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Figure 1. Centerlines and radii extraction of vessels in a retinal image,
vessels in a cortical image and roads in a satellite image.

Abstract

This paper presents a new method to extract tubular
structures from bi-dimensional images. The core of the
proposed algorithm is the computation of geodesic curves
over a four-dimensional space that includes local orienta-
tion and scale. These shortest paths follow closely the cen-
terline of tubular structures, provide an estimation of the
radius and can deal robustly with crossings over the image
plane. Numerical experiments on a database of synthetic
and natural images show the superiority of the proposed
approach with respect to several method based on shortest
paths extractions.

1. Introduction

The problem of tubular structures extraction has received
considerable attention in the computer vision and medical
imaging communities - see for instance the recent review
by Kirbas and Quek [11]. The methods generally rely on
the use of a local detector, postprocessed by a method that
links locally detected tubular structure.

Various methods have been developed to locally detect
tubular structures, for instance thresholding, ridge or crest

detection[1, 19], wavelets [9], and matching filters [8, 2].
Many processes allow to link or post-process the locally

detected points. Besides classical fusion processes [3, 27]
and region growing algorithm [7, 23], tracking-based ap-
proaches such as [20, 13, 22] are an important attempt to
address this issue. They are based on a propagation inside
the tubular structure from a known starting point by use of a
local search. Active contours based approaches [15, 17] are
another interesting attempt to segment tubular structures.

The notion of shortest path has proved to be efficient
in order to perform global segmentation of tubular struc-
tures, in images, see for instance [5, 18]. These geodesic
curves can also be used to extract tubular structure center-
lines, as proposed by Deschamps and Cohen [6] and by San-
tamaria et al.[21]. Li and Yezzi [14] have recently proposed
to extend the shortest path computation to a higher dimen-
sional domain. They include the local radius of the vessels
as an additional scale dimension in order to stabilize the
computations and to select the centerline without any post-
processing. This method is however facing difficulties on
2D images because of the design of their local vessel detec-
tor and of the junctions that are not handled in this 2D+1D
space and scale domain.

This paper shows how to robustly detect tubular struc-
tures in 2D images by the use of shortest paths. It intro-
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duces an additional local orientation dimension that disam-
biguates the crossing singularities using pattern-recognition
inspired techniques. Centerline detection and radius esti-
mation are completely embedded in the proposed segmen-
tation method and does not rely on additional properties of
the images (such as centerlines being the darker part of ves-
sels), nor on a post-processing step. Numerical results on
synthetic and real-life examples shows the advantage of us-
ing this orientation information. The database will available
online so that future method can compare their results to the
proposed approach.

2. Shortest paths in orientation domain
This paper considers a gray scale image I : [0, 1]2 →

[0, 1] and in numerical computation, this image is sampled
regularly on a grid of n×n pixels. In the following, deriva-
tive operators in the continuous domain are used although
the computations are done on the discrete grid using finite
differences.

2.1. Local Tubular Structure Model

At the core of the proposed approach is the local de-
tection of tubular structures. This paper uses a normalized
cross-correlation with a tubular model as a local feature in-
dicator.

The local geometry of a tubular structure is captured
with a model M(x) ∈ R for x = (x1, x2) ∈ Λ =
[−Λ1,Λ1]× [−Λ2,Λ2]. The models considered is this arti-
cle are of the form M(x1, x2) = m(x2) and therefore only
depend on a 1D profile m. A model is thus a small tem-
plate which represents a typical horizontal tubular structure
of normalized width one wishes to detect. This normalized
pattern is then rotated and scaled in order to define warped
models Mr,θ(x) for x ∈ Λ(r, θ) = rRθ(Λ)

∀x ∈ Λ(r, θ), Mr,θ(x) def.= M(R−θ(x/r)) (1)

where Rθ is the planar rotation of angle θ. Each pattern
Mr,θ looks like a typical tubular structure oriented along
direction θ ∈ [0, π) and of width r > 0.

The model M can be tuned for each targeted application.
Figure 2 shows some examples of these patterns for various
r and θ.

The choice of Λ is a trade-off between robustness and ac-
curacy of local structure detector. Experiments where car-
ried out to determine an “optimal” Λ, which will not be de-
tailed in this article due to the lack of space. Λ was chosen
as a vertical rectangle of dimension 1×2 (cf. figure 2). The
experiments show low sensitivity of the proposed method
w.r.t. this choice.

Model for road extraction. A typical road in satellite
imaging has a slow variation of intensity along a curve. It is
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Figure 2. Vessel model (left) and road model (right) for different
orientations and scales.

efficiently captured by a binary model defined as

m(x2)
def.=

{
0 for |x2| > Λ2/2,
1 otherwise. (2)

Model for blood vessels. Two important applications of
vessels extraction are cortical optical imaging [12] and reti-
nal imaging [16]. In order to capture efficiently blood ves-
sels in these medical images, one designs a specific local
pattern derived from a physical model of these structures.
The major difference with road tracking is that a vessel is
not of constant intensity across its section.

The model is defined as

m(x2)
def.
=


1 for |x2| > Λ2/2,

exp(−α
p

(1/2)2 − (x2/Λ2)2) otherwise.
(3)

This model assumes that the image has some basal in-
tensity outside the vessels - i.e. light is reflected without
absorption. For a point inside a vessel of circular section,
the intensity is assumed to result from a light absorption
(with coefficient α) proportional to the vessel width at this
point.

2.2. Orientation Domain Lifting

In order to extract tubular structures that might exhibit
self-crossings, the 2D image I is lifted to a 4D representa-
tion F

F : Ω def.= [0, 1]2 × [rmin, rmax]× [0, π) 7−→ R (4)

defined as the normalized cross-correlation between the im-
age and the local model introduced in equation (1)

∀ (x, r, θ) ∈ Ω, F (x, r, θ) def.= NCCΛ(r,θ)(Mr,θ(·), I(x+·))
(5)

where I(x+ ·) is the image translated by x, NCCA(f, g) is
the normalized cross-correlation between f and g over the
domain A, defined by:

NCCA(f, g) def.=

∫
A
(f − f̄)(g − ḡ)√∫

A
(f − f̄)2

√∫
A
(g − ḡ)2

(6)
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where h̄ =
R

A
h

µ(A) , µ(A) being the area of A.
Function F ranges from −1 to 1, is invariant under local

intensity changes and is an indicator of how likely a tubular
structure of radius r and orientation θ is present at location
x.

The main interest of this lifting I 7→ F , as already no-
ticed in [10], is that it disambiguates situations where two
tubular structures are crossing each other. Figure 3 shows
an example of a medical image where orientation lifting is
crucial to distinguish locally between two orientations.

θ

x2
θ = π/2

θ = 0

x1

x1

x2

Figure 3. left: original 2D image. right: 4D lifting (fixed radius),
ranging from -1 (black) to 1 (white).

This lifting is computed for nr radii evenly spaced in
[rmin, rmax] and nθ orientations evenly spaced in [0, π),
with nr = 12 and nθ = 12 in the experiments. This re-
quires O((rmaxn)2n2nrnθ) operations with rmax � 1 and
nr, nθ � n.

The 4D lifting (5) defines an isotropic metric ρ over the
4D domain Ω

∀ω ∈ Ω, ρ(ω) def.= max(1− F (ω), ε). (7)

The parameter ε prevents the metric to vanish and is set to
ε = 10−3 in the numerical tests.

2.3. Distance Map and Geodesic Computation

The length of a lifted curve γ : [0, 1] → Ω over the lifted
domain is defined as

LF (γ) def.=
∫ 1

0

ρ(F (γ(t)))||γ′(t)||dt, (8)

The length of the speed vector v = γ′(t) = (vx, vr, vθ)
is

||v||2 def.= v2
x + λv2

r + µv2
θ . (9)

where (λ, µ) are normalizing constants set to λ = 0.5 and
µ = 0.1 in numerical experiments. In practice one experi-
ments strong robustness with respect to the choice of (λ, µ).

Given a set A ⊂ Ω of seeds points and a set B ⊂ Ω of
ending points, a shortest lifted curve γ∗(t) ⊂ Ω joining A

to B is defined as a shortest path for the metric LF

γ∗(A,B) def.= argmin
γ∈π(A,B)

LF (γ), (10)

where π(A,B) is the set of curves γ such that γ(0) ∈ B
and γ(1) ∈ A. The corresponding geodesic distance is
dF (A,B) = LF (γ∗).

In practice, γ∗ is estimated as follows [25]: the dis-
tance to the seeds A is the geodesic action map UA(ω) =
dF (A, ω) is the unique viscosity solution of the Eikonal
equation

||∇UA(ω)|| = ρ(ω), with ∀ω ∈ A, UA(ω) = 0
(11)

where ∇UA =
(

∂UA
∂x

, λ
∂UA
∂θ

, µ
∂UA
∂r

)T

,

and where one has to be careful about computing the deriva-
tives with respect to θ modulo π.

Calling ω1 ∈ B the point in B with lowest distance to A,
the geodesic curve γ∗ between A and B is then obtained by
a gradient descent of UA

dγ∗

dt
(t) = −∇UA(γ∗(t)) with γ(0) = ω1 (12)

The numerical computation of UA on a discrete grid of
N

def.= n2nrnθ pixels is done in O(N log(N)) operations
with the Fast Marching algorithm of Sethian [24]. Further-
more, the Fast Marching is stopped as soon as the set B is
reached, leading to important computation savings. During
the Fast Marching computation and the gradient descent,
one should treat the orientation dimension θ ∈ [0, π) with
periodic boundary conditions 0 ' π.

3. 4D Curves Extraction
3.1. Shortest Paths and 4D curves

In order to extract a 4D curve c(x, x′) between two
points x, x′ ∈ [0, 1]2, one needs to compute a shortest lifted
tubular structure γ∗ between the lifted points in Ω that cor-
respond to x and x′. Let A(x) and A(x′) be defined by

A(x(′)) def.=
{

(x(′), r, θ) \ r ∈ [rmin, rmax], θ ∈ [0;π)
}

.

(13)
This 4D curve is then defined

cx,x′
def.= γ∗(A(x),A(x

′
)). (14)

This 4D curve contains three components cx,x′(t) =
(x̃(t), r(t), θ(t)). The path x̃(t) ⊂ [0, 1]2 is the actual cen-
terline over the image plane, whereas r(t) and θ(t) give the
local width and orientation of the tubular structure (figure
4), which can be important in medical application, for in-
stance to compute the local blood flow or to detect tissue
diseases.
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Figure 4. Left: extraction of a vessel in a cortical image. Starting
point: white square. Ending point: black square. Right: corre-
sponding orientation θ(t) and radius r(t).

3.2. Numerical Experiments

3.2.1 Phantom experiments.

Experiments were carried out on several phantoms im-
ages, for which the centerlines positions and the radii have
known analytical forms with sub-pixelic accuracy. The
cross section of these phantoms corresponds to the model
(3) with parameter α = 0.01. An additive Gaussian white
noise with various amplitudes are added to the phantoms.
Ten phantoms are generated for each condition, and each
noise level, see Figure 5. In each case, the true starting and
ending points of each phantom are used, as well as the true
starting and ending radii for the [14] method. The result-
ing benchmark database will be available online in order to
allow comparison with future works.

Figure 5. Some of the sample phantoms used as benchmarks (basic
intensities range from 0 to 1), shown here with a spatially indepen-
dent Gaussian noise of variance 0.15.

For each phantom and level of noise, three algorithms
were tested: the classical 2D method Fast Marching [4]
with pre-smoothing of the image (pre-smoothing is classi-
cally used in Fast Marching based methods to obtain a cen-
tered path), Li/Yezzi method[14] and the method proposed
in this article. The smoothing parameter of the classical 2D
method, the smoothing parameter as well the three more pa-
rameters of the 3D method were optimized for this bench-
mark. In order not to take advantage of the exact knowledge
of the profile, the proposed method was applied with a vol-

untary wrong model parameter α = 0.1. In each case, the
true starting and ending points of each phantom are used,
as well as the true starting and ending radii for the [14]
method.

For each method, the error of the vessels centerline po-
sition and radius w.r.t the ground truth was computed using
the following formula.

ErrorC(c)2 =
∫ 1

0

||x̃(t)− x̃∗(t∗)||2dt (15)

where t∗ is such that x̃∗(t) is the ground truth centerline
point closest to the computed centerline x̃(t).

The error of the radii estimation ([14] and proposed
method only) was computed using the following formula:

ErrorR(c)2 =
∫ 1

0

|r(t)− r∗(t∗)|2 dt (16)

where r is the radius computed by the method, and r∗

the ground truth radius.
Figure 6 shows ErrorC(c) and ErrorR(c) curves for sev-

eral synthetic images as a function of the noise level. Using
the 3D space+scale lifting [14] produces results of varying
quality, and requires a careful tuning of the parameters to
achieve the optimal error rate. [4] with an optimal smooth-
ing provides a precise evaluation of the centerline locations,
but without any evaluation of the local radius. The proposed
method provides both positions and radii with more robust-
ness and accuracy.

3.2.2 Real images experiments.

Figure 1 shows results of tubular structure extraction for
the three modalities considered in this paper:

Left: vessels extraction for a complex optical imaging of
the cortex with several branches and intersections.
Center: vessels extraction on a retinal image from the
DRIVE database [26, 16].
Right: road extracted from a satellite image over an urban
area.

The starting areaA is shown with a white square and several
ending points ω are shown with black squares.

The crossings in the retinal image (center) show the in-
terest of the 4D lifting. Note also the large overlap of the
centerlines computed from several different points, the sub-
pixelic precision of the centerline and the correct handling
of intersections on the cortical image (left).

Another interest of this method is that it automatically
computes the radius r(t) and orientation θ(t) parameters
(figure 4).

The precision of the 4D lifting method is evaluated on
the DRIVE database [26, 16]. Approximate ground truth
centerlines positions and radii are computed from the binary
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Figure 6. Centerlines and radii estimation for the first 2 phantoms
presented fig. 5.
Top row : error ErrorC(γ) (in pixel) between the computed and
theoretical centerlines for the four methods versus noise level
(100σ where σ is the independent Gaussian noise variance) (cir-
cles: proposed method, diamonds: Li/Yezzi[14], crosses: 2D Fast
Marching with pre-smoothing[4] )
Bottom row : error ErrorR(γ) (in pixel) for the two first methods
versus noise ratio.

masks available with the database. Figure 7, shows the bi-
nary manually segmented vessels together with the ground
trust centerline position and boundaries (top and middle), as
well as the result of the 4D lifting method (bottom).

Figure 7. top: binary manually segmented images from the DRIVE
database, together with the extracted ground trust. middle: corre-
sponding images with ground-truth centerline and boundary and
initial and ending points. bottom: centerlines positions and bound-
aries computed with the proposed method.

The three geodesic extraction algorithms are applied to
these three images between the indicated starting and end-
ing points. Table 1 report the centerlines position and radii
errors ErrorC(γ) and ErrorR(γ) for each method.

For the centerline extraction, due to the lack of preci-
sion of the ground truth, there is no significant difference
between the proposed 4D lifting method and the space only
geodesic extraction with smoothing of the metric. The 3D
space+scale lifting [14] method showed unstable behavior
with respect to its initialization and parameters, which had
to be chosen carefully - for the second image, no parameters
giving a correct result were found. The 4D lifting method is
also more precise for the radii estimation than the 3D lifting.

DRIVE 1 DRIVE 2 DRIVE 3
ErrC ErrR ErrC ErrR ErrC ErrR

2D 0.40 - 0.38 - 0.30 -
3D 1.33 1.67 3.13 3.31 0.53 1.90
4D 0.31 0.43 0.35 0.44 0.40 0.47

Table 1. Centerlines positions ErrorC and radii ErrorR errors esti-
mation on retina images for the three different methods.

3.2.3 Sensibility of the proposed method with respect
to the tubular structure model.

In order to show that the proposed method in not sensi-
tive to the choice of the tubular structure model, some tests
were performed with different values of α, showing that the
proposed method is able to recover with good accuracy the
centerlines and radii, even if the vessel model is unknown.
Table 2 shows the results for one of these tests: for phan-
toms generated with α = 0.01, estimation with different
fixed values of α are conducted for different noise levels.
The obtained average errors remains comparable and in any
case better than with [14] method.

Phantom 1 Phantom 2
ErrorC ErrorR ErrorC ErrorR

α = 0.01 0.09 0.24 0.10 0.23
α = 0.1 0.09 0.24 0.11 0.31
α = 1 0.10 0.53 0.08 0.60

Table 2. Centerlines positions ErrorC and radii ErrorR estimation
errors for two different vessel models (gaussian noise with σ =
0.2)

3.2.4 Advantage of 4D modelling.

As already noted, figure 1 (center) shows a crossing sit-
uation that cannot be handled by methods that do not take
orientation into account. In the case of vessel extraction,
going straightforward is much more probable when encoun-
tering a crossing. Figure 8 shows a synthetic example with a
such simple crossing configuration. Both classical 2D Fast
Marching and Li/Yezzi methods give an undesired path,
while the proposed method finds a correct result.
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Figure 9 shows a real-life example with a simple road
crossing. In this experiment, two starting points x1 and x2

were provided - i.e. the set of seed points isA(x1)∪A(x2).
Shortest paths from two different ending points are shown
for the three tested algoritms. The proposed method again
finds the correct paths.

Classical FM Li/Yezzi Proposed method
Figure 8. Comparison of the different methods when encountering
a crossing. Only the proposed method goes from the start to the
ending point following the natural path for vessel extraction.
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Conclusion

This article introduces a novel framework for the auto-
matic extraction of tubular structures, estimating both cen-
terlines and radii. Examples on synthetic, medical and satel-
lite images, with potentially intersecting curves, show the
necessity to incorporate the orientation information in the
model. The proposed method was compared to state of the
art methods, proving to be more accurate and more stable. It
shows robust results on different types of images. Its inde-
pendence with respect to the local tubular structures detec-
tor makes it adaptable to any modality. A synthetic dataset
will be available online in order to establish a benchmark
for future contributions on centerlines/radii extraction.
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