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Abstract

Statistical approaches for building non-rigid deformable
models, such as the Active Appearance Model (AAM), have
enjoyed great popularity in recent years, but typically re-
quire tedious manual annotation of training images. In this
paper, a learning based approach for the automatic anno-
tation of visually deformable objects from a single anno-
tated frontal image is presented and demonstrated on the
example of automatically annotating face images that can
be used for building AAMs for fitting and tracking. This
approach employs the idea of initially learning the corre-
spondences between landmarks in a frontal image and a set
of training images with a face in arbitrary poses. Using
this learner, virtual images of unseen faces at any arbitrary
pose for which the learner was trained can be reconstructed
by predicting the new landmark locations and warping the
texture from the frontal image. View-based AAMs are then
built from the virtual images and used for automatically an-
notating unseen images, including images of different fa-
cial expressions, at any random pose within the maximum
range spanned by the virtually reconstructed images. The
approach is experimentally validated by automatically an-
notating face images from three different databases.

1. Introduction
In recent years, statistical approaches have been widely

and successfully used for building non-rigid deformable
models. Prominent members of this family of approaches
include the Active Shape Model (ASM) [7], Active Ap-
pearance Model (AAM) [11] and 3D Morphable Model
(3DMM) [4]. Their power lies in the combination of a com-
pact parametric representation and an efficient alignment
method. However, one major drawback of these approaches
is that they require a labelled dataset of training images,
which typically equates to tedious manual annotation.

Figure 1: Overall architecture of the Auto Annotator

Taking the AAM as an example, pseudo-dense annota-
tions are required for every training image to build the sta-
tistical models of shape and texture. With the object anno-
tation in each training image often requiring the labelling of
dozens or hundreds of corresponding points, manually an-
notating large image databases is tedious and error prone. In
addition, objects that only present a small number of distinct
landmark points, e.g. a face containing mostly edge struc-
tures, make it difficult to consistently annotate the same
landmarks (for example, on the chin line).

The quest is thus to develop an automatic annotation
method, which in turn would allow for an automatic model
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building process. While a number of methods for finding
automatic correspondences have been proposed [2, 5, 6, 14,
15, 21, 22, 25], these suffer from various drawbacks such
as requiring sufficient salient features in the visual object
to build good appearance models, ignoring the global im-
age structure, requiring a large number of parameters for
the warping function that results in slow optimisation, or
not taking into account the sequential nature of image se-
quences where available.

In this paper, an approach for automatic annotation of
face images is presented that only requires annotated frontal
images, thus drastically simplifying the model building pro-
cess. We firstly propose a data-driven approach to learn
the correspondence between manually annotated landmark
points of frontal and varying viewpoint images of a face.
Secondly, we propose a framework to reconstruct virtual
images, of any arbitrary pose and expression, from frontal
view images and use these to create View-Based AAMs [8]
that can then be used to locate the facial features in an im-
age and, hence, annotate it automatically. Finally, we show
the utility of our proposed framework by automatically an-
notating the images from the CMU PIE [23], Face Pointing
[18] and FERET [19] databases, and verifying the results by
comparing them with a ground truth obtained from manual
annotations.

Fig. 1 shows a schematic of the proposed method which
only requires a single annotated frontal face image (per ex-
pression) as input. The Virtual Image Reconstructor (Sec.
4) reconstructs the virtual face images at different poses.
Then, the View-Based AAMs (Sec. 5) are constructed from
these virtual images and stored in the repository for future
use. Now, given a new image to be annotated, the system
first estimates the pose via a Pose Estimator (Sec. 5.2) and
selects the appropriate AAM from the repository of View-
Based AAMs, which is then used to locate the features in
the given image and, hence, annotate it automatically.

The remainder of this paper is structured as follows. Sec.
2 provides a brief overview of related work in automatic
annotation and model building. Sec. 3 gives details of re-
gression based learning as further background information.
In Sec. 4, the process of reconstructing virtual images from
a single annotated frontal image is described. The process
of automatically building view-based AAMs is presented in
Sec. 5. The approach is experimentally validated in Sec. 6.

2. Related Work
The issue of automatically annotating face images and

building AAMs has received considerable attention in the
research literature in recent years. More generally, the issue
is one of finding pseudo-dense correspondences across im-
ages of the same object class. Approaches can be broadly
categorised into either image or feature based approaches.

In image based methods, dense image correspondences

are found through a nonlinear warping function that min-
imises some error measure between the pixel intensities.
[15] models images as ‘bags’ of pixel values, enabling the
computation of correspondences simultaneously for all im-
ages. In [6], a groupwise registration using a set of non-
linear diffeomorphic warps is proposed, providing dense
correspondences between all images, avoiding the need for
manual annotation of training images. In [2], the problem
of automatic annotation and model building is re-posed as
an energy-minimising image coding problem. Image based
methods have the advantage that the global image structure
is taken into account, thus better mimicking the AAM for
which the correspondences are used later. The main disad-
vantage is that the warping function will generally need to
be parameterized using a large number of parameters (as a
set of landmark points), which results in a very large opti-
misation problem that is slow to optimise and prone to ter-
minating in local minima.

In feature based methods, correspondences are found be-
tween salient image features through examining the local
structure of the features. In [14], a sparse polygonal rep-
resentation of one shape’s boundary is matched onto a sec-
ond shape’s boundary via a greedy optimisation of a cost
function. In [5], the point matching algorithm uses an iter-
ative joint clustering and matching strategy, which reduces
the computational complexity while maintaining accuracy.
[21] and [25] make use of images sequences to automati-
cally build models, with only the first frame needing to be
annotated manually, thus exploiting the fact that it is eas-
ier to track correspondences than finding them between two
arbitrary images. In [22], this line of work is extended to
take the scene geometry into account through the epipolar
constraints in stereo images. The advantage of feature based
methods is that the feature comparisons and calculations are
comparatively cheap. Their disadvantages are that they re-
quire a sufficient number of salient features in the object
and that the global image structure is ignored, as the feature
comparisons generally only consider local image structure,
which can lead to suboptimal fitting results.

3. Regression Based Learning
Given m observed data points D = {(xi, yi)}mi=1, where

yi ∈ Y (the set of outputs/targets) and xi ∈ X (the set of in-
puts), the goal of learning is to infer a function f : X → Y .
In a regression setting, yi ∈ R. In the following, we briefly
review the regression techniques used for the experiments
in this paper.

3.1. Support Vector Regression (SVR)

SVR is one of the most ubiquitous regression methods
used for single output data. SVR minimises the regularised
risk functional,

{
1
2 ‖w‖

2 + C
m

∑m
i=1 |yi − f(xi)|ε

}
, where
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C is the (inverse) regularisation parameter and the ε-
insensitive loss function is defined as

|yi − f(xi)|ε :=
{ 0, if |yi − f(xi)| ≤ ε
|yi − f(xi)| − ε, otherwise.

The prediction at a new input x∗ is given by f(x∗) =∑m
i=1(ai − âi)k(x∗, xi) + b, where ai and âi are the La-

grange multipliers of the dual objective formulation of the
regularised risk functional, k(x∗, xi) is the kernel function
and b is the bias parameter. By exploiting the Karush-Kuhn-
Tucker (KKT) conditions, only data points with nonvanish-
ing coefficients (ai 6= 0 or âi 6= 0) will affect the prediction
and are called support vectors [3].

3.2. Boosted Support Vector Regression

In order to improve the predictive capacity of standard
SVR, an Adaboost style algorithm [12] can be used. The
main idea for boosting SVR is to iteratively train a sequence
of SVR models on the weighted data while increasing the
weight on the samples that obtained a large error from the
previous SVR model at every iteration. Refer to [10] for a
detailed discussion of the boosting procedure used for the
experiments presented in this paper.

3.3. Gaussian Process Regression (GPR)

GPR has gained increased popularity in statistical ma-
chine learning as it offers a principled nonparametric
Bayesian framework for inference, model fitting and model
selection [3]. In this framework, we observe a noisy out-
put yi = f(xi) + εi at input location xi and the noise
term is assumed to be independent and normally distributed,
εi ∼ N (0, σ2

n). Placing a Gaussian process prior over func-
tions will lead us to a Gaussian predictive distribution

y∗|x∗,D ∼ N (µ, σ2), with (1)
µ = k∗[K + σ2

nI]−1 y (2)
σ2 = k(x∗, x∗) + σ2

n − k∗[K + σ2
nI]−1 k∗T (3)

for a noisy query point x∗. In these equations, we haveK ∈
Rm×m, Kij = k(xi, xj) and k∗ ∈ R1×m, k∗i = k(x∗, xi).
Here, k denotes a covariance function which encodes our
assumptions about the function we wish to learn. In this
work, we employ a squared exponential covariance func-
tion, k(xp, xq) = σ2

f exp(− 1
2σ2

l
‖xp − xq‖22) which has the

characteristic length scale l and the signal variance σ2
f as

free parameters (hyperparameters). From this Gaussian pre-
dictive distribution, we are interested to make a point pre-
diction yguess by minimising the expected loss or risk as

yoptimal|x∗ = argmin
yguess

∫
L(y∗, yguess)p(y∗|x∗,D)dy∗ (4)

whereL(., .) is the loss function. For squared loss functions
(or any other symmetric loss function), the optimal point
prediction at query point x∗ is

yoptimal|x∗ = E(y∗)∼p(y∗|x∗,D)[y∗] = µ . (5)

4. Virtual Image Reconstructor
In this section, we investigate the process of virtual im-

age reconstruction of a face at any arbitrary pose from a
single frontal view annotated image. The basic idea here is
to learn the correspondence between the landmark points of
the gallery (frontal view images) and the probe images (im-
ages at any arbitrary pose) exhibiting arbitrary expressions.
Once this learner has been trained, it can be used to predict
the spatial arrangement of the landmark points for any other
(unseen) face at any arbitrary pose and expression.

4.1. Learning the Reconstruction Parameters

Figure 2: Extracting Normalised, Centroid and Point Vec-
tors

We wish to learn the correspondence between the n land-
mark points ofm gallery and probe images. Given the man-
ual annotations for the gallery and probe images, we extract
3 vectors: Normalisation Vector, Centroid Vector, and Point
Vector from each of the gallery and probe images (Fig. 2).

• Normalisation Vector (N from gallery images and
N′ from probe images) is a 1D vector containing in-
formation about the normalisation distances used to
normalise the feature vectors with respect to the vary-
ing shape and size of faces of different people in the
database. Horizontal normalisation distance (Nh) is
the horizontal distance between the eye corners. Verti-
cal normalisation distance (Nv) is the vertical distance
between the eye corners and the nose tip (also the ref-
erence point in the normalised frame)

N = [Nh ; Nv ]T N′ = [N ′h ; N ′v ]T . (6)

• Centroid Vector (C from gallery images and C′ from
probe images) is a 1D vector containing the location of
the centroids of six individual facial features (left and
right eyebrows, left and right eyes, nose and mouth) in
the normalised frame. For this, we create a dictionary
of landmark points providing us the information about
which of the six facial features each of the n landmark
points represents. Hence, if the number of landmark
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Figure 3: Extracting Normalised, Centroid and Point Vec-
tors from an annotated frontal image

points c represents a facial feature, say the mouth, then
the centroid (~x, ~y) of this facial feature is computed as
~x =

(∑c
i=1 xi

c

)
and ~y =

(∑c
i=1 yi

c

)
, where (xi, yi) is

the location of each landmark point representing this
facial feature in the normalised frame. C and C′ are
then represented as
C=[ ~x1; ~y1; . . . ; ~x6; ~y6]

T C′=[ ~x′1;
~y′1; . . . ;

~x′6;
~y′6]

T (7)

• Point Vector (P from gallery images and P′ from
probe images) is a 1D vector containing information
about the location of each of the n landmark points in
the normalised frame and is represented as
P=[x1; y1; . . . ; xn; yn]T P′=[x′1; y

′
1; . . . ; x

′
n; y′n]T (8)

At this stage, we have m×3 pairs of normalisation, cen-
troid and point vectors, respectively, with each pair repre-
senting a gallery image and its corresponding probe image.
Next, we construct 3 different training sets

TN =
{

(Ni,N′i) | i ∈ (1, 2, . . . ,m)
}

(9)

TC =
{

(Ci,C′i) | i ∈ (1, 2, . . . ,m)
}

(10)

TP =
{

(Pi,P′i) | i ∈ (1, 2, . . . ,m)
}

(11)

and train a learner via the regression methods described in
Sec. 3 to learn 3 different sets of regression models RN ,
RC ,RP for predicting the normalisation, centroid and point
vector respectively, where

RN =
{
RNh

, RNv

}
(12)

RC =
{
RCi
| i ∈ (1, 2, . . . , 12)

}
(13)

RP =
{
RPi
| i ∈ (1, 2, . . . , 2n)

}
. (14)

Here, R represents the regression model learnt over a par-
ticular training set.

4.2. Reconstruction of Virtual Images

Given an annotated frontal face image, a virtual image
with the same pose as the probe images is reconstructed by
predicting the new landmark locations and warping the tex-
ture from the frontal image via Piecewise Affine Warping
(PAW). PAW, commonly used in AAM methods [11, 17],

Figure 4: Step by step reconstruction of virtual image

is a spatial transformation function for which the reference
frame is divided into a set of non-overlapping regions such
that all locations within each region are warped using the
same affine transformation. These regions are generally de-
fined by some type of triangulation of a point set, such as the
Delaunay triangulation [9], defined in the reference frame.
The result is that locations in the reference frame are warped
to locations in the destination frame with the same barycen-
tric coordinates, with respect to its encompassing triangle.
Once the texture has been warped, all the invalid pixel loca-
tions are filled by their nearest-neighbours to complete the
virtual image reconstruction procedure. The step by step
procedure is given in Algorithm 1.

5. Creating the AAM from Virtual Images

Once the virtual images have been reconstructed, we
use them to train AAMs and use an existing AAM fit-
ting method to locate the facial features in the original im-
ages and, hence, annotate them automatically. However, it
should be noted that the reconstructed virtual images have
no information about the background or the area outside the
convex hull of the canonical shape. This lack of information
has the potential to compound the effect of already existing
problems associated with AAMs, such as adaptability to a
changing background, problems with poor initialisation and
ill-defined borders.

To deal with the problem of adaptability to the chang-
ing background, we use the Simultaneous Inverse Com-
positional method (SIC) [1], a generative fitting method,
where the update model is generated directly from back-
ground free components (i.e. the mean appearance and their
modes of variation) and has no specialisation to any partic-
ular background. However, poor initialisation is again an
issue as far as generative fitting methods (SIC in this case)
are concerned. When initialisation is far from the optimum,
with a large proportion of the image under the current warp
estimate consisting of background pixels, these approaches
are prone to terminating in local minima. Also, if the border
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Algorithm 1 Reconstruction of Virtual Images

Require: Annotated Frontal Face Images Img.
1: Extract Ntest, Ctest, Ptest as shown in Figure 3.
2: Use RN (Eqn.12), RC (Eqn.13), RP (Eqn.14) to pre-

dict N′test, C′test and P′test.
3: P′test contains the new location of each of the n land-

mark points w.r.t. the origin in the normalised frame.
Arrange the landmark points in the normalised frame
accordingly.

4: C′test contains the new location of six centroids, repre-
senting six individual facial features (Eqn.7), w.r.t. the
origin in the normalised frame. Arrange these centroids
in the normalised frame accordingly. Red dots, joined
by red lines (Fig. 4(a)), represent the location of the
new centroids in the normalised frame.

5: Transform the group of landmark points representing
each of the six individual facial features (arranged in
Step 3) to the new centroid locations drawn in Step 4.
Black dots in Fig. 4(a) represent the location of the new
landmark points in the normalised frame.

6: Reconstructed landmark points in the normalised frame
are de-normalised (Fig. 4(b)) using the N′test.

For i = 1 to n
xreali = xnormi .(N ′h)test
yreali = ynormi .(N ′v)test

End For
7: Warp the texture from Img to the new locations (Fig.

4(b)) using PAW. Fig. 4(c) shows the texture warping
result.

8: Fill the invalid pixel locations (shown white in Fig.
4(c)) with their nearest neighbours. Fig. 4(d) shows the
reconstructed virtual face image.

of an object is ill-defined, i.e. there is little difference in the
texture on either side of the border, for example, the outer
boundary of the face especially when it is rotated sideways,
AAMs tend to overfit these boundaries and, therefore, result
in an overall poor fitting [24]. Hence, the lack of informa-
tion about the area outside the convex hull of the canonical
shape and the background in the virtual images makes the
model vulnerable and can result in inaccurate automatic an-
notations of original images.

5.1. View-Based Active Appearance Model

To deal with the problem of ‘the lack of information’, a
view-based AAM building approach is adopted. The mo-
tivation behind this View-Based AAM [8] approach is to
reduce the search space for a single AAM by dividing it
among several AAMs. This helps reducing the amount of
shape and texture variation to be handled by a single AAM,
thus, reducing the probability of the fitting procedure to
converge to a local minimum in case of poor initialisation

Algorithm 2 Training and Fitting via View-Based AAMs

For Training -
Require: Annotated face images with pose from L◦ Left

to R◦ Right.
1: Divide the pose range into l equal intervals.
2: Prepare l training sets, one for each interval of pose

range.
3: Train l AAMs and save them in the repository of AAMs

for future use.
For Fitting -
Input: Face image to be annotated.

1: Estimate the pose p (Sec. 5.2)
2: From the repository of l AAMs, choose the AAM that

contains pose p in its range of pose variation.
3: Use this AAM to fit the input image and obtain the au-

tomatic annotation.

and also reducing the overfitting problem of ill-defined bor-
ders. This view-based approach for training and fitting is
given in Algorithm 2.

For the experiments presented in this paper, pose varied
from 45◦ Left to 45◦ Right and was divided into 4 intervals
of 0◦ to 22.5◦ Left, 22.5◦ to 45◦ Left, 0◦ to 22.5◦ Right and
22.5◦ to 45◦ Right for training the view-based AAMs.

5.2. SIFT Descriptor Based Pose-Estimator

Recently, an image retrieval based approach has been
proposed for real-time 3D pose estimation, showing robust-
ness to extreme out-of-plane rotation, background variation
and facial expressions [13]. Since our aim here is to esti-
mate the interval in which the pose p lies (0◦ to 22.5◦ Left,
22.5◦ Left to 45◦ Left, 0◦ to 22.5◦ Right or 22.5◦ Right to
45◦ Right in this paper) this approach suits the purpose well.
As proposed in [13], we prepare a database of registered
face images of different people with different poses (0◦,
22.5◦ Left, 45◦ Left, 22.5◦ Right and 45◦ Right in this case)
from the CMU PIE database [23]. We use SIFT descriptors
[16] for matching images. The input image, for which we
are trying to compute the pose, is used as a query image
and our database of registered face images is searched for
the most similar image. We use the pose accumulation sim-
ple voting scheme [13] to compute the best matching score
and, hence, the closest pose.

6. Experiments

We first conducted experiments on the CMU PIE
database [23]. Overall, 427 images across 31 persons (26
males and 5 females), with a face cropped area of approxi-
mately 140× 150 pixels, were manually annotated with 69
landmarks each. There were 62 images from each of the
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Figure 5: Annotation error distribution for CMU PIE Db

Cameras C27 (Frontal Pose), C07 (30◦ Down1), C09 (30◦

Up), C29 (22.5◦ Left), C11 (45◦ Left), C37 (45◦ Right)
and 117 images from Camera C05 (22.5◦ Right) exhibit-
ing various facial expressions. Six different learners were
trained (Sec. 4.1), one each for predicting the new landmark
locations for poses 22.5◦ Left, 45◦ Left, 22.5◦ Right, 45◦

Right, 30◦ Up and 30◦ Down. Given annotated frontal im-
ages of an unseen person with arbitrary facial expressions,
virtual images were reconstructed (Sec. 4.2) and 4 View-
Based AAMs (Sec. 5) were created (L22.5, L45,R22.5 and
R45). These View-Based AAMs were then used to auto-
matically annotate unseen images of the person, having any
random facial expression and random pose within the max-
imum range spanned by the virtually reconstructed images
(±45◦ Left-Right and ±30◦ Up-Down, in this case).

A leave-one-out cross-validation scheme was adopted
throughout the experiments, i.e. data from 1 person was
used for validation and data from the remaining 30 persons
for training. The learners were trained using 3 different re-
gression techniques (Sec. 3) and the complete set of 427
images from the CMU PIE Db were annotated automati-
cally using the proposed framework. In order to evaluate
the performance of the proposed framework, the pixel error
per landmark point was computed between the manual and
automatic annotations for every image. It should be noted
here that consistently manually annotating the outer bound-
ary of the face is highly error prone due to the lack of dis-
tinct features. Therefore, we computed the pixel error per
landmark point by excluding the 13 landmark points that
represent the outer boundary for each face. Fig. 8 shows
this error for the entire dataset obtained from each of the
regression techniques.

From these results, it is clear that boosting improves the
predictive capacity of the standard SVR to an extent, how-
ever, GPR outperforms both SVR and Boosted SVR con-
vincingly. SVR and Boosted SVR have one hyperparam-
eter, C, that needs to be tuned during the learning phase.

1Represents the pose captured by Camera C09 and C07 in CMU PIE
Database. Since the exact poses have not been provided, we assume them
to be approximately 30◦ Up and Down respectively, throughout this paper.

Figure 6: Virtual image reconstruction results for one sub-
ject from the CMU PIE database using GPR. Horizontal:
different poses. Vertical: different facial expressions.

Denoting the set cardinality of possible hyperparameter val-
ues as |C|, this means that the parameter search space is of
size |C||RN |+|RC|+|RP |. As this is impractical (if not im-
possible), we restrict ourselves to a search space of |C|3 by
assuming all the learners within RN , RC , and RP share
common hyperparameters for SVR and Boosted SVR. GPR
offers a principled way of model fitting by maximising the
log marginal likelihood, log p(y|x),

−1
2
yT (K+σ2

nI)−1y− 1
2

log
∣∣K + σ2

nI
∣∣− n

2
log 2π (15)

with respect to the hyperparameters, Θ = {l, σ2
f , σ

2
n}. This

model fitting procedure which respects Occam’s razor prin-
ciple (choosing the simplest model which best explains the
observed data) allows us to have different hyperparame-
ters within RN , RC , and RP . Therefore, GPR is more
suited for this learning task than SVR and Boosted SVR.
Fig. 5 clearly shows the domination of GPR over SVR and
Boosted SVR in the form of an annotation error distribu-
tion obtained from the CMU PIE database. Assuming the
face cropped area to be 16 × 18 cm in the real world, we
computed the real world errors2 (mm per landmark point)
for SVR, Boosted SVR and GPR to be 2.84 ± 0.85 mm,
2.66± 0.74mm and 2.26± 0.65mm, respectively.

Fig. 6 shows the reconstructed virtual images for a sam-
ple subject obtained by GPR. It should be noted here that
for the CMU PIE database, the subjects were asked to pro-
vide a neutral expression, to smile, to blink and to talk [23].
For talking, a 2s video containing 60 frames was recorded.
However, this video is only provided for cameras C27, C22
(3/4 profile camera - not used for experiments in this pa-
per) and C05. Thus, the learners for cameras C07, C09,
C29, C11 and C37 in our work were trained only on images

2http://users.rsise.anu.edu.au/~aasthana/CVPR09/CVPR09Supp.pdf
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Figure 7: Average error for samples from Pointing Db and
FERET Db using GPR

exhibiting neutral and smiling expressions, as they lacked
the training data for the other expressions and arbitrary lip
movements. In Fig. 6, the virtual images, with arbitrary
lip movement, reconstructed from these learners have been
marked by red boxes to highlight this fact.

The fitting procedure via view-based AAM trained on
virtual images failed to converge for only a single test im-
age (C29-Test Image 54) in the database (out of 427 test im-
ages) due to irregularities in the texture of this image caused
by excessive reflection on the glasses of the subject. How-
ever, the fitting procedure converged accurately for 13 other
images of the same speaker in the database that had lesser
texture irregularities.

To evaluate the generalisability of the framework, we
tested the learners, trained by GPR entirely on the images
from the CMU PIE database, for automatically annotating
images from the Face Pointing [18] and FERET databases
[19]. To this end, we manually annotated 40 random im-
ages across 10 speakers from the Face Pointing database
and 40 random images across 13 speakers from the FERET
database with the pose varying from 45◦ Left to 45◦ Right
and 30◦ Up to 30◦ Down, including different facial expres-
sions. All these images were automatically annotated using
the proposed framework and the pixel error per landmark
point was computed between the manual and automatic an-
notations for every image. Fig. 7 shows this error for the
image sets from the Face Pointing and FERET databases.
Overall, our proposed framework was able to accurately an-
notate images from CMU PIE Db, Face Pointing Db and
FERET Db with a similar average pixel error of ≈2mm.

7. Conclusions and Future Work
A regression based learning based approach for the au-

tomatic annotation of face images for any arbitrary pose
and expression from annotated frontal images only has been
presented, which dramatically simplifies the AAM building
process. The framework exhibits excellent generalisability,
as shown by accurately annotating images from the CMU

PIE, Face Pointing and FERET databases3. The experi-
ments showed that Gaussian Process Regression gave the
best results and, hence, is better suited for this learning task.
In future, we plan to extend the approach presented here
to also provide a solution for automatically annotating the
frontal images, thus making the entire process completely
automatic. We also intend to use the reconstructed virtual
images directly for face recognition and, hence, to provide
a plausible solution to the problem of face recognition from
a single image per person.
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