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Abstract

Given a single image of an arbitrary road, that may not
be well-paved, or have clearly delineated edges, or some
a priori known color or texture distribution, is it possible
for a computer to find this road? This paper addresses
this question by decomposing the road detection process
into two steps: the estimation of the vanishing point asso-
ciated with the main (straight) part of the road, followed
by the segmentation of the corresponding road area based
on the detected vanishing point. The main technical contri-
butions of the proposed approach are a novel adaptive soft
voting scheme based on variable-sized voting region using
confidence-weightedGabor filters, which compute the dom-
inant texture orientation at each pixel, and a new vanishing-
point-constrained edge detection technique for detecting
road boundaries. The proposed method has been imple-
mented, and experiments with 1003 general road images
demonstrate that it is both computationally efficient and ef-
fective at detecting road regions in challenging conditions.

1. Introduction
Numerous image-based road (border) detection algo-

rithms have emerged as one of the components of fully au-
tomatic vehicle navigation systems [10]. Most of the early
systems have focused on following the well-paved struc-
tured road that is readily separated from its surroundings.
More recently, triggered by the DARPA Grand Challenge
[1], a competition between autonomous off-road vehicles in
the Mojave desert, many algorithms have attempted to han-
dle off-road conditions. Although significant advances have
been made on specialized systems for detecting individual
road types, little progress has beenmade in proposing a gen-
eral algorithm to detect a variety of types of roads.
Given a road image as shown in Fig.1, can the computer
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Figure 1. Different types of roads with varying colors, textures and
lighting conditions.

roughly determine where the road is? This paper answers
this question by proposing a novel framework for segment-
ing the road area based on the estimation of the vanishing
point associated with the main (straight) part of the road.
The novelties of this paper lie in the following aspects: (1)
In the estimation of texture orientation, we not only com-
pute the texture orientation at each pixel, but also give a
confidence to each estimation. The introduced confidence
is then incorporated into the vanishing point estimation.
(2) Observing that the higher image pixels tend to receive
more votes than lower image pixels, which usually results
in wrong vanishing point estimation for the road images
where the true vanishing point of the road is not in the up-
per part of the image, a locally adaptive soft-voting (LASV)
scheme is proposed to overcome this problem. This van-
ishing point estimation method is much more efficient than
previous texture-basedmethods. The scheme uses adaptive-
sized local voting region, in which pixels having low con-
fidence texture orientation estimation are discarded. (3) To
segment the road area, a vanishing-point constrained group
of dominant edges are detected based on an Orientation
Consistency Ratio (OCR), and from which two most domi-
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nant edges are selected as the road borders. Since the color
cue is not used, this road detection method handles well
changes of illumination and applies to general road images.

2. Related work
For structured roads, the localization of road borders or

road markings is one of the most commonly used approach.
Laser [15], radar [8], stereovision [3], color cue [16], Hough
transform [14, 18], steerable filters [5], Spline model [17]
etc. have been utilized to find the road boundaries or mark-
ings. The drawbacks of these methods is that they only con-
sistently work for structured roads with noticeablemarkings
or borders. Methods based on segmenting the road using the
color cue have also been proposed but they do not work well
for general road image, specially when the roads have little
difference in colors between their surface and the environ-
ment.
For unstructured roads or structured roads without re-

markable boundaries and markings, Alon et al. [2] have
combined the Adaboost-based region segmentation and the
boundary detection constrained by geometric projection to
find the “drivable” road area. However, it needs many dif-
ferent types of road images to train a region classifier, which
might be onerous. Reverse optical flow technique [7] pro-
vides an adaptive segmentation of the road area, but the
method does not work well on chaotic roads when the cam-
era is unstable and the estimation of the optical flow is not
enough robust. Stereo camera [4, 9] are also used to deter-
mine terrain traversability. When there is little difference
in color between the road surface and off-road area, it is
hard to find strong intensity change to delimit them. The
one characteristic that seems to define the road in such sit-
uations is texture. The associated approaches [11, 12, 13]
have attempted to define the forward “drivable” image re-
gion by utilizing the texture cue. They rely on computing
the texture orientation for each pixel, then seek the vanish-
ing point of the road by a voting scheme, and finally local-
ize the road boundary using the color cue. Our approach
belongs to this line of research. Our main contributions are:
a texture orientation estimation at each pixel of the image
for which a confidence level is provided (Section 3), a vot-
ing scheme taking into account this confidence level and the
distance from the voting pixel to the vanishing point can-
didate (Section 4), and a new vanishing-point constrained
edge detection technique for finding the boundaries of the
road (Section 5).

3. Confidence-weighted texture orientation es-
timation
Our texture orientation estimation relies on Gabor filters

since they are known to be accurate (see for instance [12,
Section 2.1]). The kernels of the Gabor filters are similar

to the 2D receptive field profiles of the mammalian corti-
cal simple cells and exhibit desirable characteristics of spa-
tial locality and orientation selectivity. For an orientation

�
and a scale (radial frequency) � , the Gabor wavelets (ker-
nels,filters) are defined by [6]

� � � � 
 � � � � � �� � � � � � � � ! # % � ' ( � * + ! . 0 � * 2 � 4 % � 6 � � 0 � + 7 9

where : � � = > ? � @ � ? C D �
, F � 6 � ? C D � @ � = > ? �

and
� �� H �

(octave 1.7 in [6]). We consider 5 scales on a geometric
grid and J L orientations. These parameters are similar to the
ones in [12]. Figure 2 shows the real and imaginary parts of
the Gabor kernels.

Figure 2. Gabor kernels with 5 scales and 36 orientations: real part
kernels (rows 1 to 5) and imaginary part kernels (rows 6 to 10).

Let M 
 � � � �
be the gray level value of an image at


 � � � �
.

The convolution of image M and a Gabor kernel of scale �
and orientation

�
is defined as follows

P � � � � M R � � � �
(1)

The convolution result
P � � � 
 T �

at pixel
T � 
 � � � �

has two
components, a real part and an imaginary part. To best char-
acterize the local texture properties, we compute the square
norm of this “complex response” of the Gabor filter for each
36 evenly spaced Gabor filter orientations:

M � � � 
 T � �
Re

2 P � � � 
 T � 9 7 @
Im

2 P � � � 
 T � 9 7 H

The response image for an orientation is then defined
as the average of the responses at the different scales (see
Fig.3): Y � 
 T � �

Average� M � � � 
 T � H
The texture orientation Z 
 T �

is chosen as the filter orien-
tation which gives the maximum average complex response
at that location (the average is taken over the 5 scales):

Z 
 T � �
Argmax � Y � 
 T �

The second row of Figure 4 shows the images overlaid with
a subsample of the texture orientations estimated using Ga-
bor filters.
From the convolution theorem applied to Eq. (1), we

have [ \ P � � � ] � [ \
M ] [ \ � � � � ] �
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Figure 3. Left: Four points on which the Gabor complex responses
are evaluated. Right: The Gabor complex responses for the four
points.

Figure 4. First row: four road sample images. Second row: images
overlaid with texture orientations estimated using Gabor fi lters.
Third row: examples of the confi dence map for the texture ori-
entation estimation. The brighter the pixel, the higher confi dence
the orientation estimation. Fourth row: pixels with confi dence
larger than � � � � � 
 �  � � � � � 
 � � � � � � � , where 
 �  � � � �
and 
 � � � � � � is the largest and smallest confi dence value respec-
tively.

hence � � � � � � � � 	 � 	
� � � 	  � � � � � �

where
�
and

�
� � denote the Fourier and inverse Fourier

transform, respectively. The use of the fast Fourier trans-
form and of the equatily

� 	  � � � � � ! � # �
� � $ � �

�
% � �

� � � � '
�

� ! � $ ) � ! & � ) � � ! ,
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with , � ! / 1 2 4 5 # 2 7 8 4
and / � , ! 2 7 8 4 5 # / 1 2 4 �

allows fast computation of the response image.
Although the above solution for texture orientation es-

timation has been used by some previous researchers, this
estimated texture orientation is not guaranteed to be correct.
To provide a confidence level to the texture orientation : � < �
at pixel

<
, we use how peaky the function

4 23 = � � < �
is

near the optimum angle : � < �
. Let 4 � � < � 6 8 8 8 6 4 : ; � < �

be the ordered values of the Gabor response for the > ? con-
sidered orientations (in particular, 4 � � < � � = = � ? ! � < �

). The
confidence in the orientation : � < �

is given by

Conf
� < � � A , Average

� 4 C � < � � @ @ @ � 4 � C � < � �
4 � � < �

In our experiments, we discard the pixels having a
confidence score smaller than D @ >

A F H I ?
Conf

� < � ,F 7 8 ?
Conf

� < � B
, and consider the remaining pixels as the

“voting” pixels. The constant D @ > can be seen as an arbi-
trary threshold put on the normalized confidence score.
We did not use directly the magnitude of the response

of the Gabor filter, since it leads to worse results than the
proposed method. These negative results are mostly due
to high magnitudes of the response in parts of the image
that are not related to the road and low magnitudes of the
Gabor response in the road area, which often happens with
unstructured roads and bright sky.

4. Locally adaptive soft-voting
After having computed the texture orientation at each

pixel of the image, one can make these pixels vote to ob-
tain the vanishing point. Precisely, a pixel K for which the
texture orientation is the vector LM O

can vote for all pixelsP
above K (we consider images in which the road is below

the sky) such that the angle Q � � K P � � LM O �
between the di-

rection
� K P �

and the vector LM O
is below some fixed thresh-

old R . This “hard-voting” strategy has been used in [12]. In
our experiments, we notice that this scheme tends to favor
points that are high in the image, leading sometimes to large
errors in the estimation of the vanishing point. A typical im-
age for which this defect appears is given in Fig.5.
To deal with this problem, we propose a soft-voting

scheme where the voting score received by a vanishing
point candidate from a voter is a value taking into account
the distance between the vanishing point candidate and the
voter. The vanishing point is searched in the top S D V por-
tion of the whole image, which, to our knowledge, is a real-
istic assumption for general road images. For each point

P
of the image, we define a voting region

= X
as the intersec-

tion of the Gabor response image with a half-disk below
P

centered at
P
(see Fig.6). The radius of this half-disk is set

to be D @ > Y Z [ ] _ , where [ ] _ is the height of the image.
Each pixel K inside = X

, for which the texture orientationLM O
has been confidently estimated (see end of Section 3),

will vote for the candidate vanishing point
P
all the more

as K is close to
P
and the orientation of its texture coincide

with the direction
� K P �

. Specifically, we introduce the ratioa � K � P �
equal to the distance between K and

P
divided by

the diagonal length of the image, and let b � Q � � K P � � LM O �
be the angle in degrees between the direction

� K P �
and the

texture orientation at K .
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Figure 5. Illustration of the problem in vanishing point estimation
by conventional voting strategy. P1, P2, P3 and P4 are four pos-
sible voters. V1 and V2 are two vanishing point candidates (as-
suming that V2 is the true vanishing point). �� �

, �� �
, �� �

and �� 

are respectively the texture orientation vectors of the four voters.
The two vanishing point candidates divide the whole image region
into three zones, denoted as Z1, Z2 and Z3. Z1 does not vote for
both candidates. Both Z2 and Z3 potentially vote for V1 while V2
receives votes only from Z3. Therefore, the higher vanishing point
candidates tend to receive more votes than the lower candidates.

Figure 6. Left: Global � � . Right: local � � . The blue belt in
the images is the border pixels excluded from voting owing to the
Gabor convolution kernel size.

Vote
� � � � � � � ��

� � � � � � � � 	 � 
 if � � �
�

� � � � � � � 	
� otherwise

(2)

Note that the threshold on � also depends on the distance
between � and

�
so that point that are far away (but still

within
� �
) are taken into account only if the angle � is

very small (typically less than 3 � ), while points closer to�
will be taken into account up to � � 
 � . This allows to

limit the influence of points at the bottom of the image and
improves the computational efficiency and the accuracy of
the results. At the end, the vanishing point is detected as the
the candidate that receives the largest voting score.
The advantages of the proposed LASV method over the

conventional global hard-voting method lie in three-fold

when the true vanishing point does not lie at the very top
end of the image. First, the soft-voting strategy suppresses
the support to the false vanishing point (i.e., those vanishing
point candidates above the true vanishing point) by making
the voting score far less than one (unless � is very small).
For example, it reduces the support received by V1 from
those voters in � 

and � � in Fig.5. Second, it increases the
ratio of the support received by the true vanishing point to
that received by the higher false vanishing point, e.g., the
support to V2 is larger than that to V1 if P1 votes for both
V1 and V2, while the support to V1 and V2 is equal when
using hard-voting method even if P1 votes for both V1 and
V2. To discard pixels far away from the vanishing point
candidate, or with low confidence in the texture orientation,
or with � not small enough results in a significant compu-
tational speed-up. Our empirical results show that LASV
is more than five times faster than the global hard-voting
method [12].

5. Road segmentation
The correctly estimated vanishing point provides a

strong clue to the localization of the road region. Therefore,
we propose a vanishing-point constrained dominant edge
detection method to find the two most dominant edges of
the road. Based on the two dominant edges, we can roughly
segment the road area and update the vanishing point esti-
mated by LASV with the joint point of the two most domi-
nant edges.
The proposed road segmentation strategy is to find the

two most dominant edges by initially finding the first one
and the other based on the first one. We prefer not to use
the color cue in finding these edges because of the follow-
ing three reasons: Color usually changes with illumination
variation. For some road images, there is very subtle or no
change in colors between the road and its surrounding ar-
eas, e.g., the road covered by snow or desert road. Or for
some roads, color changes dramatically in the road area.
For the purposes of easy illustration, the definition of

“Orientation Consistency Ratio” (OCR) is given in the top
left image of Fig.7: � is a line consisting of a set of discrete
oriented points (the orientation of these points denoted by
a black arrow in the figure). For each point, if the angle
between the point’s orientation and the line’s direction is
smaller than a threshold, this point is viewed to be orienta-
tionally consistent with the line. OCR is defined as the ratio
between the number of orientationally consistent points and
the number of total points on the line. In an image, each
point corresponds to a pixel.
We find that the estimated vanishing point coincides with

the joint point of a few dominant edges of the road if this
vanishing point is a correct estimation, while it usually falls
on the extension of one of the most dominant edges if it is
a wrong estimation, therefore, we propose to use the initial
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Figure 7. Illustration of detection of the two most dominant edges.
Top left: line segments consisting of discrete oriented points. Top
right: initially detected vanishing point. Bottom left: detection
of the two most dominant edges based on initial vanishing point.
Bottom right: the two most dominant edges and updated vanishing
point.

vanishing point as a constraint to find the first most dom-
inant edge of the road. The top right image of Fig.7 il-
lustrates this search process, where the first most dominant
edge is detected as the one which has the largest OCR from
the set of lines going through the initial vanishing point (the
angle between two neighboring lines is set to be 5 � ). The
red line, E, in the bottom left image of Fig.7, is detected
as the first most dominant edge and its length is denoted
as � � � � . To avoid possible false detection caused by short
edges, the smallest � � � � is set to be the half image height.
Once the first border of the road E is found, we will up-

date the initial vanishing point by looking at the points on
E having several dominant edges converging to it accord-
ing to the OCR. For this, through each (regularly) sampled
pixel � on E, we construct a set of line segments ( � � ) such
that the angle between any two neighboring of � � is fixed
( � � � � in our experiments). We also set the angle between
E and any one of � � is larger than 20 � (motivated by the
assumption that the vanishing angle between the two road
borders is larger than 20 � ). We compute the OCR for each
line of � � , and for each new vanishing point candidate � ,
we consider the sum � 	 of the top � OCR ( �

� �
in our

experiments). The green line segments in Fig.7 are the �

lines starting from � receiving the top � OCR. The vanish-
ing point is then estimate as the point � maximizing � 	 . We
try other points along E besides the initial vanishing point
since the initial vanishing point estimation may not be accu-
rate (i.e., it is not the joint point of the most dominant edges
of the roads). The updated initial vanishing point estimate
can be observed in the last three columns of the last five

Table 1. Selection criterion for the second dominant edge

1. Counting the number of dominant edges which devi-
ate to left and right respectively
2. If all deviate to left or right, the two most dominant
edges correspond to the two candidates with the largest
and smallest deviation angle respectively.
3. Otherwise, find those dominant edges which have dif-
ferent deviation orientation from the first dominant edge
4. Divide these dominant edges into several clusters ac-
cording to the angle between two neighboring dominant
edges, e.g., if the angle is no smaller than

� � � , the two
neighboring dominant edges belong to different clusters.
5. Find the center of the largest cluster as the deviation
angle of the second most dominant edge. If more than
one clusters have equal number of dominant edges, the
center of these clusters is used.

rows of Fig.10.
From the updated vanishing point and more precisely

from the � dominant edges which have voted for it, we de-
duce the position of the second border of the road as ex-
plained in Table 1. The length of the obtained second most
dominant edge is denoted � � � � and the length of the first
dominant edge is updated to � � �

�
(see Fig.7). The smallest

� � �
�
and the smallest � � � � are set to be one third of the

image height to avoid possible false detections.

6. Experimental results
6.1. Vanishing point estimation

Vanishing point estimation is tested on 1003 general road
images. These road images exhibit large variations in color,
texture, illumination and ambient environment. Among
them, about 430 images are from the photographs taken on a
scouting trip along a possible Grand Challenge route in the
Southern California desert and the other part is downloaded
from internet by Google Image. Some image samples are
shown in Fig.1. All images are normalized to the same size
with height of 180 and width of 240. To assess the algo-
rithm’s performance vs. human perception of the vanishing
point location, we request 5 persons to manually mark the
vanishing point location after they are trained to know the
vanishing point concept. A median filter is applied to these
human recorded results and the average of the median filter
results is regarded as the ground truth position.
For brevity, the soft voting strategy defined in Eq.2 is

denoted by “Soft” and the hard voting strategy (by replac-
ing ��

� � � � � � � � � � 	 with 1 in Eq.2)is denoted as “Hard”. The
voting strategy based on global voting region (left image of
Fig.6) is denoted by “Global” and the one based on local
voting region (right image of Fig.6) is denoted by “Local”.
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We compare the “Hard” v.s. “Soft” and “Global” v.s. “Lo-
cal” schemes. We also compare different combination of
themwith/without introducing the confidence factor. Figure
8 visually gives us the comparison of vanishing point esti-
mation on some sample images. The estimation using the
“Hard” and “Soft” voting based on global

� �
are shown

in (a) and (b) respectively, while some results using “Hard”
and “Soft” voting based on local

� �
are shown in (d) and

(e) respectively. Figure 8 (c) and (f) shows some samples
voted from those image pixels whose confidence score is
larger than � � � � � � � � � �

� �
�

� � �

� �
� � �

. By compar-
ing (a) with (b) and comparing (d) with (e), it can be ob-
served that “Soft” voting scheme is better than “Hard” vot-
ing scheme. By comparing (a) with (d) and comparing (b)
with (e), we find that local voting region scheme is more ac-
curate than global voting region one. The examples based
on the “Soft” voting from those highly confident texture ori-
entations in the global

� �
are shown in row (c), and the

estimations based on LASV are shown in row (f). Compar-
ing (c) with (a) and (b), and comparing (f) with (d) and (e),
we find that it does improve the vanishing point estimation
accuracy by introducing the confidence measure.

Figure 9 lists some statistics of the above different com-
binations. Based on the ground truth positions, we com-
pute the L2 norm distance of the results produced by the
above different combinations to the ground truth positions,
and put these distances into a 15-bin histogram. If the dis-
tance is larger than or equal to 15, it is put into the 15th
bin of the histogram. The seven histograms are shown in
(a) of Fig.9. From Fig.9 (a), we may find that the vanish-
ing point estimation from the pixels with high confidence
is much better than the estimation without considering the
confidence factor. The threshold, ”T”, of the confidence is
set to be � � � � � � � � � �

� �
�

� � �

� �
� � �

. Local voting-
region based method produces more accurate estimation
than the corresponding global voting-region based method.
Based on these histograms, we also compute the percentage
of the images whose error distance is smaller than a num-
ber. The best results come from the “Soft” voting based
on the high-confidence image pixels of the local

� �
(confi-

dence value is larger than � � � � � � � � � �
� �

�
� � �

� �
� � �

)
plus updating by the joint point of the two most dominant
edges. About 96% of all images have an error distance no
bigger than 10 pixels. The method described in [12] be-
longs to the “Global”+“Hard” scheme. Based on our exper-
iment, our algorithms perform much better: applying the
“Global”+“Hard” scheme to our data, there are 87 images
where the true vanishing point is near the bottom of the
frame and the error is larger than 50 pixels. In contrast,
such a large error occurs in only 33 images for the weakest
variant (Global + Soft) of our method. When the error is
smaller than 15 pixels, the two methods give similar accu-
racies. On average, on our test data, our method gives a 9-

(a)

(b)

(c)

(d)

(e)

(f)

Figure 8. Comparison of vanishing point estimation based on dif-
ferent combinations.

pixel instead of 14-pixel error for the method in [12]. Note
that, for curved road, the vanishing point by our method is
located at the joint point of the most immediate straight road
borders.

6.2. Dominant edge detection and road segmenta-
tion

Among the 1003 images, about 300 images are fromwell
paved roads with painted markers. Excluding the 430 desert
images, the rest images corresponding to the rural roads
have no painted lines although part of them are also well
paved. In about 35% of the well-paved road images with
painted lines, the painted line is detected as one of the most
dominant edges. For over 90% of the rural roads, the two
road borders are detected as the two most dominant edges.
For the desert images, the road can be correctly detected as
long as the vanishing point estimation is close to the true po-
sition. For curved roads, the detected road region is the most
immediately drivable area although part of the road surface
cannot be fully encompassed by the two dominant edges.
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Figure 9. Comparison of vanishing point estimation accuracy.

Figure 10 (a) corresponds to the desert road images and the
bottom five rows comes from the downloaded images. The
last three columns of Figure 10 (b) shows us some exam-
ples which are wrongly estimated by LASV but corrected
by the two dominant edges. The initial vanishing points
by LASV are shown in the second row respectively. The
detected dominant edge candidates are shown in the third
row of them respectively. The two most dominant edges are
detected and shown in the fourth row of them respectively.
The updated vanishing points by dominant edges are shown
in the last row.

7. Conclusion

A novel framework for segmenting the general road re-
gion from one single image is proposed based on the road
vanishing point estimation using a novel scheme, called Lo-
cally Adaptive Soft-Voting (LASV) algorithm. Then the es-
timated vanishing point is used as a constraint to detect two
dominant edges for segmenting the road area. To remove
the effect caused by noisy pixels, each Gabor texture orien-

tation is estimated with a confidence score. In voting, only
the pixels of a local voting region whose confidence is high
are used, which reduces the computational complexity and
improves the accuracy significantly.
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Figure 10. Vanishing point estimation and dominant edge detection.
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