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Abstract

Ink-bleed interference is a serious problem that affects
the legibility of old documents. Ink-bleed can be reduced
using pixel classification based on user-supplied markup
that labels examples of ink-bleed, foreground-ink, and back-
ground. The main challenge is ensuring that the user’s
markup sufficiently captures the characteristics of the doc-
ument. This is particularly troublesome for old documents
that can exhibit significant change within the same page.

In this paper, we address this markup problem using a
“directed assistance” approach in which the user provides
a small amount of initial markup. The image is then clas-
sified and regions with low classification confidence are
grouped and displayed to the user for another round of
markup. The key idea is to direct the user to where markup
is needed. In addition, local markup can be weighted in the
classification algorithm to produce better results.

1. Introduction and Motivation
Ink-bleed in old handwritten documents is a serious

problem faced by archives and libraries. Documents suffer-
ing from ink-bleed can exhibit a wide range of visual char-
acteristics making it difficult to develop a universal model
for ink-bleed reduction. As a result, the vast majority of
existing ink-bleed reduction approaches make assumptions
that limit their application to specific cases (e.g. ink-bleed
is assumed to be lighter than foreground-ink).

In our previous work [5], we introduced a user-assisted
approach that avoids prior assumptions by having the user
label examples of ink-bleed, foreground-ink, and back-
ground on the input image. This training-data is used to
compute per-pixel data-costs for an MRF framework that
determines the ink-bleed interference. The only drawback
of this approach is if the user markup does not sufficiently
capture the characteristics of the entire document then the
results will be unsatisfactory. We refer to this style of inter-
active processing as a “try and see” approach, i.e. the user
tries an initial markup and then visually validates the result
to see if the markup was sufficient; if not, the user amends
the markup and tries again.

Figure 1. (Top): The user supplies a small amount of markup
to produce an initial classification that is not optimal. (Bottom):
Based on the initial classification, pixels classified with low confi-
dence are grouped (color coded) according to similar image char-
acteristics. This pixel grouping visually directs the user to where
more markup is potentially needed.

Our Contribution We introduce a directed assistance
approach for reducing ink-bleed. Our aim is to direct the
user to provide markup where it is needed. To do this, our
approach first collects an small amount of user markup and
classifies the image. Pixels classified with low-confidence
are grouped together into regions based on similar image
characteristics. The user can then provide more markup
in these segmented regions as needed for another round of
classification. This new directed markup should better rep-
resent the characteristics of the document and improve re-
sults. Figure 1 shows an example. The procedure can be
performed iteratively until a desired confidence is achieved.
Our directed assistance approach serves two purposes: 1) it
provides a convenient way for the user to supply additional
markup in potentially erroneous regions (i.e. low classifica-
tion confidence) and; 2) it allows the region-based markup
to be weighted to improve subsequent classification.
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The remainder of this paper is organized as follows: sec-
tion 2 discusses related work; section 3 and section 4 dis-
cuss the overall framework and directed assistance imple-
mentation; section 5 shows several results; section 6 con-
cludes our work.

2. Related Work
Related work pertaining to ink-bleed reduction and in-

teractive computer vision are discussed.
Ink-Bleed Reduction A great deal of work addressing
ink-bleed involves some from of local, global, or adaptive
thresholding (e.g. [8, 10, 3]). Other approaches perform
signal separation to extract the ink-bleed, foreground-ink,
and background from the RGB input (e.g. [12, 13]). Tan
et al. [11] and Wang et al. [14] enhanced the input image
first via selective sharpening and dampening in the wavelet
domain to help improve thresholding of ink-bleed pixels.
Work by Wolf [15] used a two-layer MRF to separate the
ink contribution from the front and back page using a sin-
gle image of the front. With the exception of [15] these
approaches all assume that ink-bleed is always lighter in
intensity than foreground-ink; an assumption that is not al-
ways valid (see Figure 1). In the case of [15], the ink-bleed
and foreground-ink characteristics are assumed to be simi-
lar over the whole document. This assumption is contrary to
our examples that have spatially varying characteristics over
the whole document (again see Figure 1). Another prob-
lem with these previous approaches is the need for complex
parameter tuning. For example, Tan et al. [11] tunes six
parameters per example.

Our previous work, Huang et al. [5], avoided prior as-
sumptions and parameter tuning by instead having the user
provide examples of the ink-bleed, foreground-ink, and
background. This work however, placed the burden on the
user to provide sufficient markup in a single attempt. Insuf-
ficient markup must be verified and amended by the user.
The impetus of the work in this paper is to make markup
easier and more controlled.
Interactive Computer Vision Interactive computer vision
applications and algorithms enlist user assistance to provide
high-level visual information that is otherwise difficult to
derive automatically. In many cases, the user simply de-
notes regions for processing (e.g. image inpainting [1], nat-
ural image matting [2]), however, user-assistance can also
take the form of training-data collection, such as with Lazy
Snapping [7].

Our approach is similar to Lazy Snapping [7] which seg-
ments out foreground objects from an image based on user-
supplied training examples. Lazy Snapping is also a “try
and see” approach, where markup is performed and the re-
sults are visually evaluated. This is reasonable for object
segmentation since visually validating a large segmented
foreground object is simple for a user. Visually validating

handwritten foreground strokes, on the other hand, is sig-
nificantly more tedious. Our directed assistance procedure
provides a way to help the user to see potential mistakes as
well as control the markup at the same time.

3. System Overview
Our framework is fashioned after the ink-bleed reduction

approach in Huang et al. [5]. Relevant components of that
work are briefly described here.

3.1. Input and Initial Markup

The input is two images of the front and back page of a
single document. These images are aligned (the back image
is mirrored) such that a pixel, p, in the front and back im-
age represents the same physical location on the front and
back of the document. Details to how this alignment can be
performed can be found in [5].

Given two aligned images, the user supplies markup on
the front image (in the form of sparse strokes and points)
to specify foreground-ink, ink-bleed, and background. For
each pixel, p, in the markup, a 2D feature vector is defined
as ρp = [Cf (p), Cb(p)], where Cf (p) and Cb(p) are the
intensities of the front and back image at pixel location p
respectively.

3.2. KNN Classification

Given the training-data from the user-supplied markup,
K-Nearest Neighbor (KNN) classification is performed
as follows. Training features are divided into three
sets: {ρFi }|Li=1, {ρIj }|Mj=1 and {ρBk }|Nk=1, which repre-
sent foreground-ink, ink-bleed and background respec-
tively. Each element ρ in the sets is the 2D feature vec-
tor described above and L, M and N are the respective set
sizes.

To classify an unlabeled pixel in the front image, we ex-
tract its feature vector ρp and compute the Euclidean dis-
tance between ρp and all the L + M + N training vectors.
Based on these distances, we select the top-K closest vectors
where K = 8. The top-K vectors are denoted as {ρm}|Km=1

and are further divided into three index sets πF ,πI and πB

according to their labels. The pixel p is classified by the
majority class of {πF , πI , πB} expressed as:

lp = arg max
θ
‖πθ‖, (1)

where θ is a label in {F , I,B}, and ‖πθ‖ is the number
of elements in set πθ. In the event of a tie in Eq. 1, lp is
assigned with the following label priority {F , I,B}.

This feature collection procedure with KNN classifica-
tion serves as the basis for our application to reduce ink-
bleed. The first time this is performed, we refer to this
procedure (and the labeled data) as the global markup and
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global classification. The following section describes the
steps that will direct the user to regions that require further
assistance. Note that the KNN algorithm described above
will be changed to weight local training-data higher in the
final classification decision.

4. Directed Assistance Framework
Step-by-step details of the directed assistance framework

are described here.

4.1. Determining Low-Confidence Pixels

In our framework, global markup is assumed to be only
a few strokes and points. This initial markup is used to
classify the entire document. Afterwards, low-confidence
pixels will be determined and grouped into similar regions
based on image characteristics. While the per-pixel KNN
results can be converted into confidence measurements, we
find the following procedure produces a better confidence
map for finding potential errors. To obtain the confidence
score cρ for a feature vector ρ, we find its similarity Sθρ to
each class θ as the log conditional probability ln p(θ|ρ). To
estimate p(θ|ρ), we use a Gaussian mixture model (GMM)
and assume that the data of each class follows a Gaussian
distribution. For each class obtained by the KNN classifi-
cation, the prior probability Pθ, the mean vector µθ and the
covariance matrix Σθ are calculated, and Sθρ is given by:

Sθρ = −1
2

(ρ−µθ)TΣ−1
θ (ρ−µθ)−

1
2

ln |Σθ|+ lnPθ, (2)

where the constant item is omitted.
To compute the confidence of a feature point ρ, we com-

pare its similarity values among the three classes. If the
differences among the three similarity values are small, ρ
will lie on a decision boundary between classes and can be
considered to be of low-confidence; if one of the similarity
values is much greater than the other twos, ρ is considered
confident. The confidence score cρ is therefore defined as:

cρ = |SFρ −max(SIρ , S
B
ρ )|, (3)

where only the greater value between SIρ and SBρ is com-
pared with SFρ . This formulation considers the deci-
sion boundaries between foreground-ink and ink-bleed, and
foreground-ink and background. Note that we are not con-
cerned when ink-bleed is mistaken as background and its
decision boundary is therefore ignored. With cρ calculated,
a confidence map can be formed by assigning each pixel p’s
intensity value as cρp .

To identify low-confidence regions, the confidence map
is binarized using standard two-class threshold selection
based on Otsu’s method [9]. To remove noise-like regions
in the binary map, the confidence map is down-sampled,

Figure 2. (Left) training-data (shown slightly darker) and the re-
sulting KNN classification decision boundary plotted in 2D feature
space. (Right) GMM classification result and the low-confidence
points (shaded in black) located along the decision boundary.

then binarized and finally restored to the original size. The
sampling ratio is set to the estimated stroke width in the doc-
ument. This stroke width is estimated using a 50% trimmed
mean (i.e. the first 25% and last 25% are ignored) of the
lengths of sequences of consecutive foreground pixels along
each row and column of the initial global classified image.

Figure 2 shows an example of the decision boundary cre-
ated by KNN classification with an initial markup, and the
low-confidence feature points that are obtained by our pro-
cedure. Note that the decision boundary is changed with
the calculation of the feature points’ similarities to the three
classes. The new label of pixel p is decided by the Bayesian
classification rule based on the GMM estimated above, i.e.

lp = arg max
θ
Sθρp

. (4)

Compared with the KNN result, the new boundary is
smoother and the range of the background class shrinks,
which reflects the true background class distribution which
densely populates this region of the feature space. Fig-
ure 3 gives an example of a confidence map and its cor-
responding map of low-confidence regions, in which most
of the pixels with erroneous classification results have been
marked. In the confidence map, the pixels corresponding to
foreground-ink are often circled by dark outliers, which are
caused by ink diffusion. By first down-sampling by the es-
timated stroke width and then thresholding the confidence
map, outliers around high-confidence pixels are removed.

4.2. Region Grouping and Directed Markup

The identified low-confidence pixels are grouped into re-
gions that share similar visual characteristic in the docu-
ment. The user can then provide new markup inside these
regions. Local markup performed in any of these directed
regions will be applied to all pixels that belong to the same
group.

The regions can be effectively grouped using the the lo-
cal intensity histogram as follows. For each low-confidence
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Figure 3. (Left) Classified image where the foreground-ink pixels are displayed in their original colors, and the ink-bleed and background
pixels are displayed by the average color of the background pixels. (Middle) The confidence map related to the classified image, where
dark pixels are of low confidence, while light pixels are of high confidence. (Right) The map of low-confidence regions, i.e. the binarized
confidence map, where black pixels are low-confidence pixels.

(a) Grouped regions (b) Enlarged region map

Figure 4. (Left) Grouped regions. (Right) The enlarged region
overlayed on the input image.

pixel, we collect pixel intensities within an image window
that 2 times the estimated stroke width. The histogram is
discretized into 16 bins to produce a 16D feature vector.
The data is then clustered using K-means (see [4]) to find
several results with increasing number of clusters. The sil-
houette statistic [6] is used to determine the best cluster
size (i.e. K) from these results. In our implementation,
we set the maximum number of clusters to K = 3, which
appears to be well suited to the documents we process. A
larger maximum number of possible regions can be easily
increased if desired.

After the regions have been determined, region growing
is used to expand their overall size for clearer visualization
and easier marking by the user. Figure 4 shows an example
of such grouped regions and enlarged region map, where
different colors represent the different regions. Figure 4 also
shows an example of how these regions will appear to the
user for markup.

While global training-data is collected by the initial
global markup, local training-data is collected in subse-
quent rounds. Any markup made in a low-confidence re-
gion is collected as local training-data and used for all pix-
els grouped into that region, i.e. all pixels sharing the
same color coding. The user does not need to provide all
three types of markup in a low-confidence region, instead
they only need to provide additional labels (i.e. ink-bleed,
foreground-ink, or background) that they feel is necessary
to help that region. Furthermore, these displayed regions

only represent where low-confidence results have been de-
tected. Low-confidence does not always mean there is an
error. As such, some regions may require no further markup
and can be left alone.

When new markup is added to a region, all pixels within
that region will be classified again using a KNN algo-
rithm similar to the one described in Section 3. How-
ever, the KNN algorithm used with the low-confidence re-
gions will favor the local training-data more than initial
global training-data. This is achieved by assigning differ-
ent weights to each of top-K nearest neighbors according to
which set of training data it belongs to. The original KNN
decision rule, expressed earlier in Eq. 1, is modified as fol-
lows:

lp = arg max
θ

(wg‖πθg‖+ wl‖πθl ‖), (5)

where wg and wl are weights for global and local training
data πθg and πθl are subsets of πθ which correspond to global
or local training data, ‖πθg‖ is the number of elements in set
πθg , and ‖πθl ‖ is the number of elements in set πθl . We set
wg = 1 and wl = 2 to weight local training data labeled by
directed markup more than global training data.

All other pixels not within a low-confidence region, or
whose regions had no additional local markup made, are
not changed.

4.3. Iterations

Our approach is intended to be performed in an iterative
fashion. The procedure is stopped if the confidence thresh-
old described in 4.1 or the number of low-confidence pix-
els drops below a fixed value, or the user provides no more
markup. In general, we find that in most cases only one
iteration is needed for our task of ink-bleed reduction. In
the following, we show an example that uses two rounds of
directed markup.
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Figure 5. (Top) First image shows the input image (the global markup is out of the region). Confidence scores are shown in the second
image. Third image shows the classification result. (Bottom) Three detected regions (color coded) from the initial classification are shown.
The new local markup made in the detected regions, new confidence map, and new results with zoomed comparisons are shown on the
right.

5. Results

Several examples are used to demonstrate the ability of
our approach to direct the user’s markup. Note that we do
not compare results with automatic ink-bleed reduction ap-
proaches (e.g. [3, 11, 15]). Comparisons previously per-
formed in [5] demonstrate that a user-assisted approach pro-
duces better results.

Figure 5 shows a portion of a document that has dark
ink-bleed and a water-stain. Figure 5(top) shows the initial
classification in which several errors occur, including back-
ground misclassified as foreground-ink in the water-stain
area as well as dark ink-bleed misclassified as foreground-
ink. The global markup is made outside the region shown
and consists of only a few strokes. Per-pixel confidences are
shown. The clustered low-confidence regions are shown in
Figure 5(bottom) where new markup is applied. The new
result shows the pixels’ confidences significantly improve
with the directed markup.

Figure 6 compares the results of using the training-data
in a global versus local manner with the KNN classifier. In
this example, the markup drawn in the directed regions are
used for global classification as described in Section 3. The
local KNN produces better results.

Figure 7 shows a full page result where the initial global
markup is shown. After markup, three regions are found
and presented to the user. Only a small amount of additional
markup is used to improve the overall classification. The

“try and see” approach in our initial work [5] can potentially
take several tries. In addition, mistakes would need to be
verified by the user without the aid of highlighting.

Figure 8 shows three rounds of markup applied on a dif-
ficult document. The first global markup results in a large
amount of low-confidence pixels. The first round of di-
rected markup improves the overall classification. The sec-
ond round of directed markup helps to reduce the remaining
noise.

6. Discussion and Summary

We have described a user-assisted framework that effec-
tively directs users in their efforts to supply training-data
for the task of ink-bleed reduction. Our approach provides
a mechanism to incrementally train a classifier in a directed
manner. Several issues are discussed here.
Too Obvious It is obvious that adding more quality
training-data will produce a better result. However, from
an application standpoint, the traditional “try and see” ap-
proach used by many supervised learning tasks is not well-
suited for use on old and deteriorated documents. Visually
determining image regions that warrant markup is not triv-
ial, and visually verifying subsequent mistakes is equally
tedious. Directed assistance provides a reasonable way to
address both of these issues.
Segment First An alternative strategy to directing user
markup would be to segment the entire image first, then
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Figure 6. [Global vs. Local] (First) Image with markup drawn in low-confidence regions, (Middle) KNN result treating all markup as
global markup, (Last) Locally weighted KNN result using our method with initial global classification followed by local weighting of
training-data applied to low-confidence regions only.

present the segmented regions to the user for markup. While
this would help the user visually determine regions that
share similar characteristics, it may also overwhelm the user
from the start. Pre-segmentation also does little to help the
user verify the results afterwards. Our approach can be con-
sidered a lazy-evaluation strategy that segments the image
only as needed when classification confidence is low. It also
helps to visually direct the user to where markup is needed.
Convergence and Overall Quality As shown in Figure 8,
there is a diminishing return as the number of iterations of
markup is performed. In our application the main benefits
are gained after a single iteration. The quality of our output
is only as good as the classifier and features used. Figure 8
is a difficult example where some ink-bleed and foreground-
ink cannot be distinguished by our classifier. At some point,
we will hit a steady state where more markup will not help
improve classification confidence. However, since the user
is actively involved in the iterations they can easily deter-
mine when to stop. Lastly, there is still room to find better
features and classifiers that can improve the ink-bleed re-
duction results, however, we believe directed markup can
still play an important role in future work.

In summary, we have presented a novel approach to ink-
bleed reduction by directing the user’s markup. Our di-
rected assistance approach provides a mechanism to show
where markup is needed, as well as improve classification
via local weighting of the classifier.
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Figure 7. [(Top) Initial global markup and markup in local directed regions. (Middle) Results of the global and local markup (three regions
color coded). (Bottom) Eight selected regions zoomed for comparison.
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Figure 8. Three rounds of markup applied on a difficult example with strong ink-bleed. The first global markup results in a large amount
of low-confidence pixels. The image is grouped into two regions (color coded). After one round of directed markup low-confidence pixels
are reduced, but not completely removed. Another round improves the results slightly (removing some noise). More markup will most
likely not help. Zoomed regions are shown for comparison.
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