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Abstract

This paper introduces a new shape matching algorithm

for computing correspondences between 3D surfaces that

have undergone (approximately) isometric deformations.

The new approach makes two main contributions: First, the

algorithm is, unlike previous work, robust to “topological

noise” such as large holes or “false connections”, which is

both observed frequently in real-world scanner data. Sec-

ond, our algorithm samples the space of feasible solutions

such that uncertainty in matching can be detected explicitly.

We employ a novel randomized feature matching algorithm

in order to find robust subsets of geodesics to verify isomet-

ric consistency. The paper shows shape matching results for

real world and synthetic data sets that could not be handled

using previous deformable matching algorithms.

1. Introduction

Deformable shape matching has recently gained a lot

of interest. One application of deformable shape match-

ing is in improving the registration of 3D scans [9]: Even

expensive 3D scanners suffer from minor calibration prob-

lems that lead to alignment problems if large models are

acquired at a high spatial resolution. This can be compen-

sated by allowing for small global deformations. An ap-

plication area that requires handling much larger deforma-

tions stably is the acquisition of deformable objects. For

example, scanning of humans, animals or other living be-

ings usually requires multiple scanning passes from differ-

ent perspectives during which the scanned subject will in-

evitably move in a non-rigid fashion. Hence, assembling

complete, high-resolution scans requires deformable shape

matching. A related application area is animation scan-

ning [20, 23, 25, 28, 30]. In this line of work, which has

received quite some attention recently, the goal is to cap-

ture the dynamics of a moving object in real-time. Again,

it is necessary to construct a composite object from several,

probably strongly deformed poses with significant deforma-

tion. The available data in each frame of an acquired ani-

mation is usually incomplete, as typically being measured

from a sparse set of views only. Therefore, the matching al-

gorithm needs to be able to deal with partial data, matching

portions of the surface with several large holes.

Several algorithms have been proposed to solve this de-

formable matching problem in a time-sequence manner,

where only temporally adjacent frames are combined un-

der the assumption of spatial coherence, using deformable

variants of the ICP algorithm, such as [4, 14, 25, 28]. These

techniques yield good results for small inter-frame deforma-

tions. However, they are rather unstable under fast move-

ments of the scanned object that lead to substantial differ-

ences in pose. Matching objects with strong deformations

is easy if a set of guiding markers is available that specify

the rough pose of the object. Using this information (of-

ten provided by manual labeling [3, 4, 22]), the shapes are

roughly prealigned and afterwards a fine-scale alignment

is performed by deformable ICP. Recently, a number of

fully automatic techniques have been proposed for global,

pose independent deformable matching by computing such

marker sets automatically. The key idea for these tech-

niques is to preserve geodesic (“intrinsic”) distances, as-

suming that the deformation of the object is approximately

isometric [1, 5, 7, 10, 15, 24].

In this paper, we extend this line of work. Our goal is

also to find a suitable set of markers that could be used to

guide a locally convergent deformable ICP algorithm. This

is done fully automatically, without user intervention and

without assumptions on pose or deformation. Our only

requirement is that the unknown deformation is approxi-

mately isometric, i.e., roughly preserves distances on the

surface. The novel aspect of our work is that we propose a

technique that still works under topological noise. We make

three main contributions:
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Figure 1: Pipeline overview of our algorithm. A pair of input point clouds is first preprocessed Sect. 3.1. Afterwards a set of feature points and a

superset of all correspondences is computed, Sect. 3. Afterwards a RANSAC-like search of candidate solutions is performed, Sect. 3.3. And finally

each solution is being postprocessed, Sect. 3.5 and 3.7.

• We propose a randomized, RANSAC-like matching

strategy that, unlike previous techniques, simultane-

ously estimates the correspondences and the validating

geodesics in an outlier-robust way.

• We employ a new tangent-space optimization algo-

rithm to optimize the placement of feature points for

maximum isometric matching, yielding better result

for noisy feature positions.

• We sample the space of plausible matches, which gives

us the ability to explicitly examine matching alterna-

tives. We consider this an important building block

for fully automatic matching of complex models from

several pieces.

We also consider the problem of upsampling sparse initial

correspondence sets to denser sets [1, 15], where our tech-

nique again has the advantage of being resistant to topolog-

ical noise. We apply our matching algorithm to a number

of data sets and show reliable matching results for general

pose and topologically distorted data with holes and false

connections.

2. Related Work

Deformable shape matching can be classified in local

and global matching strategies. Local matching is based

on deformable variants of ICP [4, 18, 28], where point-

to-surface distances are minimized under the regulariz-

ing assumption of elasticity. Alternative formulations that

have been proposed include optical-flow-like correspon-

dence propagation [20, 27] for densely sampled time se-

quences and Laplacian diffusion [1] for correspondence in-

terpolation. Li et al. propose a semi-global matching tech-

nique that is more robust in convergence by numerically

optimizing matching weights [18]. Bronstein et al. [7] ex-

amine the problem of embedding surfaces into each other

isometrically using a numerical optimization scheme (gen-

eralized multi-dimensional scaling). Our numerical refine-

ment scheme for feature positions uses a similar objective

function. Anguelov et al. [5] use loopy belief propagation

to solve a graph matching problem. This idea is extended

in [24], using only local neighborhoods, which allows for

some resistance to topological changes. A simple and very

effective matching algorithm for pairwise constraints has

been proposed in [17], relaxing quadratic assignment to an

eigenvalue problem. This algorithm can be applied to de-

formable matching using feature detection to define key-

points and the preservation of geodesic distances between

pairs of features as pairwise validation criterion. This ap-

proach is used for example in [1, 6, 15] for global shape

matching and is currently probably the most frequently used

and state-of-the-art technique. The main drawback of this

algorithm is that the pairwise validation criterion (sets of

geodesic distances) have to be specified upfront. Therefore,

a small number of topological problems that reroute some

of the geodesics can drastically impact on the matching re-

sults. Other deformable matching techniques include op-

timization with deterministic annealing [11] and Chang et

al.’s technique [10] based on graph cuts. Zhang et al. [29]

sample assignments of a sparse set of extremity feature.

A similar idea is used for sequence merging in [26]. Au-

tomatic insertion of additional correspondences based on

landmark features has been proposed to us by L. Guibas

[personal communication], motivated by earlier work on

landmark for routing in sensor networks [12]. It has been

examined recently more in detail by Huang et al. [15], prop-

agating denser correspondences by geodesic landmark co-

ordinates, and Ahmed et al. [1], who employ Laplacian dif-

fusion of correspondence information. A related proposal

for dealing with this problem has been made by Bronstein

et al. [8], who trade-off Euclidean and intrinsic distances for

validating matches. They show significant improvements

over intrinsic-only matching criteria but the technique is not

able to handle general cases of strong deformations, where

Euclidean matching becomes very unreliable.

3. Isometric Matching

We start our matching algorithm by computing corre-

spondence candidates by feature matching. This gives us

a superset of correspondences from which we have to ex-
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tract a correct subset. We also compute geodesic distances

between all feature points, which gives us a superset of

geodesics where some of those might actually be incorrect

and give false cues for validating the correctness of the cor-

respondences. We are now looking for a subgraph of con-

sistent correspondences and geodesics that is maximal in

the sense that no edges can be added without exceeding an

error threshold. Out of the many different such solutions

that may exist, we will prefer large solutions with many

correspondences, each validated by many pairs of geodesic

distances, as these are less likely to be spurious matches.

In order to compute such a solution, we use a RANSAC-

like algorithm that randomly samples the solution space.

For efficiency reason, we will bias the random search to-

wards promising matching candidates by employing a suit-

able importance function. In order to perform this algorithm

reliably, we need a criterion for the reliability of verifying

geodesics, which we develop subsequently. Next, we em-

ploy a tangent-space optimization technique to compute an

optimal placement of the features. After having obtained a

good set of feature matches, we extend the correspondences

to so far unlabeled space by inserting new “secondary” fea-

tures derived from distances to matching correspondences.

Finally, this dense feature set is also fine tuned by apply-

ing tangent-space optimization again. In an outer loop, we

execute the whole matching algorithm repeatedly in order

to find matching alternatives which are ranked by how well

they explain the input data and output to the user. In the

following, we discuss all of these steps subsequently.

3.1. Input Data and Preprocessing

We directly work on the point-based representation as

provided by a 3D scanning device. We expect two sets of

3D points X( j) = {x
( j)

i
}, i ∈ {1..n j}, j ∈ {0, 1} as input. These

two point sets are samples of two (unknown) smooth man-

ifolds S( j). We first compute normals from the k-nearest

neighbors of each data point (k = 20) using PCA. Addi-

tionally, we also compute a “topology graph” for each point

cloud. This graph just connects every point to its k-nearest

neighbors (again, we typically use k = 20) and approxi-

mates the local connectivity of the surface. Please note that

this graph does not need to form a valid triangle mesh. We

will use the graph distance in this graph (using Dijkstra’s al-

gorithm) as an approximation for geodesic distances in the

sampled manifold, which is the standard approach for fast

estimation of geodesics.

3.2. Feature Matching

In the next step, we compute a candidate set of sur-

face feature points. In principal, any surface feature match-

ing technique can be employed at this point [13, 16, 19].

In our work, we use the slippage feature matching tech-

nique [6]. Slippage features detect keypoints by maximiz-

Figure 2: Faces data set and its registration. The dataset represents a hard

case with different topology due to the connections in the mouth region.

ing the stability of the auto-alignment of local surface pieces

in scale space, which leads to a large number of stable fea-

ture points. In the following, we will refer to the features

on surface j as p
( j)

i
, i ∈ {1, ..., k j}. Given a set of feature

points, we next compute a local descriptor for small circu-

lar neighborhoods of each feature. We use a rather simple

descriptor that just computes a histogram of mean curvature

in this region. Mean curvature is computed from a quadratic

moving-least-squares surface approximation (see [6] for de-

tails). Having computed feature points and descriptors, we

build an initial matching graph: We connect all features on

S(0) and S(1) with correspondence edges for which the de-

scriptors are similar up to at least a user defined threshold

(we choose a conservative threshold that leads to many false

positives, as we will subsequently filter the graph further).

Additionally, we also connect all pairs of features {p
(0)

i
}i in

shape 0 and all pairs of features {p
(1)

i
}i in shape 1 with val-

idation edges and compute the approximate geodesic dis-

tance between these pairs. Each validation edge is tagged

with this distance.

3.3. RANSAC Subgraph Extraction

Given the input candidate graph, we now extract a con-

sistent subset using a RANSAC-like randomized sampling

algorithm. Naively, we could enumerate all possible sub-

graphs of our candidate set and evaluate how well it ex-

plains the data. However, this would lead to costs of O(2N)

where N is the overall number of validation and correspon-

dence edges. By random sampling, we can examine the

same search space in expected time O(N ·2N) [21], which is

slightly worse. However, by augmenting the sampling den-

sity, we can obtain a more efficient solution. Obviously, it

is not reasonable to try matches that are very unlikely to be

correct. Therefore, we will employ importance sampling,

which distorts our random sampling density in a way to

yield promising matching candidates with larger probabil-

ity. This will drastically reduce the expected time required

to find a good match. We can further motivate the effi-

ciency of this scheme using a heuristic argument: For the

first match, we can only rely on the rather noisy descriptor

matches as importance function. These matches typically

have outlier rates of 80%, i.e. 4 out of 5 matches are wrong.

However, once we have found at least 2-3 matches, this es-

tablishes a local coordinate frame in terms of geodesic dis-
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Figure 3: Matching results: (Left) guy data set 75 features (35 secondary features) were registered.

(Right) arm-dataset registered 84 feature (56 secondary features).

Figure 4: Arm data set matched with (left)

our algorithm and (right) spectral matching.

tances, so that it becomes much easier to judge whether new

correspondence candidates are correct. From this perspec-

tive, we only need a small number of random guesses to find

a candidate set that bootstraps the matching process, rather

than an exponential number in N.

In order to implement this strategy concretely, we em-

ploy the following algorithm: We start by selecting a ran-

dom correspondence mi, j = (p
(0)

i
,p
(1)

j
) according to an im-

portance sampling density p(mi, j). Initially, this density is

chosen to be proportional to the descriptor matching scores.

Then we iteratively add more correspondences using an

augmented sampling density that takes the geodesic dis-

tances to existing features into account. These distances

will not be exact because of slightly non-isometric defor-

mations, as well as noise in the feature location and dis-

tance estimation process. For simplicity, we assume that

the aggregate of these errors, for a correct match, yields a

Gaussian distribution. The standard deviation of this distri-

bution could be calibrated by user-labeled example matches

from the data source considered; we currently set this pa-

rameter manually. If we already have several correspon-

dences in our candidate sets for the correct subgraph, we

have to check multiple geodesics. We now assume that the

error affecting the geodesic lengths is independent for each

geodesic. While this is certainly not exactly the case, it is a

reasonable approximation in practice. In this model, we can

compute the probability of length distortion. Let lk denote

the actual geodesic distance observed and l
(0)

k
the correct

geodesic distance, the probability density for this deviation,

given the match mi, j is correct, is given by:

p(l1, ..., ln(i, j)|mi, j) =
1

σm (2π)m/2

m∏

k=1

exp




−

(

lk − l
(0)

k

)
2

2σ2





(1)

Now we can employ Bayes rule to compute the probabil-

ity of match mi, j being correct, given we know how well

geodesic distances are preserved:

p
(

mi, j|l1, ..., ln(i, j)
)

=
p
(

l1, ..., ln(i, j)|mi, j
)

p
(

mi, j
)

∑

i, j p
(

l1, ..., ln(i, j)
)

p
(

mi, j
) (2)

Here, p(mi, j) is the prior probability of matchmi, j being cor-

rect, which in our case is given by the descriptor match-

ing. This formula can directly be used to choose the next

match to be added to our current subgraph: We compute

the matching likelihood, given by this formula, and use

the corresponding probability density for importance sam-

pling. For importance sampling, we generally exclude any

matches that receive a very low matching probability (typ-

ically, below 1%). Therefore, the iteration terminates auto-

matically when no more reasonable matches are available.

As an alternative to pure importance sampling, we can also

use only the best (maximum a posteriori) match once a suf-

ficient number (typically 3-5) of base correspondences have

been sampled. In our experiments, this leads to a better re-

sults in comparison to the purely random algorithm.

3.4. Handling Topological Noise

The algorithm outlined above yields very good results,

comparable to or even better than state-of-the-art matching

algorithms such as spectral geodesic matching [15, 17] (see

Figure 7). However, this may fail once the geodesics be-

come unreliable. As mentioned in the conclusions of [15],

one needs to be able to handle geodesics in an outlier robust

way, which is hard to incorporate in standard techniques

such as pairwise spectral validation. For our RANSAC-

like matching algorithm, however, this is rather easy to

achieve: In a plane, two different points are sufficient to find

unique geodesic coordinates for all other points up to mir-

roring along the line defined by the coordinate points, and

three non-collinear points define a unique barycentric coor-

dinate system. On curved manifolds, the situation might be

more complex. However, in practical cases, it is highly un-

likely to have two different points with the same geodesic

distances to a larger number of feature points (say, to 10

different points). Therefore, we do not need to guarantee

full geodesic consistency but it is sufficient to have a large

enough witness set that proves the correct match, while fur-

ther geodesics inconsistencies can be regarded as outliers

due to topological noise. We now augment our RANSAC

matching loop as follows: In computing the matching prob-

abilities (1), we do not use all geodesics but determine the

subset of geodesics that does not show too large deviations

in distance across shapes and use only this subset for vali-

dation. In order to make this reliably, we demand to have at
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least k such geodesics, with k typically in the range of 5-10.

This means that out of n geodesics, n − k are allowed to be

outliers, we only need a minimal proof of correctness.

3.5. Tangentspace optimization

Feature positions are not exact as they rely on the ability

of the feature detection algorithm to find well-defined spots.

We usually cannot effort to use a very firm threshold on

the well-constraintness of the feature position because this

would remove too many features, limiting the scope of the

matching. In addition, we may have wrong matches to actu-

ally different but nearby features that still meet our geodesic

validation criterion. By moving these features slightly we

can obtain a much better matching. Assume we are given

k reference points and one more point x ∈ S with geodesic

distances l = (l1, ..., lk). At x, we form a two-dimensional

tangent space coordinate system of orthogonal vectors (u, v)

that are orthogonal to the surface normal n(x). Let x(uv) be

the coordinates of x in tangent space. We now consider the

partial derivatives of the position of x(uv) by the length of

the geodesics. Up to first order, we obtain:

△x(uv)(l1, ..., lk) �

(

∂x(uv)

∂l1
· · ·
∂x(uv)

∂lk

)

︸                ︷︷                ︸

=:∇l

△l (3)

where △l is the displacement in geodesic coordinates. We

get a linear map ∇l that transforms small displacements in

geodesic coordinates into displacements in spatial coordi-

nates. In order to compute the gradients ∂x(uv)/∂li we con-

sider a spherical neighborhood S (x) of points and compute

geodesic distances to the reference point for all points in the

point cloud. This comes at no additional cost, as this has to

be done during the Dijkstra algorithm anyway. Afterwards,

we compute a least-squares fit of a linear model to the re-

sulting distance values (with Gaussian weighting window

with standard deviation proportional to the radius of S (x)).

This means, we compute the coefficients a0, a1, b of a linear

model 〈a,△x〉 + b that fits the observed distances best in a

weighted-least-squares sense. The vector a then yields our

gradient approximate in tangent space. Using this first or-

der approximation, we can setup a quadratic objective func-

tion that locally describes how well the length of match-

ing geodesics is balanced. We then optimize this function,

move the points in tangent direction, project them back on

the manifold using an MLS surface approximation [2], and

recompute new estimates for geodesic distances and their

gradients in every step, leading to a fairly efficient Gauss-

Newton-type iteration.

We obtain the quadratic objective function by expressing

the change of length of the geodesics in terms of gradients

of the geodesics with respect to the point position. In the

following, we use l
(k)

i, j
to denote the intrinsic distance be-

tween two feature points p
(k)

i
and p

(k)

j
on surface k ∈ {0, 1}.

Figure 5: Error of approximated intrinsic distances. The image shows the

maximum error over all geodesics between each point and all other points

of the point cloud. Horse: 8431 original points, 1355 sample points - max

error is 5% of the bounding box size. dragon: 20002 original points, 1598

sample-points - max error is 10%.

Correspondingly, we use g
(k)

i, j
:= ∂p

(k)

i
/∂l
(k)

i, j
to denote the

gradient of the geodesic distance with respect to the tangent

space (uv-) coordinates of a feature point p
(k)

i
. The notation

means that the gradient is measured at feature i on surface

k for a geodesic that connects feature i to feature j. This

yields the following objective function:

argmin
△pi∈R2

n∑

i=1

n∑

j=1
j,i

(

l
(0)

i, j
+ g
(0)

i, j
· △p

(0)

i
+ g
(0)

j,i
· △p

(0)

j
− l
(1)

i, j

)2

This is a quadratic objective function in the unknown

tangential displacements △p
(0)

i
. We set the gradient of this

energy to zero and solve the resulting linear system using

an SVD, which is robust to degenerate cases (numerically

small absolute singular values are not inverted). We then

move the feature points tangentially according to the com-

puted displacements in three-space. Afterwards, we project

each point back on a surface approximation obtained from

moving least square fit (with quadratic basis functions and

Gaussian weights). Then, geodesics are recomputed and the

scheme is iterated until it converges, i.e., only small changes

in energy occur. We move the point by the surface sam-

ple spacing ǫsampl in order to prevent missing the surface in

the projection step. In oder to make the scheme symmet-

ric, we alternate between optimizing the feature positions

on surface S(0) and S(1) in each iteration. In practice, this

symmetric approach shows to be significantly more robust

and accurate than a one-sided optimization, moving feature

points only on one surface.

3.6. Approximation of Geodesics

Each iteration of the tangent-space optimization step as

described in the previous section requires a recomputation

of intrinsic distances l
(k)

i, j
and corresponding gradients g

(k)

i, j

that involves running Dijkstra’s algorithm for each feature

point, which is quite costly. In order to solve this problem

we use an algorithm to precompute an approximation to the

geodesic distance and the corresponding gradients between

any two points on the point cloud surface: First, we com-

pute sampling points dn from the original point cloud. We
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downsample the point cloud in respect to the curvature by

a Poisson-disc sampler with radius inversely proportional

to the curvature. For the downsampling factor we have a

trade-off between the absolute error and preprocessing time

we are willing to tolerate. Figure 5 shows the absolute error

achieved with typical parameter settings.

Having the data points we now compute graph distances

between the sample points using the original, full resolution

graph for distance estimation. Next, we interpolate intrinsic

distance li, j and gradient gi, j between any points pi and p j
on the surface. First we determine k nearest data points

around both points pi and p j respectively where k is usually

4. Next, we place Gaussian basis functions around each

sample point with radius (standard deviation) proportional

to the point spacing and obtain the interpolated distance by

a partition-of-unity interpolation: For each source point, we

compute a partition-of-unity interpolation of all distances

to the destination and interpolate these again using a second

partition-of-unity interpolation in the destination domain.

3.7. Inserting Dense Secondary Features

The robust criterion for geodesic validation can also be

employed to insert new secondary feature points SP with

correspondences into our model. This is desirable as the

feature detection stage often fails to yield a sufficient num-

ber of feature points to cover the surface densely enough.

Inserting new correspondences is easy: We first pick a ran-

dom surface point out of the sample points d as described

in previous subsection. Then, we go through all points of

the target surface and pick the best matching one. We ap-

ply exactly the same matching criterion as for regular fea-

tures described previously: We require a minimum number

of geodesic distances to be correct within tolerance and that

this subset is stable. We add the best matching of those

correspondences to our correspondence set. This is iterated

until all points are taken or no more reliable matches are

found. In order to speed up this brute force search algo-

rithm, we try to reduce the search area: First, we find all

already matched features within a small neighborhood of

r·ǫsampl of the secondary feature point (typically: r = 8). We

compute the Euclidean distances and perform a partition-of-

unity interpolation of the corresponding points, interpolat-

ing the target positions in Euclidean space, which we then

project back on the target surface. We now examine all

target points within distance r · ǫsampl using a breadth-first

search on the topology graph. Only if this search yields no

result, we fall back to the expensive brute force search. In

practice, this yields a substantial speed-up.

3.8. Ranking of Matching Alternatives

The algorithm described so far will produce a single par-

tial isometric match of the two input surfaces. In case of

multiple valid solutions, it is a matter of chance which so-

lution will be output. For equally plausible results (simi-

larly isometric, same amount of features and area covered),

the algorithm will output all these results with a significant

probability. This randomization is actually useful to gain

more information about the matching of the two shapes in-

volved. We run the algorithm several times in an outer loop:

Instead of using only the best initial feature match from the

inner RANSAC loop, we keep the k-best matches (typically

k = 10). We run the whole pipeline for the first match. For

the next best feature match, we then determine whether it

is contained in the previous solution. The problem here is

that feature positions might be different so that we cannot

directly compare the results. Therefore, we interpolate the

matching results using a partition-of-unity Gaussian inter-

polation with window radius 2ǫsampl and compare the ob-

tained interpolated correspondences with the feature cor-

respondences. Points without feature correspondences in

their vicinity are treated as unmatched area and are ignored

in the comparison. Only if there is a substantial disagree-

ment, we compute a new solution from the initial feature

match. Otherwise, we dismiss the match and go on exam-

ining the next best. This is repeated until all matches have

been compared. In the end, we rank the results by counting

the number of overall features (initial and secondary fea-

tures) matched, which corresponds to matched area, multi-

plied by the number of geodesics that support each of the

validated features. If the numbers are equal, the error in the

deviation of geodesic distances is used as secondary sorting

criterion. This output is a sampled description of the match-

ing ambiguity present for the two shapes, with the “most

likely” reconstruction listed first.

4. Implementation and Evaluation

We tested our algorithm on an Intel Core2 CPU with

2GHz and 2GB RAM with different synthetic and real

world data sets. Table 1 summarizes the timings and statis-

tics.

Synthetic data: First, we apply our algorithm to two

well known 3D models, horse and dragon, which we sam-

ple synthetically. Figure 6 shows the matching results along

with a comparison to ground truth. The horse data set is

particularly hard to match because of the skinny and mostly

featureless legs. In addition, the model is perfectly sym-

metric under left/right-mirroring in its rest pose. Because

of the larger similarity between the right and left legs of the

horse, our algorithm actually prefers the mirrored solution

as best match. Figure 7 shows a registration of an artificial

data set. The two frames of the data set are equal except of

the topological holes added in the second frame. We were

able to match more features enabling the outlier detection

than with spectral matching [17] or with a simple RANSAC

matching. For a fair comparison, matching was performed

without tangent-space optimization and with no additional
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data set iterations |S(0)| · |S(1)| sample pts precomp. RANSAC registr. |M| score max error mean error

dragon 500 4760 3196 40m13s 20.2s 7m2s 95 7.43 0.11 0.015

horse 100 7740 1233 9m20s 36.5s 11m49s 100 6.95 n.a. n.a.

guy 500 2646 868 9m4s 36.1s 3m40s 75 5.01 n.a. n.a.

arm 500 1440 1974 16m13s 12.5s 4m38s 84 0.67 n.a. n.a.

face 100 7238 1920 17m30s 68.3s 8m10s 103 4.82 n.a. n.a.

Table 1: Numerical results: test data set, number of RANSAC iterations, number of candidate correspondences, sample points for geodesics approximation,

precomputation time, RANSAC and overall matching time, matching score [log-likelihood in Eq. 1], maximum and average error w.r.t. ground truth [where

available]). Please note that the actual RANSAC search is quite fast; most of the time is spend in precomputing geodesics and tangent space optimization.

secondary features.

3D scanner data: We examine three real world 3D scan

data sets (original raw data up to downsampling): “guy”,

“arm”, and “face”. All three suffer from both geometrical

and topological noise problems. Figure 3 shows the result

for the arm data set. Please note the big acquisition hole

on the palm as well as the fingers touching in only one

scan. Our algorithm was able to register 84 features. Figure

4 shows a side-by-side comparison of our algorithm with

spectral matching, which does not capture features in re-

gions of topological variation. To compare both algorithms

neither tangent space optimization was performed nor sec-

ondary features were added. Results for the face data sets

are shown in Figure 2. Again, in the mouth and eye re-

gions, false topological connections occur. We were able

to register 103 features (49 secondary features) in around 8

minutes. The example shows one limitation that our tech-

nique shares with all isometry-based matching techniques:

The portion of the face above the upper lip is not deforming

isometrically (at least not as portrait at scanner resolution),

so that the upper lip matches a bit too low. As this does

not appear as a spurious outlier, but a consistent shift, the

registration does not yield the intuitively expected result.

For the rest of the face, we obtain reliable results. Figure

8 shows results for partial matching with ambiguities - we

match the index finger of a scanned hand to the full hand

model. Among the 5 best matches are matches to two dif-

ferent fingers. See additional material for more extensive

results.

5. Conclusions and Future Work

We presented a global deformable matching approach

based on a novel RANSAC-like randomized sampling al-

gorithm. The algorithm works for general geometric data

sets solely assuming approximately isometric deformations.

The algorithm is robust to topological noise and unlike pre-

viously known techniques, our approach is able to output

matching alternatives by sampling the space of plausible so-

lutions. This might be an important tool in multi part match-

ing situations with ambiguous pairwise matches, such as an-

imation sequence reconstruction. In future work, we would

like to examine applications of our technique in that direc-

tion. In addition, we would also like to improve the approx-

imation of geodesics both in terms of speed and stronger ap-

proximation guarantees than just the trivial bound of sample

spacing resolution.
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