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Abstract

This paper presents a collaborative benchmark for re-
gion of interest (ROI) detection in images. ROI detection
has many useful applications and many algorithms have
been proposed to automatically detect ROIs. Unfortunately,
due to the lack of benchmarks, these methods were often
tested on small data sets that are not available to others,
making fair comparisons of these methods difficult. Ex-
amples from many fields have shown that repeatable ex-
periments using published benchmarks are crucial to the
fast advancement of the fields. To fill the gap, this paper
presents our design for a collaborative game, called Photo-
shoot, to collect human ROI annotations for constructing an
ROI benchmark. Using this game, we have gathered a large
number of annotations and fused them into aggregated ROI
models. With these models, we are able to evaluate six ROI
detection algorithms quantitatively.

1. Introduction
Attention plays an important role in human vision. For

example, when we look at an image, our eye movements
comprise a succession of fixations (repetitive positioning of
eyes to parts of the image) and saccades (rapid eye jump).
Those parts of the image that cause eye fixations and cap-
ture primary attention are called regions of interest (ROIs).
Studies in visual attention and eye movement have shown
that humans generally only attend to a few ROIs. Detecting
these visually attentive regions in images is challenging but
useful in many applications.

Many algorithms have been proposed for automatic ROI
detection in images. Unfortunately, these methods were
often evaluated only on specific and small data sets that
are not publicly available. The lack of published bench-
marks makes experiments non-repeatable and quantitative
evaluation difficult. In many fields, there is a growing
trend towards the use of common benchmarks for evalu-
ation and development of algorithms. Notable examples
include Caltech-256 for object categorization and Middle-
bury dataset for stereo vision. These benchmarks allow re-

searchers to compare their method with other algorithms
quantitatively and to identify the main factors that affect
performance, thus stimulating an even faster performance
improvement. Furthermore, the most promising approaches
in these fields often rely on machine learning. The success
of learning-based approaches, however, is heavily depen-
dent upon the training data. Benchmarks with ground truth
or annotations are crucial assets for such approaches.

There are two common ways to obtain benchmarks, mea-
suring and labeling. Measuring is often used in the situa-
tions when there is a true answer and there is apparatus to
capture the ground truth. On the other hand, labeling is used
when there is no available equipment to obtain the true an-
swer, face detection for example, or when there is potential
ambiguity in the answer to the problem, such as semantic
concept detection. For ROI detection, although it is possible
to employ a measuring approach to construct benchmarks
using eye trackers, we choose to use a labeling approach to
have participants annotate ROIs by hand. We prefer the la-
beling approach mainly because we need a large number of
annotations. It is not only because we need many images in
the benchmark, but also because each image must be anno-
tated by many different people. It has been suggested that
ROIs could vary according to personal and application per-
spectives. However, despite of differences, evidences also
indicate that there are lots of similarities among personal
ROIs [8, 10]. For example, Wooding found that the dif-
ference in regions fixated by two groups is less than 4%
on average [17]. Thus, we believe that the aggregated ROI
from many people should provide a useful reference. Un-
fortunately, eye trackers are still too expensive to be widely
deployed to collect a large number of annotations.

To collect a large number of human annotations from
many people, inspired by recent success of collaborative
games [15], we follow a similar approach and develop an
online game called Photoshoot for our ROI benchmark con-
struction. In Photoshoot, paired online players take turns of
“target” and “shoot” roles. The target player places targets
on an image displayed at both players’ sites. Without seeing
the placed targets, the shoot player attempts to find the tar-
gets by shooting at the image, essentially clicking on several
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locations on the image. To maximize score, players tend to
target and shoot at visually prominent parts of the image.
By playing this game, people help us annotate ROIs within
images. These annotations are fused to form an aggregated
ROI model for each image. The benchmark is then used for
quantitative comparisons for ROI detection algorithms.

Liu et al. also collected a set of images with human-
annotated ROIs for developing their learning-based ROI de-
tection algorithm [5]. They also compared their algorithm
with two other algorithms. The main differences of our
work from theirs are: (1) Their benchmark assumes that
there is only a single ROI region in each image while ours
does not have such an assumption. Many real-world images
do have multiple ROIs and it is important to evaluate ROI
algorithms’ capability on detecting multiple ROIs. (2) Their
benchmark is annotated by only few people while ours are
annotated by many. As ROI is subjective, we believe that it
is important to be annotated by many people. (3) Our eval-
uation is more complete, including more algorithms and a
more thorough evaluation.

This paper offers to the research community a large col-
lection of manually annotated ROI benchmarks and a uni-
form procedure for quantitatively evaluating ROI detection
algorithms. Specifically, our main contributions are: (1)
a publicly available large collection of ROI-annotated im-
ages, (2) an evaluation methodology for ROI detection al-
gorithms, (3) the most complete quantitative evaluation, to
date, for ROI detection algorithms, and (4) a game design
for collecting ROI annotations.

2. Related work
ROI detection algorithms. Bottom-up methods assume

that human eyes can rapidly skirt across the entire image
and select small areas that are different from the surround-
ings. Itti’s method [4] is probably the most popular exam-
ple. For an input image, it first computes a saliency map
from pyramid maps for color, luminance, and orientation
contrasts. A winner-take-all strategy is used to select the
most salient locations in order of decreasing saliency. Os-
berger and Maeder used a weighted combination of a re-
gion’s low-level features such as contrast, size, shape and
location to determine that region’s importance value [8].
Ma and Zhang proposed a method to locate ROIs as areas
of high color contrasts [6]. Fuzzy growing is used to find
the salient areas in the image. Hu et al. used generalized
principal component analysis (GPCA) method for finding
ROIs [3]. The values of intensity, colors and hue are first
transformed into the first quadrant of the polar coordinate
system. GPCA is then used to identify dominant compo-
nents as salient regions. Even if bottom-up approaches im-
itate our eye activities very well, their main defect is that
they do not emphasize highly semantic areas, such as hu-
man faces, in an image.

Top-down methods, on the other hand, assume that peo-
ple pay more attention to areas corresponding to semantic
objects even if those areas are not salient compared with its
surrounding [9]. To emphasize semantic objects, in addi-
tion to low-level features, top-down approaches often aug-
ment saliency map calculation with semantic object detec-
tion such as face detection and text detection. Ma and
Zhang’s fuzzy growing method optionally includes a face
detection module to improve the calculation of attended ar-
eas [6]. Chen et al. weighted together saliency attention
model, face attention model and text attention model to
form an aggregated image attention model [1]. A rule-based
approach is used to adjust weights. Different rules are ap-
plied to images of different categories.

Liu et al. proposed the first learning-based ROI detection
algorithm [5]. They used conditional random field as the
learning framework on three features, multi-scale contrast,
center-surround histogram and color spatial-distribution.

Collaborative labeling. Because of demands for train-
ing sets, many collaborative labeling tools for different ap-
plications have been developed. Russell et al. designed a
web-based tool called LabelMe for users to extract and an-
notate objects in images for object categorization [11]. For
LabelMe, the incentive to annotate is to obtain the whole
annotation data. These systems often only attract a few vol-
unteers or researchers. To harness more human power, von
Ahn is the pioneer to propose the idea of using online games
to attract more people to help [15]. He has designed ESP
game for tagging images [15], Peekaboom for locating ob-
jects [16], and some other games.

3. Photoshoot
Game design. Although our framework of using collab-

orative games is similar to ESP, designing such a game for
solving a different problem is actually not easier than de-
signing an algorithm [15]. As pointed out by von Ahn, any
good game design to solve a problem must simultaneously
satisfy two requirements: it ensures reasonable solution to
the problem to be solved and it is fun to play [15].

Photoshoot randomly pairs two online users. The paired
players do not know the identity of their partner and they
do not have any way of communicating other than an image
they can both see. In Photoshoot, players are assigned the
roles of “target” and “shoot” in turns. In a round, a same
image is presented to both target and shoot players. The
target player places targets on the image by drawing rect-
angles over the image using drag-and-drop (Figure 1(a)).
Up to five targets can be placed. Without seeing the targets
placed by the target player, the shoot player’s role is to guess
where those targets are by shooting at them by clicking on
the image (Figure 1(c)). Similarly, at most five bullets can
be fired. Both players receive a certain number of points
for each agreement of a bullet and a target. The targets that
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(a) Target mode (b) Target data

(c) Shoot mode (d) Shoot data
Figure 1. Photoshoot. On the left are the screen captures of a target
player (a) and a shoot player (c). Note that they were captured
during the course of playing. At the moment of capturing, the
target player had placed three targets and the shoot player had shot
two of them. The shot targets were displayed on the shoot player’s
screen while un-shot ones were not. One the right are the target
data (b) and shoot data (d) we collected at the end of that round.

have been shot are displayed and any further bullet shot on
those targets gives no point. For each round, players have
at most 15 seconds to either place targets or shoot bullets.
The players move on to the next round for a new image if
time is up, all targets have been shot or all bullets are used
up. Players can also pass on the images that they feel diffi-
cult to make decisions. The players switch roles in the next
round. They have a total of three minutes to go through as
many images as possible.

From game’s perspective, the goal is to guess where
your partners will place targets or shoot bullets to maximize
score. To increase the chance of agreement, since there is
no way for players to communicate, the easiest way for both
players to agree is to select the more prominent areas in the
image. It turns out the regions on which the two players
agree are typically the salient regions.

For our game to be successful, it is important to en-
courage players to continue playing by providing them with
points for agreements between targets and bullets. Although
the exact number of points is not important, for the game’s
purpose, the score rules must be able to encourage accurate
annotations. Thus, the score gained are inversely propor-
tional to the size of the target to avoid players setting ex-
tremely large targets to increase the chance of being shot.
To optimize score, players have incentive to choose proper
sizes for targets and good locations for bullets. For target
placement, larger targets increase chance of being hit, but
lead to lower score. On the other hand, smaller targets are

less likely to be shot, but could gain more points if they are.
Hence, the best strategy for target placement is to make tar-
gets just large enough to contain the more prominent areas.
For shooting, the score is inversely proportional to the dis-
tance between the position of the bullet and the center of the
target being shot. Therefore, the optimal shooting strategy
is to shoot at the centers of ROIs. By employing these score
rules, the game ensures that the optimal player’s strategy
is the optimal behavior we expect from annotators, leading
to more accurate annotations. Furthermore, we encourage
players to select the most prominent areas first by adding
bonus if the orders of target placement and bullet shooting
match better. In addition, points are not subtracted for pass-
ing to avoid noisy annotations for difficult cases.

Implementation. There are a total of 3,000 images in the
database collected from the web and our colleagues. Cur-
rently, we only use photographs. We do not employ a larger
database because our goal is to collect a benchmark instead
of attempting to annotate all images of the world. There-
fore, we want to obtain the aggregated behaviors by having
as many annotations as possible for each image.

We carefully choose parameters in the game. For exam-
ple, each round has a time limit of 15 seconds. It is because
experiments suggest that viewers tend to be distracted if the
duration extends beyond 15 seconds [7]. The limits on the
numbers of targets and bullets are set because there are usu-
ally only a small number of ROIs in an image. For example,
Privitera et al. reported an average of seven ROIs per image
according to their experiments [10]. We set a lower num-
ber at five so that the game is more enjoyable. This limit
is compensated when user annotations are aggregated into
ROI models in Section 4.

Similar to ESP, to avoid having the odd-number player
wait for too long in the queue, a bot can play with a player
with a pre-recorded set of actions from a real player [15].
Human players’ actions are still recorded even if they play
with the bots. As ESP, cheating prevention is necessary.
When players connect to our server, they are not immedi-
ately paired to avoid cheating by logging in at the same
time. Since players have no way for communication be-
tween them, it is unlikely for players to cheat by setting up
strategies during the game. However, they could use some
pre-defined protocols to cheat. For example, they could
decide to place targets and shoot bullets at the center and
four corners. We check for several unusual patterns and put
cheaters into a blacklist. Overall, we observed very few
cheats. It is because there is no fun to cheat. In addition,
since we aggregate data from multiple players, we can de-
tect cheats during off-line analysis described in Section 4.

Statistics. During the one-month period after Photo-
shoot’s deployment, there are a total of 1,002 users who
have played at least once. Among these people, 71% of
them played more than once and 36% played more than
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four sessions. Furthermore, 20 people played more than 60
times (3 hours of playing) and some have spent more than
10 hours playing this game. The number is not as amazing
as ESP’s. However, it is good enough for us to construct
a useful benchmark since we only intend to annotate 3,000
images. From this one-month period, we have collected a
total of 134,646 targets and 168,352 shoots. Figure 1(b)
shows an example of target data collected from a player and
Figure 1(d) shows an example for shoot data for a round.

4. ROI modeling

For each image I , we have a set of target data, rectan-
gles, and a set of shoot data, points. Unlike ESP, in our case,
users’ inputs can’t be directly used as answers to the prob-
lem to be solved. Instead, we have to fuse users’ annotations
together and convert the result into more popular ROI for-
mats. This is the nature of ROI and not unique to labeling-
based approaches. For measuring-based approaches such as
eye tracking, post-processing and fusion are also required to
convert measurements into more useful formats.

There are several common formats to represent ROIs.
Different formats could be useful for different applications.
Conversions between formats are possible although there is
no definite way for conversions.

An importance map. It is also called a saliency map. In
such a map, each pixel records an importance score for the
degree of being a part of ROIs. With proper normalization,
an importance map can also be interpreted as a probability
density distribution of belonging to an ROI for each pixel.
An importance map is a more general format since it can
be easily converted into other formats. Many algorithms
output this form, at least as an intermediate result [4, 6].

A binary ROI mask. Each pixel in the mask records
whether it belongs to part of ROIs. A few algorithms can
only output this format [3].

A set of focus of attention (FOA) [4]. ROIs are represented
as an unordered set or an ordered list of a handful of at-
tended points [6].

The remaining of this section introduces methods for ag-
gregating data from multiple players. We have two types of
data, target and shoot. They are converted separately into
different formats. Although combined separately, they use
each other for verification.

4.1. Target ROI model

Each target ti is a rectangle with a center (xi, yi), a width
wi and a height hi. Thus, each ti defines a Gaussian Gi cen-
tering at (xi, yi) with the standard deviations related to wi

and hi by a scaler factor s. We set s as 1
3 in our exper-

iments. Each Gaussian can be regarded as an importance
map by itself. In principle, we could form an importance

map simply by superimposing all Gaussian functions Gi to-
gether. However, as mentioned earlier, the collected data
might be polluted by cheats or annotation noises. For con-
structing a more reliable model, we use Random Sample
Consensus (RANSAC) algorithm to remove outliers.

If we already know there are k ROIs in the image, then
the important map should have k modes. Thus, we can form
a hypothesis by randomly selecting k Gaussians from Gi’s
as hypothetical inliers. A hypothetical model is then formed
by superimposing these k Gaussians. All other Gaussians
are tested against the hypothetical model and the number
of their agreements with the hypothesis is counted. If there
are sufficiently many inliers, then the hypothetical model
should be reasonably good. This process is iterated sev-
eral times and the hypothesis with most agreements is se-
lected. Finally, all targets regarded as inliers to the selected
hypothesis are fused together to form the final importance
map. We also have to define a metric to evaluate the dis-
tance between two importance maps for inlier verification.
Since importance maps can be regarded as probability den-
sity distributions, methods such as KL divergence and inter-
section could be used. We found that intersection leads to
more stable results and used it in our implementation.

The main question that remains is to determine a proper
number of ROIs, k. This is essentially a model selection
problem and there are several possible solutions such as
minimum description length. We opt for an easier but more
effective solution, using hold-out set to select the model
with a minimum generalization error. The main drawback
of using hold-out set is the waste of precious data. However,
we can use shoot data as the hold-out set to avoid the waste.
Hence, we enumerate k from 1 to 12, find the best model for
each k using RANSAC and select the one that best explains
the shoot data. We choose 12 as the upper bound since it is
suggested that an image usually has less than 11 ROIs [10].

Figure 2 gives an example for aggregating target data.
Figure 2(a) is the original image and Figure 2(e) shows all
target data. Figure 2(f) displays the aggregated model by
throwing in all target data without outlier removal. Thus,
it could have Extra ROIs due to outliers. In this map,
warm colors mean higher values and cold color represents
smaller ones. Figure 2(b,c,d) shows the fused models for
k = 1, 2, 3. Figure 2(g) lists the performance for models
of different k. Figure 2(h) shows the final aggregated target
model, selected when k = 4. Note that outliers are removed
and the number of ROIs does match our intuition.

4.2. Shoot ROI model

The nature of shoot data is similar to eye fixation mea-
surements from eye trackers. It is possible to fuse shoot
data in the same manner as fusing target data by artificially
augmenting fixed widths. Here, instead, we choose to fol-
low a more popular approach of clustering to convert shoot
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(a) Original image (b) Fused model for k = 1 (c) Fused model for k = 2 (d) Fused model for k = 3

(e) Collected target data (f) All-thrown-in model (g) Plot (h) Fused target model (k = 4)

(i) Collected shoot data (j) Shoot data without outliers (k) Clustering (l) Fused shoot model
Figure 2. ROI Model fusion. Given the original image (a), and the collected target data (e), the all-thrown-in model (f) could include
outliers. We use RANSAC to remove outliers for each specific number of ROIs, k. Models for different k are displayed in (b), (c) and (d).
To determine the right number of ROIs, the fitness of models of different k are plotted (g) and the best one (h) when k = 4 is selected. For
the given shoot data (i), outliers are first removed using the target ROI model (h). The points that remain are then clustered using affinity
propagation (k). One attended point is selected for each cluster to form a set of FOA as the shoot ROI model (l).

data into a set of FOA [10, 13, 7]. As specified by Santella
and DeCarlo [13], a algorithm for clustering eye movement
data should hold the following three desirable character-
istics: ability to produce consistent results without regard
to initialization, no need to know the number of clusters
in advance and robustness to outliers. We use a recently
proposed clustering algorithm, affinity propagation [2], for
clustering. It satisfies first two requirements. It has some
resistance to outliers as it would often create extra clusters
to contain outliers. These clusters of outliers can be easily
detected and removed. However, in our implementation, we
use the fused target ROI model to remove outlier first and
then feed the trimmed list into affinity propagation for clus-
tering. This is analogous to only keep the bullets that hit the
target set up by the fused target ROI model. The result of
affinity propagation assigns each cluster with a representa-
tive point. Thus, these representative points together form a
set of FOA, our shoot ROI model. Optionally, each cluster
can be fitted into a Gaussian to become an importance map.

Figure 2(i) shows all collected shoot data for Figure 2(a).
After removing outliers using the model in Figure 2(h), we
have points in Figure 2(j). These points are then clustered
into Figure 2(k). Figure 2(l) displays the final shoot model
of three attended points.

4.3. Results

Figure 3 shows several examples of the collected data
and the aggregated ROI models. Figure 4(a-c) shows more
examples for fused ROI models. Subjectively, most match
with our intuition for ROIs very well. Note that, even if
our game sets a maximum of 5 targets/bullets at a time, the
resulted ROI models are not necessarily restricted by this
number. The aggregated behavior of players tends to re-
cover all ROIs. See the third example in Figure 4 for ex-
ample. Similarly, although players can only draw rectan-
gles, The last example of Figure 4 shows that the recovered
ROI can match the shape of the object very well. On av-
erage, 90% of annotations are regarded as inliers by our
algorithms. We also validated our benchmark on a small
dataset of 30 images by comparing to ROIs labeled by vol-
unteers. The precision and recall of game-collected ROIs
against volunteer-labeled ROIs are 0.91 and 0.90 respec-
tively. In addition, we compared the game-collected ROIs
to ROIs from eye tracking data. The precision and recall are
0.85 and 0.87 respectively. These show that annotated ROIs
are very close to fixation ROIs although there is probably
slight variation between them. Furthermore, in some appli-
cations, the annotated ROIs are probably sufficient. For ex-
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(a) Original image (b) Collected target data (c) Fused target model (d) Collected shoot data (e) Fused shoot model
Figure 3. Examples of the collected data and fused ROI models.

ample, image cropping cares more about the regions which
users “consider” important. Thus, there is value in bench-
marks built around both kinds of ROIs.

From this large set of human annotations, we have made
several observations and some of them confirm observations
from others. First, more attention is drawn into semantic ob-
jects, especially human faces, even if they are of low con-
trasts or of small sizes. Other examples include texts, ges-
tures and unusual behaviors. This indicates the needs of in-
cluding higher-level visual components into ROI detection.
Second, center of an image tends to gain more attention.
This is caused by both the way photographers take pictures
and the way we look at an image. This suggests adding
spatial priors for ROI detection. Third, even if they are not
distinctive in low-level features, vanishing points often get
more attention in landscape photographs. Finally, if a ROI
is large in size, then it is often further divided into multiple
ROIs. In addition, viewers only fixated on a particular re-
gion of an object but not necessarily the whole object. For
example, we could only pay attention of the head of a horse.
Similar observations have been made by Nguyen et al. [7].

5. Evaluation
Our current evaluation implemented six methods, Itti’s

method [4], Fuzzy growing [6], Osberger’s method [8],
MSRA’s method [5], Robust GPCA [3] and Threshold se-
lection [12]. Note that these methods often output differ-
ent ROI formats and some even output multiple formats.
For example, Itti’s method can output importance maps or
convert it to FOA set using a winner-take-all (WTA) neu-
ral network while robust GPCA can only output binary ROI

Itti’s Fuzzy Osberger’s MSRA’s
method growing method method

L2 error 0.0053 0.0053 0.0053 0.0051
KL divergence 0.5683 0.5435 0.5641 0.4161
Intersection 0.3601 0.3879 0.3696 0.4921
Rank correlation 0.1795 0.3583 0.3242 0.5784

Table 1. Evaluation of importance maps. (The best ones are bold.)

Robust GPCA Threshold selection
Precision 0.0868 0.2214
Recall 0.1544 0.3834
MAP 0.1941 0.4131

Table 2. Evaluation of binary ROI maks.

Itti’s method Fuzzy growing
Precision 0.4475 0.4506
Recall 0.5515 0.5542

Table 3. Evaluation of FOA sets.

masks. Fuzzy growing can output any of three ROI for-
mats in Section 4, contrast-based saliency maps as impor-
tance maps, attended view as binary ROI masks and at-
tended points as FOA sets [6]. Overall, the evaluation on
importance maps gives a better indication. Unfortunately,
not all algorithms can output importance maps. Thus, for
evaluation, we have selected different metrics for different
ROI formats∗. Figure 4 shows examples for original im-
ages, ROI models in the benchmark and outputs of the eval-
uated algorithms.

∗Note that we do not necessarily evaluate all possible output formats
for the algorithms we have implemented.
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Importance maps. It is the most general form and could
be converted into the other two using methods such as WTA
or fuzzy growing. We report the results for L2 error, KL di-
vergence and intersection [14]. Sometimes, it is the relative
rank but not the absolute value that really matters. Thus, we
also report results for Spearman’s rank correlation.The out-
puts of Itti’s method, Fuzzy growing, Osberger’s method
and MSRA’s method are compared against the target ROI
models. Table 1 reports the results aggregated from all im-
ages in the benchmark. Note that a better method should
have a smaller value for L2 error and KL divergence, and a
larger value for intersection and rank correlation. For all
measurements, MSRA’s method consistently outperforms
other methods by a large margin. This may not be a sur-
prise since that method is learning-based. This indicates
that learning-based methods have the potential to give bet-
ter performance. Our benchmark could also serve as the
training set of such methods.

Binary ROI masks. There is no such form in our bench-
mark. It is possible to convert the important maps of the
target ROI models using thresholding or other methods. We
select a proper threshold and calculate the precision/recall
values for GPCA and Threshold selection. In addition, to
relieve the impact of the threshold, we also calculate the
mean average precision (MAP) by treating algorithm output
as ground truth and using it to evaluate the correspondence
importance map in the benchmark. This metric tells us the
correlation between the algorithm outputs and the bench-
mark references. Table 2 reports the aggregated results for
Robust GPCA and Threshold selection.

Focus of attention sets. Similar to previous work [10],
we use precision and recall values. Shoot ROI models in the
benchmark are used as ground truth. Two FOAs are consid-
ered coincided if their distance is less than 1

12 of the smaller
of image width and height. Table 3 reports the aggregated
results for Itti’s method and Fuzzy growing. Importance
maps are converted into FOA sets using a WTA network. In
general, Fuzzy growing is better. The results are consistent
to the results for importance maps.

6. Conclusion and future work
In this paper, we have presented a benchmark for ROI re-

search. Our benchmark is both subjective and objective in
nature. It is subjective because it ia annotated by human. It
is objective because we aggregate large number of annota-
tions to obtain the average annotation. Because of the nature
of ROI, we will not say that our benchmark is precise. How-
ever, we believe that it does provide a good reference and is
better than other available options. In the future, we plan
to develop a taxonomy and categorization scheme for ROI
detection algorithms. Such a systematic analysis of existing
ROI detection algorithms could lead to better understanding
and further improvement to ROI detection.
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Figure 4. Examples for ROI models and algorithm outputs. (a) Original image. (b) Shoot ROI model. (c) Target ROI model. (d) Importance
maps from Itti’s method. (e) Importance maps from Fuzzy growing. (f) Importance maps from Osberger’s method. (g) Importance maps
from MSRA’s method. (h) Binary ROI masks from Robust GPCA. (i) Binary ROI masks from threshold selection.
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