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Abstract

We propose a new approach for detecting low textured
planar objects and estimating their 3D pose. Standard
matching and pose estimation techniques often depend on
texture and feature points. They fail when there is no or only
little texture available. Edge-based approaches mostly can
deal with these limitations but are slow in practice when
they have to search for six degrees of freedom. We over-
come these problems by introducing the Distance Transform
Templates, generated by applying the distance transform to
standard edge based templates.
We obtain robustness against perspective transformations
by training a classifier for various template poses. In ad-
dition, spatial relations between multiple contours on the
template are learnt and later used for outlier removal. At
runtime, the classifier provides the identity and a rough
3D pose of the Distance Transform Template, which is fur-
ther refined by a modified template matching algorithm that
is also based on the distance transform. We qualitatively
and quantitatively evaluate our approach on synthetic and
real-life examples and demonstrate robust real-time perfor-
mance.

1. Introduction

In recent years, many efficient methods for 2D and 3D
object detection and pose estimation from monocular im-
ages were developed. Most of them assume textured ob-
jects and are based on template matching [20, 32, 2, 14] or
on feature point recognition [21, 30, 25, 27, 34]. These ap-
proaches are efficient for matching, but in general do not
provide the 3D pose. To recover the object pose 2D–3D
correspondences are usually assumed [26, 22, 16, 31, 1, 7].
However, in many applications only little or no texture is
present while only closed contours are available. Therefore,

Figure 1. The results of detection and pose estimation obtained us-
ing the proposed approach. Different objects are detected and their
pose estimate is visualized using the OpenGL teapot. Note that we
can handle clutter, difficult view angles and partial occlusion.

texture-based approaches for detection would fail, whereas
on the other hand, classical template-based matching algo-
rithms [19, 8, 28], which use a priori edge information,
can deal with these limitations. Unfortunately these clas-
sical template matching methods are based on exhaustive
search and are therefore known to be slow when explor-
ing six degrees of freedom. In addition, depending on the
scene clutter they can still have false positives. In this pa-
per we address the problem of real-time planar object de-
tection and 3D pose estimation. We concentrate on objects
which have little or no texture but where closed contours
are available as it is the case for many man-made objects,
and overcome the limitations of the above mentioned ap-
proaches. Our method is based on the distance transform of
edge-based templates, used for matching and pose refine-
ment. The templates can be complex and composed of one
or multiple closed contours. We developed a robust contour
extraction algorithm based on the distance transform which
is able to extract multiple closed contours robust to even-
tual gaps in the contour boundaries. Normalized template
representations of the extracted contours are produced by
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(a) (b) (c) (d)
Figure 2. An example input image (a), the corresponding Canny edge image (b), the distance transform computed from the edge image (c)
and the eight extracted templates used for object detection (d).

fitting an ellipse to them, which is done in a least squares
sense [12]. The affine elliptical regions are normalized to
the circular one similar to [25]. Perspective robustness is
achieved by training the Ferns classifier [29] with various
differently warped instances of the templates. Additionally,
spatial relations between multiple contours are learnt and
later used for outlier removal. Given a cluttered input image
at runtime, we robustly extract independent object contours
using the distance transform as discussed above. Such nor-
malized Distance Transform Contour Templates are clas-
sified using the trained classifier to retrieve their identities
and rough poses. The rough poses of the templates are fur-
ther refined by a modified template matching algorithm. It
is similar to the algorithm of Lucas-Kanade [24, 2], but in-
stead of using the pixel intensities we use the image distance
transform values. This simplifies the Jacobian calculation
and speeds up the refinement step. Possible outliers are re-
moved in two complementary steps. In one step, we evalu-
ate the mean square error between the template warped with
respect to the refined pose and the input image, and in the
other we verify it by using offline learnt spatial relations be-
tween itself and its neighboring contours. Consensus must
be obtained among the detected contour templates by veri-
fying their spatial relations.

We perform qualitative and quantitative evaluation of our
approach on real-life examples and demonstrate robust real-
time performance. In the remainder of the paper we review
related work, explain all the steps of the proposed approach
and finally provide experimental evaluation.

2. Related Work
The general problem of real-time object detection has

been and still is one of the major computer vision problems.
The challenge becomes bigger if the requirement is also to
compute the 3D pose of the object. There are several ap-
proaches to this problem, which have been proven to work
in practice. However, they solve either the detection or the
pose estimation problem independently and rarely address
both of them at the same time. Object detectors, which
are efficient and work in real-time are specialized and de-
signed for specific objects such as faces [33, 23, 5], pedes-
trians [8, 14, 6] etc. They are all based on learning where
a large number of training images is used. The training is

usually done only for the objects in one position and addi-
tional training effort has to be made to extend it to various
poses. In this case, the obtained poses are just qualitative,
like profile, frontal, etc., while the recovery of the precise
3D pose is not possible.

While the above techniques tend to be generic, [21] is
designed to be object specific. Given one textured model
image the appearance of the feature points invariant to the
viewpoint is learnt by a classifier. These feature points
are recognized in the incoming images, but no object pose
information can be extracted directly. In order to esti-
mate the pose other typical algorithms such as Posit [7],
PnP [22, 26, 31, 1], etc. have to be applied. All these ap-
proaches can be efficiently used for tracking, but tend to fail
if only few features can be extracted, which could be the
case due to the lack of texture. Recently, the local planar
patch pose has been learnt together with the feature point
identities [18]. One retrieved local pose allows directly for
rough pose estimation.

Contrary to feature-based approaches, template match-
ing approaches can directly be used for the estimation
of planar homographies between the planar model patch
and the input image. They are either based on textured
patches [24, 2] or on edges [28, 19]. The first approach min-
imizes an objective function which correlates the warped
version of the patch with the image where the later one uses
extensive search until the best matching score is obtained.

In this paper we employ a similar learning principle
as [18], but instead of using feature points we use the dis-
tance transform as input information. The distance trans-
form is computed on our model template we intend to de-
tect. It is robust to illumination changes and does not de-
pend on the texture. Although the distance transform has al-
ready been used for template matching techniques [13, 15],
we use it in a completely new way for fast and robust match-
ing and for initial rough pose estimation. In order to re-
fine this initial pose, we also introduce a novel technique
inspired by the Lucas-Kanade algorithm, but instead of us-
ing the pixel intensities we again use the distance transform
of the model template.
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(a) (b) (c) (d)
Figure 3. The first three images from the left show an edge image, its corresponding distance transform and different level curves of the
distance transform. Dark values of the distance transform correspond to small distances. Small gaps in the contour vanish if the level curve
is extracted at a high enough value. The most right image shows the propagation of the extracted level curve to real edges.

3. Distance Transform Templates
The model image of Fig. 2(a) is composed of multiple

closed contours and each contour is extracted and associ-
ated to a single Distance Transform Template as shown in
Fig. 2(d). The approach we propose relies on a training
phase in which the poses, identities and the spatial relations
of the Distance Transform Templates are learnt. At runtime
extracted closed contour templates are classified in order to
simultaneously retrieve their identities and the correspond-
ing pose approximations represented by homographies. The
retrieved poses are refined using distance transform based
template matching and outliers are removed by using learnt
spatial relationships among contours. In the remainder of
this section we discuss these steps in details.

3.1. Creating templates

In this section we show how to extract, normalize and
mask contours in order to get template patches that can be
used for matching. This procedure is applied to the model
image before training and to all input images at runtime.

The preliminary step of our approach is the extraction of
closed contours from cluttered input images. This is chal-
lenging because of large perspective distortions and pos-
sible edge discontinuities occurring sometimes due to bad
lighting conditions or due to reflections. We start by ex-
tracting seed points that will be used for contour extraction.
To do this, we compute the distance transform of the edge
map, shown in Fig. 2(b), corresponding to the input image.
In practice, we use the Canny edge detector [4] for creating
the edge map. The distance transform [3, 10] of an edge
map is a map, in which each entry, or pixel, has the value
of the distance to the nearest edge pixel in the edge map
as shown in Fig. 2(c) and Fig. 3(b). The seed points are
defined as local maxima of the distance transform and are
processed in descending order of their distance transform
values. We define a closed contour of a shape as connected
and closed sequence of zero valued pixels in the edge dis-
tance map around an initial seed point. However, due to
small gaps, a closed and connected sequence of zero valued
pixels is very often impossible to find. Therefore, we com-
pute the level curve of the distance transform at a specific

Figure 4. The normalization of the contour patch to a canonical
scale and orientation. (a) Fixing the orientation to the y-axis. (b)
Fixing the scale to the size of the predefined patch (c) used for clas-
sification. (d) The final normalized Distance Transform Template
obtained by warping the distance transform of the input image.

value β, where the contour appears to be closed as shown
in Fig. 3(c). In practice, β is computed by multiplying the
seed point value with a predefined value α, and it is reached
by going downhill starting at the seed point. Once a pixel
on the distance map with value β is arrived the correspond-
ing level curve of the same value is followed to extract the
contour. Multiplying the seed point value with α makes the
selected value β invariant to scale. In order to ensure the
robustness to perspective transformations and to close even-
tual gaps in the initial contour, the extracted contour points
are propagated to the zero values of the distance transform
as shown in Fig. 3 (d).

Seed points within the same shape will obviously pro-
duce the same contour many times. In order to prevent this
an indexing map is used that marks a contour as soon as it
has been extracted.

The normalization of the template patch consists of
transforming the contour to a canonical scale and orienta-
tion. The first step is to fit an ellipse into the contour points
in a least square sense [12]. Then the orientation of the
contour is fixed by rotating the fitted ellipse such that its
dominant direction is aligned to the y-axis. The canonical
scale is obtained by scaling all contour points to be inside
the ellipse area. Finally, the rotated contour is normalized
to a circle as depicted in Fig. 4.

The so created normalized Distance Transform Tem-
plates should be discriminative enough to be used to train
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(a) (b) (c)
Figure 5. Different maskings of the second template shown in
Fig. 2(d). (a) The unmasked Distance Transform Template. (b)
The outer parts of the contour, shown in black, are masked. (c) The
complete masked template with inner and outer contours masked.

and test a classifier. However, due to background clutter
and eventual contour discontinuities it is not desirable to
take the entire distance transform map into account. For
this reason we consider only the area enclosed by the con-
tour for the classification, which leads, in practice, to better
classification results. To achieve this, we introduce mask-
ing. We mask the neighborhood of the outer contour and
the inner contours. The masking process is shown in Fig. 5.

3.2. Training

We train the Ferns classifier of [29] using the Distance
Transform Templates extracted form the model image. We
do not only learn the template identity Tid, but also the tem-
plate pose Tpos. This is done by creating view-dependent
classes for each closed contour template. In practice, we
randomly warp the model image, extract the contours and
normalize them. We then check for each extracted con-
tour if it fits to one of the already created classes using the
pose refinement described in the next Sec. 3.3. If the mean
square error of the refined pose is below a specific thresh-
old we update the posterior probability Ppos,id = P (Tid =
id, Tpos = pos|P) of the template identity at the specified
pose. Otherwise, the extracted contour is considered as a
new class. The total number of classes is equal to the total
number of non-equal poses obtained for all template classes.
Once trained, the classifier retrieves the template identity
T̂id and its pose T̂pos simultaneously, as:

(T̂id , T̂pos) = argmax
(Id,Pos)

P (Tid = Id ,Tpos = Pos|P),

(1)
where Id is a random variable representing the identity of
the patch P and Pos is a random variable representing the
pose of the patch. The classifier is usually working on
the intensity values of an image and is able to retrieve the
patch identity under scale, perspective and lighting varia-
tions. Since the gray value image of the contour generally
gives low information due to its low texturing, we apply the
classifier directly on the Distance Transform Template map
that represents the given information in a more dense way.

In addition to learning the pose and identity of the tem-
plate we also learn spatial relations between multiple closed
contours of the same model template. By this, we are

Figure 6. Verification of contours using their neighbors. Contours
with filled black points are validated using the spatial relations
visualized by the arrows.

able to remove outliers that are still present after the self-
verification procedure of Section 3.3. For the spatial rela-
tionship verification, we use the pose estimated from the
matched and self-verified template to project the relative
positions of its neighboring contours into the current im-
age. The contours found at these projected positions will
be checked regarding to their compatibility to the expected
contours. Since the model template can consist of many
ambiguous contour templates - usually those having similar
shapes - we first have to check whether each closed contour,
chosen to verify another contour template, is located and
shaped distinctively enough. To do this, we cluster similar
contours and identify critical spatial relationships offline.
The clustering is done by randomly warping the model im-
age, extracting the contours and matching them against all
collected model contours using the already trained Ferns
classifier. If the warped instance of the model template is
matched to the wrong identity, we add this identity to a list
of wrongly matched template classes. By doing so, we get a
list of ambiguous template classes for each closed contour.
Due to their ambiguity, there is a high probability that a con-
tour within a cluster is matched to another model contour of
the same cluster. For example, looking at Fig. 6 the con-
tours 2, 4 and 6 and the contours 1, 5 and 7 will be clustered
together. Therefore, we check for each class if one of its
relations is also valid for another class of the same cluster.
If this is not the case, we mark the relation as non-critical.
Fig. 6 shows an exemplary configuration of contours, where
the arrows indicate the relations used for the spatial rela-
tionship verification. For example, neither the shapes of the
templates nor the relations between the contours 4 and 5 and
between the contours 6 and 7 are distinctive enough to be
used for verification without any further information. The
final training step consists of the creation of a distance and
a gradient map for each template as presented in Sec. 3.3 -
similar to the ones used for self-verification, but this time
from the frontal and unnormalized view of the model im-
age. Using these special maps for the final pose refinement
allows to take all templates into account that were involved
in the spatial relation verification.
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Figure 7. The patch distance (left) and gradient (right) maps as
used for pose refinement. Shown maps correspond to the mask
shown in Fig. 5. Dark values of the distance map correspond to
small values.

3.3. Pose refinement

At runtime closed contours are extracted from the in-
put image and Distance Transform Templates are created.
Querying the classifier of Sec. 3.2, the identity and the ap-
proximate pose for each template is retrieved. The obtained
pose is refined by an approach similar to the Lucas-Kanade
template tracking algorithm [24]. In contrast to the Lucas-
Kanade algorithm, which is based on the image intensities
and gradients, we use distance transform values and simu-
lated gradients. More precisely, for each template, we pre-
compute the distance map DT and the gradient map GT .
The distance map DT is similar to the distance transform
of the normalized model contour without considering the
neighborhood and the inner contours as shown in Fig. 7.
The gradient map GT is a map of two-dimensional values
where each entry is a vector indicating the direction from
the considered pixel to the nearest point on the normalized
model contour. In practice, the direction of each vector
is reverted such that it points from the normalized model
contour away and matches the natural gradient direction as
shown in Fig. 7. The gradient directions are normalized
such that their length is equal to 1. Note that these maps are
precomputed for all template patches.

The goal of the Lucas-Kanade algorithm is to align a
template image IT to an input image I by minimizing the
vector of image value differences y (∆x) with respect to
the increment of the parameters ∆x of the warp function
w (x̂ + ∆x; pi), which is in our case a homography:

y (∆x) =
[
y1(∆x) y2(∆x) . . . yq(∆x)

]T
, (2)

where

yi(∆x) = I (w (x̂ + ∆x; pi))− IT (pi) , (3)

and q is the number of pixel locations of the template im-
age, x̂ and ∆x are k-dimensional vectors containing the pa-
rameters of the warp and its increments respectively, and
pi = [ui, vi, 1]T is an image point.

In order to use the offline computed distance and gradi-
ent maps in the Lucas-Kanade like optimization, we replace

the template image IT and the input image I with the cor-
responding template distance map DT and image distance
map D respectively. Furthermore, we only consider parts
of the template covered by the projected contour points and
switch the roles of the template and the image of the classi-
cal Lucas-Kanade objective function of Eq. 3 and redefine
yi(∆x):

yi(∆x) := DT

(
w−1 (x̂ + ∆x; pi)

)
−D (pi) . (4)

This is solved by first using a linear approximation of
y (∆x) and then minimizing this approximation iteratively
using Gauss-Newton gradient descent.

Using the chain rule, the ith line of the Jacobian matrix
Jy(0) can be written as product of two Jacobian matrices:

Jyi(0) =
∂yi(∆x)
∂∆x

∣∣∣∣
∆x=0

=
∂DT (p)
∂p

∣∣∣∣
p=w−1(x̂;pi)

· ∂w
−1 (x; pi)
∂x

∣∣∣∣
x=x̂

= JDT (w−1 (x̂; pi)) · Jw−1(·;pi)(x̂) (5)

where JDT (w−1 (x̂; pi)) is a (1 × 3) matrix and
Jw−1(·;pi)(x̂) is a (3 × k) matrix. Therefore, Jyi

(0) is a
(1 × k) matrix and Jy(0) is a (n × k) matrix, where n is
the number of contour points.

The first and the second row of the Jacobian matrix
JDT (w−1 (x̂; pi)) are the gradients of the distance trans-
form mapDT in x- and y-direction evaluated at w−1 (x̂; pi)
and the third row is 0, since the third component of a pixel
location is always 1. However, instead of using the real gra-
dients in x- and y-direction, we use the x- and y-values of
the corresponding precomputed gradient map GT . The en-
tries of the Jacobian matrix Jw−1(·;pi)(x̂) depend on the
specific parameterization of the warp. For details about
possible warps refer to [2]. Since only the points that are
covered by a contour pixel are considered for optimization,
D (pi) is zero for all evaluated points and, therefore, only
the precomputed distance map DT is needed to compute
y (∆x). Once the pose is estimated using the proposed pro-
cedure, we perform a self-verification step to identify ob-
vious outliers. This is done by evaluating the mean square
error of the recovered pose.The corresponding 3D pose can
be computed using homography decomposition [9].

4. Runtime and Results
In this section, we describe how to get during run time

from an input image to a final pose estimate. We also
present results of qualitative and quantitative evaluation on
different real examples. Note that all our experiments run
in real-time on a laptop with a 2 GHz Intel(R) Core(TM)2
Duo CPU and 2 GB RAM.
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Figure 8. The results of the proposed approach applied to the real world examples. The first image of each row shows the object to be
detected and the other images show the detected objects in cluttered images under different perspectives. The estimated pose is visualized
using the OpenGL teapot.

4.1. Runtime and Qualitative Evaluation

The first column of Fig. 8 depicts several model tem-
plate images used for training. The other images of the
same Figure represent input camera images processed in
real-time at runtime. The model templates are detected and
their poses are estimated, what is visualized by drawing an
OpenGL teapot on them. The overall procedure goes as fol-
lows. First, all closed contours are extracted in the input
image using the distance transform. Then, they are nor-
malized to the canonical scale and orientation and masked
as described in Section 3.1 to create Distance Transform
Templates. The extracted templates are classified using the
previously trained Ferns classifier and their identities and
approximate poses are retrieved as discussed in Section 3.2.
The retrieved pose estimates are refined using the optimiza-
tion method described in Section 3.3 and the resulting mean
square errors are used for self-verification in order to dis-
card obvious outliers. Finally, the spatial relations among
the contours, learnt offline, are verified in order to remove
remaining outliers. This is done by initially considering

each contour independently and trying to verify its detected
identity using its neighbors as demonstrated in Fig. 6. In
addition, the identities of its neighboring contours are veri-
fied. If a template contour is verified by a given number of
neighboring contours, it is considered as inlier. In practice
it has been shown that two neighbors are enough to robustly
remove outliers.

4.2. Quantitative Evaluation

To evaluate the quality of our approach, we performed
several experiments on synthetic images. The synthetic im-
ages are created by rendering the template image at ran-
domly chosen poses on a highly cluttered background and
by adding white noise and affine illumination. In Fig. 9
and in Fig. 10, we show the percentage of successful
pose estimations at particular viewing angles for an engi-
neering drawing and for the front of a soldering iron sta-
tion. Our approach is compared to Ferns [29] followed
by RANSAC [11] (‘Ferns+RANSAC’) and N3Ms [17]
(‘Ferns+N3Ms’) respectively. N3Ms are investigated since
they use a similar local verification strategy as we do. Ad-
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Figure 9. Comparison of different approaches applied on an engi-
neering drawing.
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Figure 10. Comparison of different approaches applied on the front
of a soldering iron station.
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Figure 11. Evaluation of the proposed approach regarding to noise.

ditionally, we compared to an edge-based template match-
ing method [19] (‘Template matching’). Note, that our
approach outperforms both approaches based on Ferns in
terms of detection and pose estimation. The decrease of
the performance of our algorithm for the soldering iron sta-
tion is mainly due to the similarity of the available template
contours. They are often mutually confused and classified
as the same contour. Comparing to edge-based template
matching [19] that uses exhaustive search, we achieve bet-
ter results for the engineering drawing, especially for large
viewing angles, and get slightly better results for the solder-
ing iron station for small viewing angles. One reason for
the superiority in the case of the engineering drawing is that
thin lines can vanish in the higher pyramid levels as they
are used for template matching to increase speed. This is
not the case for the soldering iron station since clear edges
are available. Since our approach is independent of scale, it

clearly outperforms edge-based template matching in terms
of speed in applications, where high scale ranges are neces-
sary. For the accomplished tests the average runtime of our
approach was approximately 0.15s, while the edge-based
template matching method of [19] needed approximately
1.0s. The tests were done within a scale range of [0.9...1.9]
on images of size 1280 × 960. Note that our method is an
unoptimized version whereas for the edge-based template
matching a highly optimized implementation was used. Our
approach also works on larger scale ranges without signif-
icantly decreasing the runtime, which is not the case for
[19]. Fig. 11 shows the results of the evaluation regarding
to synthetically added noise. The black line hereby shows
the results for the proposed approach whileas the blue line
shows the results for a modified version, where the image is
smoothed before processing.

5. Conclusion

We introduced a new way of using the distance trans-
form for detecting textureless planar objects and estimat-
ing their 3D pose. The model image of the object of inter-
est is used to extract and create Distance Transform Tem-
plates corresponding to the closed contours on the object.
The identities, poses and spatial relations of the Distance
Transform Templates are learnt by training the Ferns clas-
sifier. From the cluttered input image, containing the ob-
ject of interest at some position, the closed contours are ex-
tracted and template patches are created using the distance
transform. Querying the classifier the identities and the ap-
proximate poses are obtained and further refined by using
a modified template matching algorithm based on the dis-
tance transform. Finally, we showed that distinctive spatial
relationships coupled with a distance transform based self-
verification are useful to robustly remove wrongly matched
templates.

We evaluated the performance of our approach on syn-
thetic and real-life examples and compared it to other de-
tection methods. We demonstrated that we perform bet-
ter, in terms of pose estimation and computational effi-
ciency, than existing methods, such as Ferns [29] followed
by RANSAC [11], N3Ms [17] and edge-based template
matching [19]. In particular the performance of our method
is better in the case of large scale changes. We applied our
approach to 3D tracking-by-detection, however, in practice,
it can be used in many other applications such as object
recognition, image retrieval or robot localization.
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