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Abstract

This paper covers a fundamental problem of local phase
based signal processing: the isotropic generalization of the
classical 1D analytic signal to two dimensions. The well
known analytic signal enables the analysis of local phase
and amplitude information of 1D signals. Local phase, am-
plitude and additional orientation information can be ex-
tracted by the 2D monogenic signal with the restriction to
the subclass of intrinsically one dimensional signals. In
case of 2D image signals the monogenic signal enables the
rotationally invariant analysis of lines and edges. In this
work we present the 2D analytic signal as a novel gener-
alization of both the analytic signal and the 2D monogenic
signal. In case of 2D image signals the 2D analytic sig-
nal enables the isotropic analysis of lines, edges, corners
and junctions in one unified framework. Furthermore, we
show that 2D signals exist per se in a 3D projective sub-
space of the homogeneous conformal space which delivers
a descriptive geometric interpretation of signals providing
new insights on the relation of geometry and 2D signals.

1. Introduction

Low level two-dimensional image analysis is often the first
step of many computer vision tasks. Therefore, local sig-
nal features with geometrical and structural information de-
termine the quality of subsequent higher level processing
steps. It is important not to lose or to merge any of the orig-
inal signal information within the local neighborhood of the
test point. The constraints of local signal analysis are: to
span an orthogonal feature space (split of identity) and to
be robust against stochastic and deterministic deviations be-
tween the actual signal and the assumed signal model. One
of the fundamental problems in signal processing is a good
signal representation. Such a signal representation is the
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local phase information which is a robust feature with re-
spect to noise and illumination changes [10, 7, 6]. In case
of image signals it is shown in [12] that the original signal
can be recovered to a fairly large extend by using only its
phase information while setting its amplitude information
to unity. In contrast to that, if only the amplitudes are ob-
tained and the phases are set to zero, the recovered image
signal is completely indiscernible. Therefore, phase based
signal processing has found success in many applications,
such as disparity estimation of stereo [7], matching [2], face
recognition [17], optical flow estimation [18], etc.

Figure 1. From left to right: i0D signal, i1D signal with n = 1 in
Equation (1) to model straight lines and edges in scale space and
two i2D signals which consist of two superimposed i1D signals
with n = 2 in Equation (1) to model locally junctions and corners
in scale space.

2. Local pattern modeling
Based on the results of Fourier theory and functional anal-
ysis we assume that each 2D signal f ∈ L2(R2) ∩ L1(R2)
can be locally modeled by a superposition of arbitrarily ori-
entated one-dimensional cosine waves [16]

P{f}(z; s) = (p ∗ f)(z; s) = as

n∑
ν=1

cos(〈z, ōs,ν〉+ φs) (1)

with z = (x, y), ∗ as the convolution operator and ōs,ν =
[cos θs,ν , sin θs,ν ]T . The Poisson convolution kernel [5]
reads

p(z; s) =
s

2π (s2 + ‖z‖2)3/2
(2)

(see Figure 2) for a certain scale space parameter s ∈ R+

which acts as a low pass filter on the original signal f . With-
out loss of generality this signal model degrades locally at
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the origin (x, y; ·) = (0; ·) of a local coordinate system to
fp = n a cos φ. In case of image analysis lines, edges,
junctions and corners can be modeled in this way. The sig-
nal processing task is now to determine the local amplitude
a = as, the local orientation θν = θs,ν and the local phase
φ = φs for a certain scale space parameter s. This prob-
lem has been already solved for one-dimensional signals
by the classical analytic signal [8] by means of the Hilbert
transform [9] and for intrinsically one-dimensional [19] sig-
nals (i.e. n = 1 in Equation (1)) by the 2D monogenic
signal [4] by means of the generalized first order Hilbert
transform. This paper shows that 2D signal processing can
be regarded as an inverse problem [16] where higher order
generalized 2D Hilbert transforms are applied to the origi-
nal signal f , here with the signal model in Equation (1) re-
stricted to n < 3 in Equation (1). 2D signals in scale space
are classified into local regions N ⊆ Ω of different intrinsic
dimensions [19] (which correspond to their codimension).
The intrinsic dimension expresses the number of degrees of
freedom necessary to describe local structure. Constant sig-
nals are of intrinsic dimension zero (i0D), straight lines and
edges are of intrinsic dimension one (i1D) and all other pos-
sible patterns such as corners and junctions are of intrinsic
dimension two (i2D) (see Figure 1)

i0D = {f : f (zi) = f (zj) ∀zi, zj ∈ N} (3)

i1D = {f : f(z) = g(〈z, ō〉) ∀z ∈ N} \ i0D (4)

i2D =
(
L2(R2) ∩ L1(R2)

)
\ (i0D ∪ i1D) (5)

with g ∈ L2(R)∩L1(R) and ō = [cos θ, sin θ]T . In general
i2D signals can only be modeled by an infinite number of
superimposed i1D signals. Therefore, it is essential to as-
sume a certain signal model or a set of certain models for
exact i2D signal analysis. Furthermore, the intrinsic dimen-
sion depends also on the scale space parameter s at which
the signal will be considered locally.

Figure 2. From left to right: Poisson convolution kernel p(z; s) and
conjugate Poisson convolution kernels q

(1)
x (z; s) and q

(1)
y (z; s) in

spatial domain for a certain scale space parameter s > 0.

3. Related work: the monogenic signal
Related work is the recently introduced monogenic signal
[4] which can be regarded as the Hilbert transform based
analogue to the derivative based gradient. The first order
generalized Hilbert transform kernel 1 can be expressed in

1The generalized first order 2D Hilbert (or Riesz) transform convolu-
tion kernel reads h(1)(z) = 1

2π‖z‖3 [x, y]T

φ

θ

a

xf

yf

pf

( ), , aθ φ

Figure 3. Geometric illustration and interpretation of the 2D mono-
genic signal vector [fp, fx, fy]T features as spherical coordinates
(θ, φ, a) in 3D Euclidean space. This descriptive geometric inter-
pretation will be generalized and extended to the projective space
in this work.

Poisson scale space by

q(1)(z; s) = (p ∗ h(1))(z; s) =
1

2π (s2 + ‖z‖2)3/2

[
x
y

]
(6)

The 2D monogenic signal can be defined as a vector val-
ued signal representation [fp, fx, fy]T where the first order
Hilbert transformed signal [fx, fy]T = (q(1) ∗ f)(0; s) can
be expressed in Radon space [16] (proof: [16]) by the im-
portant relation[

fx

fy

]
= R−1

{[
cos θ
sin θ

]
h(t) ∗ fr(t; θ; s)

}
(0; s) (7)

with the 2D Radon transformed signal (see Figure 4)

fr(t, θ; s) =

∫
z∈R2

P{f}(z; s)δ (〈z, ō〉 − t) dz (8)

with z = (x, y), ō = [cos θ, sin θ]T , θ ∈ [0, π) as the ori-
entation, t ∈ R as the minimal distance of the line to the
origin (0) ∈ R2 of the local coordinate system and δ as the
Dirac delta distribution. The inverse 2D Radon transform
exists and reads

R−1{fr}(0) =
1

2π2

∫
θ∈[0,π)

P.V.
∫

t∈R

∂
∂t

fr(t, θ; s)

〈z, ō〉 − t
dt dθ

= − 1

2π2

n∑
ν=1

P.V.
∫

t∈R

∂
∂t

fr(t, θν ; s)

t
dt

with P.V. as the Cauchy principal value and the classical 1D
Hilbert transform kernel 2h(t) = 1

πt . The main advantage
of this expression in 2D Radon space is the resulting system
of equations [16][

fx

fy

]
=

n∑
ν=1

[
cos θν

sin θν

]
a sin φ (9)

2Both the classical 1D Hilbert transform as well as all generalized
Hilbert transforms intrinsically always remain in one-dimension, i.e. in
this work the function f(t) = a cos(t) will be considered and its Hilbert
transform (f ∗h)(t) = a sin(t) with the property (f ∗h∗h)(t) = −f(t).
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Figure 4. Left figure: i1D signal fp in spatial domain with orien-
tation θm and local phase φ = 0 at the origin (0) ∈ R2 of the
applied local coordinate system. Right figure: i1D signal fp in
Radon space. Each point in Radon space represents the integral in
spatial domain on a line which is uniquely defined by the minimal
distance t ∈ R to the origin and the orientation θ ∈ [0, π). The
Radon transform of the Poisson filtered signal will be abbreviated
by fr(t, θ) = R{P{f}}(t, θ).

with the explicit formulation of the signal features. This
system of equations has to be solved for the unknown sig-
nal model features. In case of i1D signals (i.e. n = 1 in
Equation (1)) this system of equations degrades to fp

fx

fy

 = a

 cos φ
sin φ cos θ
sin φ sin θ

 (10)

which can be now solved for the 3D spherical coordinates
(see Figure 3)

θ = arctan
fy

fx
(11)

φ = atan2
(√

f2
x + f2

y , fp

)
(12)

a =
√

f2
p + f2

x + f2
y . (13)

The phase vector Φ2D(z) of the monogenic signal is defined
by

Φ2D(z) =

[
Φx

Φy

]
(z) = φs

[
cos θs

sin θs

]
(14)

Since the 2D monogenic signal is strictly limited to the class
of i1D signals, the aim of this work is to find and solve
an appropriate geometrical interpretation for i1D and i2D
signals in one framework.

4. Second order Hilbert transforms
In case of i2D signals (i.e. n > 1 in Equation (1)) the re-
sulting system of equations delivered solely by the first or-
der generalized Hilbert transform in 2D Radon space is not
sufficient for the solution of all signal features. Therefore,
we have to make use of the higher order generalized Hilbert
transforms, such as the second order Hilbert transform ker-
nels [16] (see Figure 5)

q(2)(z; s) =
3s‖z‖2 + 2s3 − 2(‖z‖2 + s2)3/2

2π‖z‖4(‖z‖2 + s2)3/2

x2

xy
y2

 (15)

with z = (x, y) and q(2) = q(1) ∗ h(1) to determine the
second order Hilbert transformed signal [fxx, fxy, fyy]T =
(q(2) ∗ f)(0; s) which can be also expressed byfxx

fxy

fyy

 = −R−1


 cos2 θ

sin θ cos θ
sin2 θ

 fr(t, θ; s)

 (0; s) (16)

in 2D Radon space. Analogously to the first order Hilbert
transform the following additional system of equations re-
sults of the second order Hilbert transformed signalfxx

fxy

fyy

 =

n∑
ν=1

 cos2 θν
1
2

sin(2θν)
sin2 θν

 a cos φ . (17)

Figure 5. From left to right: second order Hilbert transform con-
volution kernels in spatial domain q

(2)
xx (x, y; s), q

(2)
xy (x, y; s) and

q
(2)
yy (x, y; s) for a certain scale space parameter s > 0.

5. The 2D analytic signal
By the first and second order generalized Hilbert transforms
the monogenic signal can be now generalized to the novel
2D analytic signal. Analogous to the Hesse matrix (known
from surface theory) the second order partial derivatives
will be substituted by the second order Hilbert transformed
signals in the corresponding directions. This matrix valued
signal representation

T e =

[
fxx fxy

fxy fyy

]
∈ M(2, R) (18)

can be mapped to a vector valued signal representation by
the isomorphism [16]

([fp, fx, fy]T , T e) ∼= [fp, fx, fy, fs, f+, f+−]T (19)

with fs = 1
2 [fxx + fyy] = 1

2fp, f+ = fxy and f+− =
1
2 [fxx − fyy] (see Figure 6). This isomorphism delivers the
convolution kernels being the key for geometrical signal in-
terpretation in projective space.

5.1. Signal representation in projective space
The local features which determine the signal in scale space
will be separated in geometrical features and structural fea-
tures. The geometrical features are the mean orientation and
the rotationally invariant apex angle. The mean orientation
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Figure 7. Left figure: geometric interpretation of the mean orientation θm and the apex angle α. The 2D analytic signal strictly separates the
structural and the geometrical information delivered by the first and the second order Hilbert transform respectively. Right figure: geometric
interpretation of phase φ, amplitude a and main orientation θm in projective space of i1D and i2D signals in one unified framework.

Figure 6. From left to right: convolution kernels which deliver fs,
f+ and f+− for a certain scale space parameter s > 0 in spatial
domain.

3 can be determined by

θm =
θ1 + θ2

2
=

1

2
arctan

f+

f+−
. (20)

The apex angle α = θ1 − θ2 (also known as opening angle)
can be determined by

α = arccos

√
f2
+ + f2

+−

‖fs‖
= arctan

√
f2

s −
[
f2
+ + f2

+−
]√

f2
+ + f2

+−

(21)

which delivers in combination with θm the individual ori-
entations θ1 and θ2. The apex angle 4 is a very important
rotationally invariant local feature since it is zero iff the un-
derlying structure is of intrinsic dimension one (see Figure
9). The geometric interpretation of the mean orientation and
the apex angle results from the signal fs which is embedded
in 3D space as a vector [0, 0, fs]

T ∈ R3. This 3D vector will
be rotated by the Euler angles (α, 2θm) ∈

[
0, π

2

]
× [0, 2π]

(see Figure 7). By means of the apex angle α, a so called
homogeneous signal component fh of the signal fp in 3D
projective space [14] can be now introduced by

fh =

√
1 + cos α

2
∈ [0, 1] . (22)

3In contrast to the monogenic signal the mean orientation [15] can be
evaluated also at phase positions φ = kπ for all k ∈ Z where the orienta-
tion of the monogenic signal 1

2
[θ1 + θ2] = arctan

fy

fx
is not defined.

4Note that the apex angle of phase based image analysis corresponds to
the shape feature of the orthogonal version of the second order derivatives
[3] although they are not equal.

In the following a natural relation of the vector valued 2D
analytic signal representation and the projective space will
be shown. By means of the homogeneous signal component
the model based signal features can be now determined. The
local main orientation of the signal can be determined by

θm = arctan
f−1

h fy

f−1
h fx

(23)

which corresponds to Equation (11). The structural signal
features are the local phase and the local amplitude. The
phase of i1D and i2D signals can be evaluated by

φ = atan2

(√[
f−1

h fx

]2
+

[
f−1

h fy

]2
, fp

)
(24)

which is the generalization of Equation (12) for i1D and i2D
signals in one unified framework. The local amplitude for
i1D and i2D signals can be determined by

a =
1

2

√
f2

p +
[
f−1

h fx

]2
+

[
f−1

h fy

]2 (25)

which is the generalization of Equation (13) for i1D and i2D
signals in one unified framework. The phase and the ampli-
tude can be determined by the first order Hilbert transform
and the geometric information given by the apex angle and
the main orientation will be delivered by the higher order
Hilbert transform. In the case of pure i1D signals the apex
angle is zero, i.e. fh = 1. In this case the formulas of
the phase and amplitude reduce to those known from the
monogenic signal. The advantage of this approach is that
it can automatically distinguish between i1D and i2D sig-
nals and it can be applied to all kinds of local intrinsic di-
mension without any previous knowledge about the original
signal. In the case of 2D image signals, this approach is de-
signed for an isotropic analysis of lines, edges, corners and
junctions in one framework. The important generalization
from i1D signal analysis to true 2D signal analysis is, that in
contrast to the 2D monogenic signal, here the 2D conjugate
Poisson components [fx, fy]T are in a natural way located
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Figure 8. Left figure: the underlying 2D space is spanned by the conjugate signal components fx and fy and the additional coordinate of
the 3D projective space is given by the homogeneous signal component fh. Right figure: illustration of all intrinsic dimensions in one
continuous space. The i0D signals are on a point of singularity, the i1D signals can be represented by a 2D plane and the i2D signals exist
in a 3D volume.

in the higher dimensional 3D projective space [fx, fy, fh]T

with fh as the additional homogeneous signal component
(see Figure 8). Signal analysis naturally reduces now to
the normalization of the homogeneous component to 1 (see
Figure 8). This can be easily done by multiplying the conju-
gate Poisson signal components fx and fy by f−1

h . In other
words: The 2D space spanned by the signal components fx

and fy is extended by the homogeneous signal component
fh.

5.2. Proof outline
Due to the previous results of the first and second order gen-
eralized Hilbert transform expressed in Radon space (see
Figure 10) the proofs can now be done by trigonometric
calculations using the known local signal components

fp

fx

fy

fs

f+

f+−

 = a


2 cos φ
sin φ [cos θ1 + cos θ2]
sin φ [sin θ1 + sin θ2]
cos φ
cos φ 1

2
[sin(2θ1) + sin(2θ2)]

cos φ 1
2

[cos(2θ1) + cos(2θ2)]

 (26)

which results from the signal intelligence in Radon space.
Note that the relation to the Radon transform is required
solely for interpretation and theoretical results. Neither the
Radon transform nor its inverse are ever applied to the sig-
nal in practice. Instead, the generalized Hilbert transformed
signal components will be determined by a 2D convolution
with the generalized Hilbert transform kernels in spatial do-
main.

6. Implementation of the 2D analytic signal
The 2D analytic signal can be easily integrated into
any computer vision software package by using the
following C++ implementation. Each DC-free signal
double f(double x,double y) can be locally an-
alyzed in scale space at every position (cx, cy) ∈ R2 by

applying a difference of Poisson (DoP) [5] bandpass filter
to the original signal with the fine scale space parameter sf

and the coarse scale space parameter sc.

void AnalyticSignal2D(
double cx,double cy,
double& Orientation,double& Apexangle,
double& Amplitude,double& Phase,
double s_c=2,double s_f=1.9,double m=3)

{
double f_p =0,f_x =0,f_y =0;
double f_xx=0,f_xy=0,f_yy=0;
for (double x = -m;x <= m;x++)
for (double y = -m;y <= m;y++)
{

double t = f(x+cx,y+cy);
double pf = t* Kernel1(x,y,s_f);
double pc = t* Kernel1(x,y,s_c);
double k = t*(Kernel2(x,y,s_f)-

Kernel2(x,y,s_c));
f_p += s_f*pf - s_c*pc;
f_x += x * (pf-pc);
f_y += y * (pf-pc);
f_xx += x*x * k;
f_yy += y*y * k;
f_xy += x*y * k;

}
double f_pm = 0.5*(f_xx-f_yy);
double f_s = 0.5* f_p;
double e = sqrt(pow(f_pm,2)+

pow(f_xy,2))/fabs(f_s);
double l = pow(f_x,2)+pow(f_y,2);
double q = l*2/(1+e);
Phase =atan2(sqrt(q),f_p);
Orientation=0.5*atan2(f_xy,f_pm);
Amplitude =0.5*sqrt(pow(f_p,2)+q);
ApexAngle=atan2(sqrt(pow(f_s,2)-

pow(f_xy,2)-pow(f_pm,2)),
sqrt(pow(f_xy,2)+pow(f_pm,2)));

}
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convex

concave

Figure 9. From left to right: original image signal and its local
apex angle. The apex angle can not only separate corners/junctions
from edges/lines but also distinguish between convex and concave
corners.

The first order generalized 2D Hilbert convolution kernels
will be calculated by

double Kernel1(double x,double y,double s)
{

double S=pow(s,2),K=pow(x,2)+pow(y,2);
return 1/(2*M_PI*pow(S + K,1.5));

}

and the second order generalized 2D Hilbert convolution
kernels in spatial domain with scale space parameter s will
be determined by

double Kernel2(double x,double y,double s)
{

double S=pow(s,2),K=pow(x,2)+pow(y,2);
double d=pow(K,2)*pow(S+K,1.5)*2*M_PI;
return -(s*(2*S+3*K)-2*pow(S+K,1.5))/d;

}

The orientation, apex angle, amplitude and phase are be-
ing calculated as distinctive local features of the signal for
a given convolution mask size m. The time complexity of
this algorithm is in O(m) with m as the total convolution
mask size. This time complexity can be reduced by calcu-
lation in Fourier domain. The disadvantage of the calcula-
tion in Fourier domain is the restriction to a global signal
analysis with one fixed scale space parameter for the entire
image. By convolution in spatial domain for each position
(x, y; s) ∈ R2×R+ an individual scale space parameter can
be chosen to enable adaption to the local structural and ge-
ometrical signal information. Note that in case of arbitrary
signals only DC-free convolution kernels can be used. This
can be achieved by removing the mean value of the convo-
lution kernels after precalculating them and before applying
them to signal analysis.

7. Experimental results and comparison
In the following the 2D analytic signal and the 2D mono-
genic signal [4] will be applied to synthetic signals for com-
parison and qualitatively results. Figure (11) illustrates the
experimental results with known ground truth data (ampli-
tude, phase, and orientation) of the 2D monogenic signal.
The estimated features are plotted with fixed orientation and

x

y

Test point (0,0)

θ

t

1θ
0 π

2θ

Test point (t 0)=

Phase φ

Apex angle

Figure 10. Left figure: The i2D checkerboard signal in spatial do-
main with orientations θ1, θ2 and local phase φ = 0 at the test
point (x, y) = (0) at the origin of the local coordinate system.
Right figure: The i2D signal is separated into two independent
i1D signals with different orientations and same phase at t = 0 in
2D Radon space.

fixed amplitude against varying phase 0 ≤ φ ≤ 180◦ and
varying apex angle 0 ≤ α ≤ 90◦. The left plot in Figure
(11) depicts a subset of the test signals. In the following the
experimental results of the 2D monogenic signal are being
discussed from left to right. The orientation can be deter-
mined exactly except for the phases φ = 0◦ and φ = 180◦.
The amplitude is disturbed even in case of i1D signals, i.e.
at zero apex angle, and should be globally constant like the
results shown in Figure (12). The phase errors increase with
increasing apex angle. In the ideal case the result should
look like the plane in Figure (12). These results show that in
contrast to the 2D analytic signal, the amplitude and phase
of the 2D monogenic signal produce significant errors. It is
very important to mention that the novel 2D analytic signal
performs also in case of finite i1D signals better than the
2D monogenic signal although in theory for zero apex an-
gle both signals are the same. But for finite signals the local
apex angle is never totally zero since the i1D signal slice in
2D Radon space is always broadened, see Figure (4). This
broadness will be detected by the 2D analytic signal auto-
matically resulting in an apex angle greater than zero in con-
trast to the 2D monogenic signal which ignores this feature
by assuming a zero apex angle.
Analogously to the results of the 2D monogenic signal the
experimental results of the 2D analytic signal are illustrated
in Figure (12) with same experimental settings. Left plot:
estimated apex angle for varying phase and varying apex an-
gle. The apex angle can be determined exactly. Second plot
from left to right: estimated orientation for varying phase
and varying apex angle but fixed signal orientation and fixed
signal amplitude. The orientation can be determined ex-
actly except for the phase singularity φ = 180◦. Third plot
from left to right: estimated amplitude for varying phase
and varying apex angle but fixed signal amplitude. The am-
plitude can be determined exactly as a constant value. Right
plot: estimated phase for varying phase and varying apex
angle. The phase can be determined exactly by the 2D ana-
lytic signal.
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Apex anglePhase
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Apex angle
Phase

Amplitude

Apex angle
Phase

Phase

Figure 11. Results of the monogenic signal. First figure from top to bottom row: test signals consisting of lines/edges, x-junctions, corners
and t/y junctions. Second to last figure: local orientation, amplitude and phase results. Convolution mask size in spatial domain: 7 × 7
pixels. Coarse scale space parameter: sc = 0.2, and fine scale space parameter: sf = 0.1.

Apex angle
Phase

Apex angle

Apex angle

Phase

Orientation

Apex angle

Phase

Amplitude

Apex anglePhase

Phase

Figure 12. Experimental results of the 2D analytic signal. From left to right: local apex angle, orientation, amplitude and phase results.
Convolution mask size in spatial domain: 7× 7 pixels. Coarse scale space parameter: sc = 0.2, and fine scale space parameter: sf = 0.1.

8. Application: dense optical flow
The 2D analytic signal is an ideal substitute for the par-
tial Hilbert transform [9], the 2D monogenic signal [4] and
for all applications which make use of derivatives (e.g. the
Laplacian) in detection of local features, e.g. texture anal-
ysis, layer separation and vessel detection in medical im-
age processing. In optical flow applications the intensity or
the mostly used gradient constancy constraint can be eas-
ily replaced by the novel 2D analytic signal phase vector
Φ3D(z) ∈ R3

Φ3D(z) =

 Φx

Φy

Φz

 (z) = φs

 cos θs

sin θs cos αs

sin θs sin αs

 (27)

consisting of the rotationally invariant local apex angle αs,
the local main orientation θs and the local i1D/i2D phase
φs with scale space parameter s to minimize the resulting
nonlinear energy functional [1]

E(w) =

∫
z∈Ω

λΨ(‖∇u(z)‖2 + ‖∇v(z)‖2)︸ ︷︷ ︸
Smoothness term

(28)

+
∑

ι∈{x,y,z}

Ψ(‖Φι(z + w(z))− Φι(z)‖2)

︸ ︷︷ ︸
Data term

dz (29)

with z = (x, y), the unknown optical flow w(z) =
[u(z), v(z)], λ > 0 as a weighting factor of the smooth-
ness term and Ψ(s2) =

√
s2 + ε2 as a penalizing function

Scenario [13] Φ3D Φ2D ∇
Cloudy Yosemite 2.44◦ 1.77◦ 2.11◦ 2.39◦

Yosemite 1.64◦ 0.91◦ 1.33◦ 1.60◦

Street 4.93◦ 4.10◦ 4.55◦ 4.87◦

Marble 4.74◦ 3.98◦ 4.47◦ 4.81◦
Table 1. Comparison of the average angular error (AAE) [13] of
the classical gradient ∇, the phase vector Φ2D of the 2D mono-
genic signal and the novel phase vector Φ3D of the 2D analytic
signal used as the constancy constraint for dense optical flow esti-
mation.

for a small constant ε. Note that the involved scale space
approach automatically provides a multi-resolution or fine-
to-coarse warping strategy. Results of the gradient [13] ver-
sus the phase vector are presented in Table (1). The advan-
tage of the phase vector is the invariance against global and
local illumination change and the robustness against noise
(see Figure 13).

9. Conclusion
In this work a generalization of the classical analytic sig-
nal to the isotropic 2D analytic signal has been presented.
Both i1D and i2D image signals such as edges, lines, cor-
ners and junctions can be rotationally invariant analyzed in
one unified framework in scale space without any steering
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Figure 13. Experimental results of the average angular error
(AAE) [13] in optical flow estimation applications. Comparison
of classical derivative based (thin blue line) constancy constraints
and the phase vector (thick red line) delivered by the 2D analytic
signal. Left figure shows that the phase vector is much more robust
against additive Gaussian noise. Right figure: Since the 2D ana-
lytic signal delivers a split of identity where the amplitude infor-
mation is orthogonal to the phase information, the phase vector is
invariant against global and local illumination changes compared
to derivatives.

[11]. Our approach naturally degenerates to the 2D mono-
genic signal for the case of i1D signals. Distinctive local
signal features such as amplitude, phase, apex angle and ori-
entation span an orthogonal feature space (split of identity).
The 2D analytic signal can be easily implemented into ex-
isting computer vision applications by locally adaptive 2D
convolution in spatial domain. It has been shown that the
2D analytic signal performs better than the 2D monogenic
signal even for i1D signals. We presented a further step in
the evolution process of the complex valued analytic sig-
nal by D. Gabor to the 2D analytic signal which maps a
real valued signal to a vector valued signal in homogeneous
conformal space. This can be geometrically interpreted in
an intuitive and descriptive way in the projective subspace
of the conformal space. One very important philosophical
result is that signal analysis of i1D and i2D signals in one
unified framework corresponds to the extension of the so far
used Euclidean space to the higher dimensional projective
space. Our future work contains the extension of the 2D an-
alytic signal to a tensor valued signal by using also the third
order Hilbert transform.
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