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Abstract

Efficient and accurate fitting of Active Appearance
Models (AAM) is a key requirement for many applications.
The most efficient fitting algorithm today is Inverse Compo-
sitional Image Alignment (ICIA). While ICIA is extremely
fast, it is also known to have a small convergence radius.
Convergence is especially bad when training and testing
images differ strongly, as in multi-person AAMs. We de-
scribe “forward” compositional image alignment in a con-
sistent framework which also incorporates methods previ-
ously termed “inverse” compositional, and use it to de-
velop two novel fitting methods. The first method, Com-
positional Gradient Descent (CoDe), is approximately four
times slower than ICIA, while having a convergence radius
which is even larger than that achievable by direct Quasi-
Newton descent. An intermediate convergence range with
the same speed as ICIA is achieved by LinCoDe, the second
new method. The success rate of the novel methods is 10 to
20 times higher than that of the original ICIA method.

Active Appearance Models [6, 9] (AAM) are generative 2D
models, which describe linearly the variation of shape and
appearance of a set of textured objects. Shape is expressed
by warps of a reference shape (the “model warp”), possi-
bly accompanied by a shape prior. Texture is expressed
as a linear model in the reference frame. AAMs are very
popular and successful models because of their expressive
power, coupled with the availability of efficient fitting al-
gorithms. The challenge in developing fitting algorithms is
to find a good tradeoff between runtime and performance,
where performance may be characterised in terms of “cap-
ture range” — the range of starting points, relative to the
optimal fit, from which the algorithm converges.

Fitting algorithms for AAMs are of two kinds:
analysis-by-synthesis and regression-based. In analysis-by-
synthesis, a generative model is fitted to data by iteratively
minimizing the residual between the synthesized and the
observed image [2, 9, 3]. Regression-based methods use
a learned mapping from the residual to parameter updates.
The regression may be linear, as in the seminal work of
Cootes et al. [6], or nonlinear [13, 8, 16, 15].

In this paper, we revisit the so-called Compositional
approach to analysis-by-synthesis. Compositional image
alignment, which originates from [7], seeks to reduce the
residual by successively applying (composing) incremen-
tal warps. The use of incremental warps lends itself well
to efficient approximations of the gradient and Hessian of
the objective function. In some cases the Hessian is ap-
proximated as constant [7, 4, 14], so that it can be precom-
puted, which in turn leads to particularly efficient fitting al-
gorithms. The state of the art is often considered to be the
Inverse Compositional Image Alignment (ICIA) method of
Matthews and Baker [9, 1, 2].

First we develop a unified framework for compositional
fitting algorithms, and classify them in terms of four factors:
the choice of optimization algorithm; the representation of
incremental warp; the approximation of the gradient; and
the approximation of the Hessian, where required by the al-
gorithm. For example, we show that ICIA can be expressed
as a Gauss-Newton algorithm in which the space of incre-
mental warps is the same as the model warp space, the gra-
dient is approximate, and the Hessian is approximated as
constant. The performance of such an algorithm has limits,
imposed by the validity of the approximations of the gradi-
ent and Hessian. We show that for ICIA, the approximations
are valid only when model matches the data closely. That
limits the attainable capture range. This is especially the
case when test data is not closely matched by training data
as, for instance, in multi-person face-fitting. Therefore this
paper develops alternative methods, in the framework, that
improve the runtime-performance tradeoff.

Our two new algorithms, CoDe (Compositional Descent)
and LinCoDe (Linearised Compositional descent), are both
1st order algorithms — i.e. gradient descent algorithms. It
might appear surprising at first sight that gradient descent
algorithms should outperform Gauss-Newton. There are
several reasons for this. First Gauss-Newton is powerful, in
principle, because of the availability of additional informa-
tion in the Hessian, but in practice only a severely approx-
imated Hessian can be computed. Secondly, In ICIA only
an approximate gradient is used, whereas in one of the new
algorithms, CoDe, the exact gradient is computed. Lastly,
the choice of incremental warp for CoDe and LinCoDe is
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crucial. We express the incremental warps in an orthonor-
mal basis which makes for well-conditioned optimization
and removes the need for 2nd order methods.

The performance of the new algorithms, relative to ICIA
as our benchmark, is tested thoroughly over a substantial
multi-person face database, with further testing of tracked
facial motion on over 5000 frames of movie data. The re-
sults on these challenging datasets confirms the predictions
suggested by our alignment framework. Indeed ICIA has a
very limited capture range. This is alleviated if ICIA is al-
tered to use orthonormal incremental warps, and more so if
regularisation of warps in model space is also applied. The
new algorithms, CoDe and LinCoDe, used with regulari-
sation, provide the best runtime-performance tradeoff, with
CoDe able to sustain continued tracking for around 100 sec-
onds of a movie with low resolution and demanding head-
motions, and 5000 frames for a higher quality dataset.

1. Active Appearance Models
AAMs are generative models consisting of separate

shape and appearance models. They are fitted to images

I(r′) ∈ R, r′ ∈ I ⊂ R2 , (1.1)

treated as continuous functions of the image domain I. In
this paper we use only linear appearance models

Λ(r;β) , a(r) +A(r)β, r ∈ D ⊂ R2 (1.2)

parametrized by the coefficient vector β and defined over
the texture domain D. It is warped into the image by a
model-warp

W (r; q) = r′ , (1.3)

which is parametrized by the shape parameter vector q.
The model warp used in this paper is a linear shape model
r +M(r)α concatenated with a similarity transform. The
warp parameters are q = (ρ, τ ,α), with a global rotation
ρ, a translation τ and local deformation coefficients α.

W (r; q) , Rρ(r +M(r)α) + τ (1.4)

M(r) ∈ R2×NShape Parameter

Rρ ,

[
1 + ρ1 ρ2

−ρ2 1 + ρ1

]
Note that the compositional image aligment method pre-
sented in this paper can be used equally with other model
warps and with higher dimensional images, such as space
or space-time volumes.

2. Objective Function
The objective function used typically [6, 9, 3] for AAM

fitting is the squared difference between the target image I

warped back into texture space and the model appearance
Λ(β), given as

F (q,β) , ‖f(q,β)‖2D , (2.1)

with f(q,β) , Λ(β)− I ◦W (q)

Where ‖·‖2D = 〈·, ·〉D denotes the integral over the squared
residual in D and [I ◦W (q)](r) = I(W (r; q)) is the func-
tion composition operator. We call f the residual function.

Appearance variation can be handled [9] by evaluat-
ing the objective function always at the optimal appear-
ance parameters β̂(q). For models with linear appearance
Λ(r;β) = a(r)+A(r)β, with an orthonormal basis A, the
optimal parameters are

β̂(q) = −AT (a− I ◦W (q)) . (2.2)

Then, using the fact that ATA is the identity, gives:

f(q, β̂(q)) = P (a− I ◦W (q)) (2.3)

with P , E −AAT ,

where E is the identity. Now the appearance coefficients
can be left out, and the cost becomes

F (q) , F (q, β̂(q)) and f(q) , f(q, β̂(q)) . (2.4)

— known as the project out norm [9].

3. Image Alignment
This section introduces compositional optimisation,

which is a class of iterative optimisation methods suitable
for objective functions of the form of (2.1). Typical itera-
tive optimisation methods use first or second order Taylor
expansions to approximate the objective function. Com-
positional optimisation methods substitute this with a two
step approximation. The objective function is first approxi-
mated by the introduction of an incremental warp followed
by Taylor expansion. By the end of this section we will
have defined five alternative optimisation methods (listed in
figure 1) including ICIA and the two new methods.

Iterative optimisation methods approximate a (real val-
ued) objective function F (q) around a current estimate q0

with a simpler objective function F̃ (q0, ∆q). Note that q
and ∆q are not necessarily from the same space. Then ∆q
is determined to decrease the approximate cost and is used
to update q0, and the process is iterated. To update the hy-
pothesis q0, a mapping

q = C (q0, ∆q) (3.1)

is needed from the parameter space of the approximate
function F̃ to the parameter space of F . As the expansion
of F happens at q0, the mapping function needs to fulfill

C (q0,0) = q0 . (3.2)

An objective function F is well approximated by F̃ if

F (C (q0, ∆q)) ≈ F̃ (q0, ∆q) . (3.3)
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3.1. Additive Descent

Before defining compositional optimisation, we first de-
fine the classic gradient descent and Gauss-Newton optimi-
sation methods for quadratic objective functions like (2.4).
Both methods use the Jacobian of the residual function, the
matrix of partial derivatives:

Jq0
, ∇qf(q0) . (3.4)

Gradient descent approximates the objective function
linearly:

F (C+(q0, ∆q)) ≈ F (q0) +∇qF (q0)∆q , (3.5)

and uses the simple additive mapping function

C+(q0, ∆q) = q0 +∆q , (3.6)

hence the term “additive descent”. Descending the gradient
∇qF (q0) = Jq0

f(q0), the current estimate is updated as

q0 ← C+(q0,−κJq0
f(q0)) = q0 − κJq0

f(q0) , (3.7)

using a stepsize parameter κ.

Gauss-Newton approximates the square error function
F (q) = ‖f(q)‖2D by linear expansion of the residual:

F (C+(q0, ∆q)) ≈
∥∥f(q0) + Jq0

∆q
∥∥2

D

which has a minimum ∆q∗ at

∆q∗ = −(JT
q0
Jq0

)−1JT
q0
f(q0) , (3.8)

so that estimates are updated as

q0 ← C+(q0, ∆q
∗) = q0 − (JT

q0
Jq0

)−1JT
q0
f(q0) .

(3.9)

3.2. Compositional Descent

Additive descent, in the form of gradient descent or
Gauss-Newton, approximate the objective function with a
linear or a quadratic function respectively. Alternatively, the
special form of the project-out cost (2.4) allows a nonlinear
approximation in which the warp W (q) is composed with
an incremental warp V (p) [9, 12]. The resulting nonlinear
“compositional” approximation, in combination with fur-
ther approximations (see below), is known to give efficient
fitting [9]. Compositional approximation can be used either
with gradient descent or with Gauss Newton. We investigate
which optimisation method, together with which composi-
tional scheme, gives the best performance with AAMs.

The compositional mapping function for the composi-
tional approximation is defined as

C◦(q0,p) = arg min
q∗

‖W (q∗)−W (q0) ◦ V (p)‖2D .

(3.10)

The calculation of C◦ is more involved than C+, and is
explained in detail in Appendix B. The compositional ap-
proximation is a two step approximation of the objective
function (2.1). First, as in ICIA [1], the objective function
is approximated compositionally as

F (C◦(q0,p)) ≈ F̃ (q0,p) ,
∥∥∥f̃(q0,p)

∥∥∥2

D
(3.11)

with f̃(q0,p) , P (a− I ◦W (q0) ◦ V (p)) .

and then F̃ (q0,p) is approximated by Taylor expansion
with respect to the incremental warp parameters p. This
requires the following Jacobian matrix with respect to p:

J̃q0
, ∇pf̃(q0,0) (3.12)
= −P∇(I ◦W (q0))∇pV (0) .

Compositional Gradient Descent

Linear expansion of (3.11) with respect to the incremental
warp parameters at p = 0 gives:

F (C◦(q0, C
+(0, ∆p))) ≈ F̃ (q0,0) +∇pF̃ (q0,0)∆p .

(3.13)

and using F̃ (q0,0) = F (q0) and f̃(q0,0) = f(q0) gives:

F (C◦(q0, ∆p)) ≈ F (q0) + f(q0)T J̃q0
∆p . (3.14)

This results in the update step

q0 ← C◦(q0,−κJ̃T
q0
f(q0)) . (3.15)

Compositional Gauss-Newton

In analogy to additive Gauss-Newton we calculate the
quadratic approximation of the approximated cost F̃

F (C◦(q0, C
+(0, ∆p))) ≈

∥∥∥f(q0) + J̃q0
∆p
∥∥∥2

D
(3.16)

with the composed hypothesis update

q0 ← C◦(q0,−(J̃T
q0
J̃q0

)−1J̃T
q0
f(q0)) . (3.17)

The Jacobian J̃q0
can be evaluated cheaply by calculating

∇(I ◦W (q)) with finite differences, using the backwarped
image as in (3.12).

It would be even faster, if the Jacobian were approxi-
mated as a constant [7, 9]. Once we have the constant ap-
proximation, all five algorithms listed in figure 1 can be ex-
plained.

3.3. Constant Jacobian and constant Hessian Ap-
proximation

The Jacobian from (3.12) is not constant, as it depends
on the backwarped image I ◦ W (q). Instead of evaluat-
ing the correct Jacobian, a constant approximation [7] can
be used. To approximate the Jacobian by a constant, the
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approximate value of the Jacobian at the optimum of the
objective function is used. Of course, the optimum is un-
known but assuming the residual at the optimum is small
then, using the objective function (2.1),

a+Aβ̂(q) ≈ I ◦W (q) . (3.18)

and, from (3.12), the resulting Jacobian is

J̃q0
≈ P∇(a+Aβ̂(q0))∇pV (0) . (3.19)

The Jacobian still depends on q0 through the appearance
parameter β̂(q0). With the same argument used in (2.4) to
make the objective function independent of appearance, we
can now write the approximated constant Jacobian as

J̄ = P∇a∇pV (0) . (3.20)

The approximate Jacobian can be used for two purposes:
first, to approximate the Hessian as the constant J̄T J̄ ; and
second to approximate the gradient as the linear function
J̄T e(q0).

3.4. The Five Compositional Algorithms

All combinations of compositional gradient descent and
compositional Gauss-Newton with the gradient and Hessian
approximations give five optimisation strategies:

1. Compositional gradient descent with

(a) the true gradient J̃T
q0
f(q0) which we call CoDe

(b) the approximate gradient J̄T f(q0), which we
call LinCoDe

2. Compositional Gauss-Newton with

(a) the true Gauss-Newton Hessian J̃T
q0
J̃q0

and true
gradient J̃T

q0
f(q0), which we call CoNe [2].

(b) approximate Hessian J̄T J̄ and true gradient
J̃T
q0
f(q0), which is identical to the method of [4],

and which we call CoLiNe

(c) approximate Hessian J̄T J̄ and approximate gra-
dient J̄T f(q0), which is identical to ICIA [9].

Our derivation of ICIA gives the same Hessian and Jacobian
as in the original formulation [9], starting from the same
cost function (2.1). Both derivations arrive at the same up-
date formula and are therefore equivalent — differing only
cosmetically, but actually representing the identical algo-
rithm. (In the original, there is an inverse incremental warp
introduced by a change of variables, which does not appear
in our version.) We prove in Appendix ?? that both deriva-
tions are equivalent. ICIA is exactly the approximate com-
positional image alignment method which approximates the
gradient and the Hessian by exchanging the backwarped
image with the model appearance. In [9] the Jacobian is

treated as constant, but we have shown that this is only a
good approximation when the residual is small, – i.e. when
the model matches the data well and is initalized close to
the solution. This explains why ICIA should have a rela-
tively small capture range for convergence. This will be
especially true for multi-identity AAMs, where the model
may not match the data closely, and whenever the camera
and light setup of the test set differ from that of the train-
ing set. So we expect ICIA to generalize badly to unseen
examples.

We have now introduced the five compositional image
alignment methods. They would be expected to differ in
speed and capture range.

Speed The speed of computation depends on the calcula-
tion of the derivatives. It is expensive to calculate the correct
Hessian, and it is moderatly expensive to calculate the cor-
rect Jacobian. ICIA and LinCoDe compute neither of these
quantities, so they are the fastest algorithms. Nearly as fast
are CoLiNe and CoDe, which calculate the correct Jacobian
for the gradient, but do not calculate the Hessian. The slow-
est method is CoNe, which has to calculate the true Hessian.

Capture range When using the incremental model warp
as proposed in [7, 9], second order methods are necessary
as the parameter space is badly scaled, and so has to be nor-
malized using the Hessian. In that case CoNe (exact Hessian
and gradient) is expected to be the best method, followed
by CoLiNe and lastly ICIA (approximate Hessian and gra-
dient). In the next section we introduce a well conditioned
incremental warp, leading to a gradient descent method that
performs as well as the slow, exact, 2nd order CoNe method,
while being as fast as ICIA.

4. Incremental Warp
The incremental warp V (p) should have the following

two properties. First, it must be flexible enough to reach
the (unknown) global optimum, it must be possible to go
from any current hypothesis q0 to any other hypothesis q
via a sequence of incremental warps and projections into
the model:

q = C(. . . C(C(q0,p0),p1) . . . ,pk) . (4.1)

Second, it should not be so flexible that the composite warp
W (q0) ◦ V (p) can stray far outside the model warp space,
as this would lead to a bad approximation.

Approximating the incremental warp We have intro-
duced two approximations of the original objective func-
tion: (1) approximation by the introduction of an incremen-
tal warp (3.11), and (2) approximation by Taylor expansion
(3.13 and 3.16). To make the first approximation exact, it is
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Method Hessian Gradient Speed Capture Range

CoDe (this paper) Not used True: J̃T
q0
f(q0) Fast Large

LinCoDe (this paper) Not used Linear Approx: J̄T f(q0) Very Fast Medium
CoLiNe [4] Constant Approx.: J̄T J̄ True: J̃T

q0
f(q0) Fast Medium

ICIA [9] Constant Approx.: J̄T J̄ Linear Approx: J̄T f(q0) Very Fast Small
CoNe [2] Gauss-Newton Approx.: J̃T

q0
J̃q0

True: J̃T
q0
f(q0) Slow Large

Figure 1. We introduce two novel objective functions which have a larger capture range than previous methods The newly introduced
compositional optimisation methods are Hessian-Free gradient descent methods.

necessary to have W (q0) ◦ V (p) = W (q) for a suitable q.
This is fulfilled by

V (p) = W−1(q0) ◦W (q) , (4.2)

with p = (q0, q). This incremental warp can be used effi-
ciently if the model warps forms a group, because then V
and W share the same space. If the model warps do not
form a group then it is necessary to use an approximation,
as (4.2) is not efficiently tractable. This was solved in [9]
by assuming that (4.2) can be approximated by V (p) =
W−1(p). And, as the incremental warp is evaluated at the
identity and under the assumption of small p, this is further
approximated by

V Model(p) = W (−p) . (4.3)

An alternative, more costly, solution [12] is to precalculate
(4.2) over a tesselation in q0-space, and choose the closest
warp from that precalculated set.

Linearized warp approximation An alternative ap-
proach to warp approximation derives from Taylor expan-
sion of the compositional objective function. To derive the
update rule the residual is linearized, and the Jacobian from
(3.12) is used. The linearization applies the image deriva-
tive to a linearization of the incremental warp, at the iden-
tity warp. Accordingly, to have a good approximation of the
original objective function by the linearized compositional
objective function it is necessary that the incremental warp
is well approximated by its linearization. This is not the
case for the (nonlinear) incremental warps of [9, 12], but is
– as our results demonstrate – essential for a good alignment
algorithm.

We propose to use a linearization of W (r, q) at q = 0:

V Ortho(r;p) = r +∇qW (r; 0)p (4.4)

which for the shape model used in this paper is

V Ortho(r;p) = r + L(r)p (4.5)

L(r) ,

[
rx ry 1 0

M(r)−ry rx 0 1

]
Linear incremental warps have another important advan-
tage apart from providing a better approximation to the ob-
jective function. The warp basis L can be orthogonalized

for Blur and associated regularisation values do
Set q, qbest to the initial guess and initialize κ1

repeat
Calculate∇pF̃ (q,0), F (q)2

if F (q) < F (qbest) then
qbest ← q3

Increase κ4

else
if stepsize smaller than threshold then

return5

else
decrease κ6

Calculate V from∇pF̃ (qbest,p) and κ7

Update W to the concatenation of W and V8

until converged
Figure 2. Compositional Image Alignment

and normalized, such that the parameters of the incremen-
tal warp are independent and equally scaled. This gives the
Orthonormal warp denoted V Ortho. This improves the accu-
racy and robustness of all methods and makes it possible to
use the compositional gradient descent methods (CoDe and
LinCoDe), as the Hessian is no longer needed to correct the
parameter scaling. Orthonormal incremental warps result
in the largest capture range and highest speed, and are used
in all experiments in this paper. In addition we test ICIA
also with the original ICIA warp, the model warp which we
denoted V Model.

5. Implementation
The algorithms compared in this paper all have the struc-

ture detailed in Figure 2. They differ in three respects.
First, different update rules are used i.e. gradient descent
or Gauss-Newton and the various Jacobian and Hessian ap-
proximations. Secondly different incremental warps can be
used. Thirdly, we compare optimisation performance with
and without regularisation. To this end we propose to regu-
larize in the mapping step, in which the concatenated warps
are projected back into model space. Regularisation is pos-
sible, as a prior on the deformation space is learned in the
training phase, such that a maximum likelihood estimation
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Figure 3. Best speed–performance tradeoffs come from the two new algorithms CoDe and LinCoDe. Left: Without regularisation.
Right: with regularisation and V Ortho. Note that ICIA is practically useless on this difficult multi-person dataset with a success rate near zero
(left). It can be improved (right) by using the orthonormal incremental warp and regularisation. The CoDe algorithm with regularisation
(right) is as accurate as the slow, approximation-free, compositional Gauss-Newton CoNe method but is seven times more efficient.

ICIA with V Ortho ICIA with V Ortho + Regularisation

LinCoDe LinCoDe + Regularisation

CoDe CoDe + Regularisation

Frame 10 Frame 50 Frame 450 Frame 2000 Frame 5000 Frame 10 Frame 50 Frame 450 Frame 2000 Frame 5000
Figure 4. Our algorithm makes fast and robust tracking possible. We compare face tracking under natural motion, using ICIA, LinCoDe
and CoDe. The original ICIA fails immediately with this large model and new face data. Substituting the orthonormal incremental warp
for the original ICIA warp, the algorithm still loses track very early, whereas LinCoDe and CoDe can track much further. Finally, adding
regularisation to all algorithms, ICIA still loses track completely after approximately 500 frames and does not recover the local deformations
accurately. In contrast CoDe now tracks the full 5000 frame sequence without reinitialization, and LinCoDe tracks for 2500 frames.

of the shape can be determined. The details of the mapping
step are described in Appendix B.

6. Experiments
We have described five compositional image alignment

algorithms, in a common framework, including ICIA and
two new algorithms, CoDe and LinCoDe. The algorithms
are evaluated on a relatively large multi-person AAM, on
images of unseen identities. This is the most difficult, but
also the most typical, situation for face analysis.

We will show now, that the proposed CoDe algorithm
has the largest capture range achieveable by any of the it-
erative optimisation methods, while being only eight times
slower than ICIA. The differences in capture range are most
pronounced when fitting a test face outside the training set.

Then ICIA fails to converge for most starting positions,
while CoDe converges much more reliably. We will also
show that the approximate gradient descent algorithm Lin-
CoDe, which requires similar runtime to ICIA, converges as
reliable as a slower approximate second order method with
an exact gradient (CoLiNe).

Model We trained AAMs1 from publicly available im-
ages with manually selected landmarks. The models are
learned from 456 images from the datasets XM2VTS [10]
and IMM [11], which where marked up with 120 land-
marks. The data contains 62 identities, multiple expres-
sions, light variation and up to 30 degree out of plane ro-

1The AAM containing the complete training set is available on our
website: www.cs.unibas.ch/personen/amberg_brian/aam/
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tation. We used 31 identities with 248 images from the
XM2VTS dataset, and 39 identities with 208 images from
the IMM dataset. To increase the variability of the model,
we added the mirrored version of each image to the train-
ing set. The correspondence between the models was es-
tablished with thin plate splines from the manually selected
landmarks. The model was calculated at a resolution of ap-
proximately 20000 color pixels. We kept 60 shape and 60
appearance basis vectors. The large variability in the train-
ing set facilitates good generalization to novel images.

Multi-Identity Fitting We trained models from subsets
of all marked images in a cross-validation framework, using
all images not from a chosen identity to build an AAM
which was tested on the images of that identity. Fitting was
started from randomly chosen offsets in the image plane.
All fits were initialized with zero shape and rotation param-
eters, and the approximate size of the face in the image as
the scaling factor. All variants of the algorithm were started
from the same starting positions. We report the success
rate, defined as the ratio of runs that converge within a dis-
tance of 5% IED, averaged over the feature points, and the
runtime relative to ICIA. The starting positions had up to
20% IED misalignment. The speed-performance tradeoff is
summarized in figure 3 On the left we show the main com-
peting algorithms. We use ICIA with the original incremen-
tal warp, LinCoDe and CoDe with orthonormal warp and
CoNe and CoLiNe applied, for the first time, to AAM fit-
ting with orthonormal incremental warp. For comparison,
we also added direct optimisation of the objective func-
tion 2.1 with a quasi-Newton method, and the expensive
full Gauss-Newton optimisation CoNe of the compositional
cost. ICIA fails to converge reliably on this difficult but re-
alistic dataset. The success rate of CoDe is higher than that
achievable with direct optimisation using a quasi-Newton
method (L-BFGS), while being dramatically faster. Lin-
CoDe is as fast as ICIA but converges 8 times as often,
though not quite as often as CoDe. Using the Hessian ap-
proximation and the correct gradient (CoLiNe) performs no
better than approximate gradient descent (LinCoDe) but at
seven times greater cost. On the right in figure 3, we show
that adding regularisation considerably improves the cap-
ture range for all methods but CoDe and LinCoDe continue
to give the best speed-performance tradeoffs.

Tracking We applied the algorithms to tracking video se-
quences. A 5000 frame sequence (Figure 4) of a talking
face [5] with a subject which was not in the training set and
captured with a different camera and lighting was tracked
with the compositional alignment algorithms. All tracks
were initialized from a perfect fit to the first frame, and
used the orthonormal incremental warp. ICIA immediately
loses track, even though the inter-frame displacements are

ICIA with V Ortho

LinCoDe

CoDe

Frame 10 Frame 100 Frame 200 Frame 300 Frame 400
Figure 5. Tracking a low resolution video with large head mo-
tions succeeds with CoDe, where ICIA fails. All methods used
the orthonormal incremental warp, and relatively strong regulari-
sation. ICIA starts to drift in the early frames, while CoDe tracks
the full sequence. The approximate gradient method LinCoDe also
suceeds, but looses track of the details for about 100 frames.

rather small, and this is so even when the original ICIA in-
cremental warp is replaced with the new orthonormal warp
scheme. However CoDe, admittedly running 8 times slower
than ICIA, and LinCoDe, which runs in a time similar to
ICIA, fail only after approximately 500 frames. When reg-
ularisation is added it is possible to track 2500 frames, ac-
curately, with LinCoDe and CoDe even stays stable for the
full 5000 frames sequence, whereas ICIA now fails after 500
frames and, even while tracking, delivers clearly inaccurate
warps. Full results are in the online material.

To test the behaviour on a more difficult video we used a
speech with large head motions and expressive gesture, ac-
quired under uncontrolled lighting and with relatively low
resolution of approximately 18 pixels IED. Again CoDe
tracks the full sequence (figure 5), while ICIA fails, never to
recover; LinCoDe temporarily loses track during a large out
of plane rotation, and is on this more difficult dataset, not
as accurate as CoDe, showing that the fast approximation
of the gradient does not come without a cost. Full tracked
sequences are shown in the supplementary material.

7. Conclusion
We have derived two new alignment algorithms, CoDe

and LinCoDe which outperform the state of the art image
alignment ICIA, at a modest cost in terms of runtime. In
ICIA, as we have shown in the paper, approximations for
gradient and Hessian are used that are valid only when
model and data match well, and this has the effect of limit-
ing the capture range for convergence. The most powerful
of the new algorithms CoDe applies compositional descent
on an exact gradient, and avoids the need for a Hessian by
using an orthonormal incremental warp. It achieves a large
capture range at the cost of being eight times slower than
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ICIA. Similarly LinCoDe in which the computed gradient
in CoDe is replaced by an approximation, requires a simi-
lar runtime to ICIA but has a considerably greater capture
range, though not as great as CoDe.

A. Equivalence with ICIA
Our derivation of ICIA and the original derivation of

ICIA lead to the same update formula, both algorithms are
the same. We highlight in this section the difference be-
tween the derivation in [1] and our derivation, to show
where the approximations have been made. Equation (24)
from [1] is equivalent to our Equation 3.11, if we use
V Model. Note thatW◦W in [1] is ill defined, asW : D → I.
For simplification we assume constant appearance, though
varying appearance introduces another approximation step
in [1]. A change of variables on (3.11) leads to

F̃ (q,p) = (A.1)∫
V (D;p)

(a(V −1(r;p))− I(W (r; q)))2
∣∣∇V −1(r;p)

∣∣
The derivative of (A.1) at the identity warp is

∇pF̃ (q,0) = 2
∫
D
f(r; q)∇a(r)∇pV −1(r; 0) (A.2)

+
∫
D
f(r; q)2∇p

∣∣∇V −1(r; 0)
∣∣

+
∮

dD
f(r; q)2n0(r)∇pV (r; 0)

wherenp(r) is the normal of the boundary of V (D;p) at r.
This makes the image derivative disappear in the derivative
of the cost function Assuming that the current residual is
small, the derivative in (A.2) is approximated as

∇pF̃ (q,0) = 2
∫
D
f(r; q)∇a(r)∇pV −1(r; 0) (A.3)

As we are free to choose the incremental warp, we rename
V ← V −1 which makes the Jacobian of (A.3) equal to J̄
from (3.20). This shows that the derivation of ICIA in [1]
is equivalent to taking the Jacobian from the hypothetical
mimimum of the objective function.

B. Mapping and Regularisation
In this section we describe how to efficiently calculate

the mapping q = C(q0,p), i.e. solve (3.10) and incorpo-
rate regularisation into this step. Regularisation is achieved
by determining the maximum likelihood (ML) value for the
mapped model parameters. The ML mapping of (3.10) is,
under the assumption of independently normal distributed
shape coefficients α, given by

q = arg min
ρ,τ ,α

‖Rρ(r +M(r)α) + τ −W (V (r;p); q)‖2r∈D

+ λ ‖α‖2 (B.1)

with a regularisation parameter λ depending on the noise
characteristic of the image. By multiplication of (B.1) with
−R−1

ρ one arrives at a quadratic problem in terms of the
inverse rotation, with a mainly constant matrix. This can be
solved efficiently in O(N3

Shape Parameters) operations by pre-
computing most of the pseudo-inverse of the system.
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