

Finally, as it was done in [5, 6], we select the correct
match consisting of the retrieved pose and the feature point
identity based on the cross-correlation between the normal-
ized reference patch n(pi) and the normalized warped one
after refinement. Furthermore, we apply a threshold on the
correlation score to remove wrong matches or wrong pose
estimates. Thanks to the high accuracy of the retrieved
transformation, we can set this threshold quite high, and we
use a value of 0.9 in practice.

2949

Figure 5. Comparison of our approach with Leopar and Panter.
Note these methods have already been proved superior to affine re-
gion methods [6, 5]. Top graph: Correct identity and coarse pose
estimation percentage against viewpoint change on the Graffiti im-
age set. Our approach performs similarly to Panter and better than
Leopar (but learning is much faster). Bottom graph: Average er-
ror of patch corners locations in pixels, against viewpoint change.
Thanks to the ESM final refinement, Gepard performs even more
accurate than Leopar and Panter.

4. Experimental Results
We limited the comparison of our approach to the other

learning-based methods called Leopar and Panter because
these methods have already been proved superior to affine
region methods in the related papers [6, 5]. We did this com-
parison on many synthetically warped Graffiti images [9] to
obtain a statistically significant statement. Additionally to
the warping, we added random synthetic pixel noise and
affine illumination change. To compare the performance of
the different approaches without taking into account the per-
formance of the initial point detector, we used for each test
image the warped feature point location to which we added
a uniform noise in the range of [-5;+5] pixels. The results
are shown in the three graphs of Fig. 5 and Fig. 4. Our per-
formance measure for the graph in Fig. 4 and for the top

Leopar [6] 1.05 seconds1

Panter [5] 180 seconds
Gepard without PCA 1.1 seconds
Gepard with PCA (CPU) 15 miliseconds
Gepard with PCA (GPU) 5.5 miliseconds

Table 1. Average learning time for the first step for the different
approaches. Our approach is more than 70 times faster when the
CPU is used.

graph in Fig. 5 is the percentage of correctly matched and
rectified patches against the viewing angle. In the bottom
graph of Fig. 5 we show the average accuracy of the corners
of all detected patches in pixels. The top graph in Fig. 5
compares the results obtained with our approach, which we
call Gepard, and Leopar and Panter. Gepard performs sim-
ilarly to Panter [5] and better than Leopar [6]. Accuracy
was another advantage of Leopar and Panter compared to
affine regions detector since they retrieve very accurate full
perspective poses. As the bottom graph in Fig. 5 shows,
Gepard performs slightly better even with small number of
principal components, due to the final ESM refinement.

The advantage of Gepard against Leopar and Panter lies
in the learning time. As Table 1 shows, it is much faster than
Leopar and Panter. Moreover, the fast version, in which
only 150 principal components out of 14400 are used, is
more than 70 times faster while it performs only slightly
worse (see Fig. 4). When the GPU is used, learning time
drops to 5.5 milliseconds, which is largely fast enough for
frame rate learning. Learning the refinement stage can be
done in additional 29ms on the CPU.

Our current implementation runs at about 10 frames per
second using 10 keypoints in the database and 70 candi-
date keypoints in the input image, on a standard notebook
with an Intel Centrino Processor Core2Duo with 2.4GHz
and 3GB RAM. We do not use any special data structure for
nearest neighbor search and using for example KD-trees [2]
would speed it up. Due to the method robustness, one de-
tected patch is enough to detect the target object and to es-
timate its pose reliably. Some applications are shown in
Figs 6, 7, 8, and 9, respectively SLAM localisation, poorly
textured object detection, and deformable object detection.

5. Conclusion
We showed how to learn in real-time a method that

quickly, robustly and accurately estimates the pose of fea-
ture points. We demonstrated our approach on SLAM appli-
cations, low-textured object detection and deformable ob-
jects registration. However, many other applications could
benefit from it, such as object recognition, image retrieval
or robot localization.

Acknowledgment: This project was funded by the
BMBF project AVILUSplus (01IM08002).

2950

frame #0 frame #18 frame #61 frame #112

frame #165 frame #211 frame #231 frame #246

frame #261 frame #308 frame #333 frame #372

Figure 6. Tracking an outlet. We can retrieve the camera trajectory through the scene despite very limited texture and large
viewpoint changes. Since the patch is detected and its poses estimated in every frame independently, the method is very ro-
bust to fast motion and occlusion. The two graphs show the retrieved trajectory. The corresponding video is available on
http://campar.in.tum.de/Main/StefanHinterstoisser.

References

[1] S. Baker and I. Matthews. Lucas-kanade 20 years on: A
unifying framework. IJCV, 56:221–255, March 2004.

[2] J. Beis and D. Lowe. Shape Indexing using Approximate
Nearest-Neighbour Search in High-Dimensional Spaces. In
CVPR, 1997.

[3] S. Benhimane and E. Malis. Homography-based 2d visual
tracking and servoing. IJRR, 26(7):661–676, July 2007.

[4] A. Berg and J. Malik. Geometric blur for template matching.
In CVPR, 2002.

[5] S. Hinterstoisser, S. Benhimane, V. Lepetit, and N. Navab.
Simultaneous recognition and homography extraction of lo-
cal patches with a simple linear classifier. In BMVC, 2008.

[6] S. Hinterstoisser, S. Benhimane, N. Navab, P. Fua, and
V. Lepetit. Online learning of patch perspective rectification
for efficient object detection. In CVPR, 2008.

[7] F. Jurie and M. Dhome. Hyperplane approximation for tem-
plate matching. PAMI, 24(7):996–100, 2002.

[8] D. Lowe. Distinctive Image Features from Scale-Invariant
Keypoints. IJCV, 20(2):91–110, 2004.

[9] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,
J. Matas, F. Schaffalitzky, T. Kadir, and L. Van Gool. A com-
parison of affine region detectors. IJCV, 2005.

[10] Š. Obdržálek and J. Matas. Toward Category-Level Object
Recognition. J. Ponce, M. Herbert, C. Schmid, and A. Zis-
serman (Editors). Springer-Verlag, 2006.

[11] M. Ozuysal, P. Fua, and V. Lepetit. Fast Keypoint Recogni-
tion in Ten Lines of Code. In CVPR, June 2007.

2951

Figure 7. Application to tracking-by-detection of poorly textured objects under large viewing changes. The corresponding video is available
on http://campar.in.tum.de/Main/StefanHinterstoisser.

Figure 8. Application to a deformable object. We can retrieve an accurate pose even under large deformations. While it is
not done here, such cues would be very useful to constrain the 3D surface estimation. The corresponding video is available on
http://campar.in.tum.de/Main/StefanHinterstoisser.

Figure 9. Another example of SLAM relocalisation, using 8 different patches. The corresponding video is available on
http://campar.in.tum.de/Main/StefanHinterstoisser.

2952

