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Abstract

Cross-domain learning methods have shown promising
results by leveraging labeled patterns from auxiliary do-
mains to learn a robust classifier for target domain, which
has a limited number of labeled samples. To cope with
the tremendous change of feature distribution between dif-
ferent domains in video concept detection, we propose a
new cross-domain kernel learning method. Our method,
referred to as Domain Transfer SVM (DTSVM), simultane-
ously learns a kernel function and a robust SVM classifier
by minimizing both the structural risk functional of SVM
and the distribution mismatch of labeled and unlabeled
samples between the auxiliary and target domains. Com-
prehensive experiments on the challenging TRECVID cor-
pus demonstrate that DTSVM outperforms existing cross-
domain learning and multiple kernel learning methods.

1. Introduction
Video concept detection is a primitive task in many com-

puter vision applications such as content-based video search
and indexing, human-computer interaction and so on. There
is a growing interest in the challenging task of concept de-
tection for videos from various sources including broadcast
news videos [13, 18], consumer videos [4] and web videos
[21], etc. When both the training and the test data come
from the same domain (e.g., web videos) and sufficient la-
beled training samples are provided, prior methods such
as [4, 13, 18, 21] have demonstrated promising results.

However, the collection of labeled training data requires
expensive and time-consuming human labor. Classifiers
trained with only a limited number of labeled patterns are
usually not robust for video concept detection. To this end,
cross-domain learning (or domain adaptation) methodswere
recently proposed [1, 5, 17] to learn robust classifiers with
only a limited number of labeled patterns from the target
domain by leveraging a large amount of labeled training
data from other domains (referred to as auxiliary/source do-
mains). In practice, cross-domain learning methods have

been successfully used in many real-world applications,
such as video concept detection, sentiment classification,
natural learning processing [20, 7, 1, 5].

Recall that feature distributions of training samples from
different domains (e.g., from broadcast news domain to web
videos) change tremendously, and the training samples from
multiple sources also have very different statistical proper-
ties (such as mean, intra-class and inter-class variance). Al-
though large amounts of the training data are available in
the auxiliary domains, the classifiers trained from this data
or the combined data of both the auxiliary and the target
domains may perform poorly on the test data of the target
domain [20, 7].

To take advantage of all patterns from both the aux-
iliary and the target domains, Daumé III [5] proposed a
Feature Replication (FR) method to augment features for
cross-domain learning. The augmented features are then
used to construct a kernel function for Support Vector Ma-
chine (SVM) training. Yang et al. [20] proposed Adap-
tive SVM (A-SVM) to enhance the prediction performance
of video concept detection , in which the new SVM clas-
sifier fT (x) is adapted from an existing classifier fA(x)
trained from the auxiliary domain. Following this work,
cross-domain SVM (CD-SVM) proposed by Jiang et al. [7]
used k-nearest neighbors from the target domain to define
a weight for each auxiliary pattern, and then the SVM clas-
sifier was trained with re-weighted patterns. However, all
these methods [5, 7, 17, 20] did not utilize unlabeled pat-
terns in the target domain. Such patterns can also be used
to improve the classification performance [22].

When there are only a few or even no labeled patterns
in the target domain (i.e., an extreme case), the classifier
can be trained with the auxiliary patterns. Several cross-
domain learning methods [6, 15] were also proposed to cope
with inconsistency of data distribution (such as covariate
shift [15] or sampling selection bias [6]). These methods
re-weight the training patterns from the auxiliary domain
by using unlabeled data from the target domain such that
the statistics of samples from both domains are matched.

Note that the kernel function plays a crucial role in ker-
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nel methods (e.g., SVM) [12]. Typically, the kernel function
needs to be chosen before learning. The associated kernel
parameters (such as bandwidth parameter in the Gaussian
kernel) can then be determined by optimizing generalization
error bounds. Various kernel learning methods [8, 11, 14]
have been proposed to directly learn the kernel function.
However, these methods commonly assume that both the
training data and the test data are drawn from the same do-
main.

In this paper, we propose a new cross-domain kernel
learning method, referred to as Domain Transfer SVM
(DTSVM), for the challenging video concept detection task.
To deal with the tremendous change of keyframe feature
distributions from different domains, DTSVM minimizes
the structural risk functional of SVM and Maximum Mean
Discrepancy (MMD) [2], a criterion to evaluate the distri-
bution difference of labeled and unlabeled samples between
the auxiliary and target domains. In practice, DTSVM pro-
vides a unified framework to simultaneously learn an opti-
mal kernel function and a robust SVM classifier. To sim-
plify kernel learning and facilitate the usage of the existing
SVM software (e.g., LIBSVM), we assume that the kernel
function in SVM learning is from a linear combination of
multiple base kernels. Moreover, we propose an efficient
learning algorithm to solve the linear combination coeffi-
cients of kernels and the SVM classifier under a unified
convex optimization framework. We also develop a simple
predicting criterion to effectively determine how to choose
cross-domain learning methods for different concepts.

The main contributions of this paper include:
1) To the best of our knowledge, DTSVM is the first semi-
supervised cross-domain kernel learning method. In con-
trast to the prior kernel learning methods, DTSVM does not
assume that the training and test data are drawn from the
same domain.
2) DTSVM outperforms the state-of-the-art cross-domain
learning methods in the challenging TRECVID dataset,
demonstrating promising performance in real applications.
3) By learning a robust classifier with labeled patterns from
both the auxiliary and the target domains, DTSVM can be
successfully used for video concept detection from different
video sources, especially for the target domain with only
a limited number of labeled patterns, which saves a large
amount of human labor.

2. Brief Review of Related Work
In this work, the transpose of vector / matrix is denoted

by the superscript ′ and the trace of a matrix A is repre-
sented as tr(A). Let us also define I as the identity ma-
trix and 0,1 ∈ <n as the zero vector and the vector of all
ones, respectively. The inequality u = [u1, . . . , uj ]′ ≥ 0
means that ui ≥ 0 for i = 1, . . . , j. Moreover, the element-
wise product between matrices A and B is represented as

A ◦ B = [AijBij ]. A� 0 means that the matrix A is
symmetric and positive definite(pd), and A� 0 means A
is symmetric and positive semidefinite (psd).

Denote the data set of labeled and unlabeled patterns
from the target domain as DT

l = (xT
i , yT

i )|nl
i=1 and DT

u =
xT

i |
nl+nu

i=nl+1 respectively, where yT
i is the label of xT

i . We
also define DT = DT

l ∪ DT
u as the data set from the

target domain with the size nT = nl + nu, and DA =
(xA

i , yA
i )|nA

i=1 as the data set from the auxiliary domain1.
Let us represent the labeled training data set as D =
(xi, yi)|ni=1, which can be from the target domain (i.e.,
D = DT

l ) or from the both domains (i.e., D = DT
l ∪DA).

In cross-domain learning, it is crucial to reduce the dif-
ference of data distribution between the auxiliary and target
domains. Many parametric criteria (e.g. Kullback-Leibler
(KL) divergence) have been used to measure the distance
between data distributions. However, an intermediate den-
sity estimate is usually required. To avoid such a non-trivial
task, Borgwardt et al. [2] proposed an effective nonparamet-
ric criterion, referred to as Maximum Mean Discrepancy
(MMD), to compare data distributions based on the distance
between the means of samples from the two domains in the
Reproducing Kernel Hilbert Space (RKHS), namely:

distk(DA, DT ) =

∥∥∥∥∥ 1

nA

nA∑
i=1

ϕ(xA
i )− 1

nT

nT∑
i=1

ϕ(xT
i )

∥∥∥∥∥
2

. (1)

To capture higher order statistics of the data (e.g., higher
order moments of probability distribution), the samples in
(1) are transformed into a higher dimensional or even infi-
nite dimensional space through a kernel function k induced
from the nonlinear feature mapping ϕ(·). We therefore refer
the distance in MMD as distk(DA, DT ). Note that the dot
product of ϕ(xi) and ϕ(xj) equals to a kernel function k
(or k(·, ·)) on xi and xj , namely, k(xi,xj) = ϕ(xi)′ϕ(xj).

Due to the change of the data distribution from different
domains, training with samples from the auxiliary domain
may degrade the classification performance in the another
target domain. To reduce the mismatch between the two
different domains, Huang et al. [6] proposed a two-step ap-
proach Kernel Mean Matching (KMM). The first step is to
diminish the difference of means of samples in RKHS be-
tween the two domains by re-weighting the samples ϕ(xi)
in the auxiliary domain as βiϕ(xi), where βi is learned by
using the MMD criterion in (1). Then the second step is to
learn a decision function f(x) = w′ϕ(x) + b that separates
patterns of opposite classes in D using the loss function re-
weighted by βi. Recently, Pan et al. [10] proposed an unsu-
pervised kernel matrix learning method by minimizing the
MMD criterion in (1) as well, then apply the learned kernel
matrix to train a SVM classifier for WiFi location and text
categorization.

1Note our work can also use the unlabeled data from auxiliary domain.
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3. Domain Transfer Support Vector Machine
3.1. Proposed Formulation

In previous cross-domain learning methods [6, 10], the
weights or the kernel matrix of samples are learned sepa-
rately using the MMD criterion in (1) without considering
any label information. However, it is usually beneficial to
utilize label information during kernel learning. Instead of
using two-step approaches as in [6, 10], we propose a uni-
fied cross-domain learning framework DTSVM to learn the
SVM decision function f(x) = w′ϕ(x) + b as well as the
kernel function k simultaneously. In practice, DTSVM min-
imizes the distance of data distribution between the two do-
mains, as well as the structural risk functional of SVM. The
optimization problem of DTSVM is then formulated as:

[k, f ] = arg min Ω(distk(DA, DT )) + θ SVMk,f (D), (2)

where Ω(·) is any monotonic increasing function, and θ > 0
is a tradeoff parameter to balance the difference of data
distribution from two domains and the structural risk func-
tional SVMk,f (D) of SVM for labeled patterns. Note, the
kernel function k and the SVM decision function f can be
learned at the same time.
First Criterion: The first objective in DTSVM is to
minimize the mismatch of data distribution between the
two domains using the MMD criterion defined in (1).
We define a column vector s with nA + nT entries,
in which the first nA entries are set as 1/nA and the
remaining entries are set as −1/nT respectively. Let
Φ = [ϕ(xA

1 ), . . . , ϕ(xA
nA

), ϕ(xT
1 ), . . . , ϕ(xT

nT
)] be the

data matrix after feature mapping, then 1
nA

∑nA

i=1 ϕ(xA
i ) −

1
nT

∑nT

i=1 ϕ(xT
i ) in (1) is simplified as Φs. Thus, the crite-

rion in (1) can be rewritten as:

distk(DA, DT ) = ‖Φs‖2 = tr(Φ′ΦS) = tr(KS), (3)

where S = ss′ ∈ <(nA+nT )×(nA+nT ), and K =

Φ′Φ =

[
KA,A KA,T

KT,A KT,T

]
∈ <(nA+nT )×(nA+nT ), in which

KA,A ∈ <nA×nA , KT,T ∈ <nT×nT and KA,T ∈ <nA×nT

are the kernel matrices defined for the auxiliary domain, the
target domain and the cross-domain from the auxiliary do-
main to the target domain respectively.
Second Criterion: The second objective in DTSVM is to
minimize the structural risk functional SVMk,f (D) of SVM
for better classification performance in the target domain.
Let α = [α1, . . . , αn]′ be a vector of the dual variables
αi of each labeled pattern, y = [y1, . . . , yn]′ as the label
vector, KL,L = [k(xi,xj)] ∈ <n×n is the kernel matrix of
the labeled patterns, and k(xi,xj) = ϕ(xi)′ϕ(xj). SVM is
usually solved by its dual problem:

max
α∈A

α′1− 1
2 (α ◦ y)′KL,L(α ◦ y), (4)

which is in form of the QP problem. Here, A = {α ∈
<n|C1 ≥ α ≥ 0,α′y = 0} is the feasible set of α.
Final Formulation: Substituting (3) and (4) into (2), we
have the following saddle-point minimax problem:

minK�0 maxα∈A Ω (tr(KS))

+θ

(
α′1− 1

2
(α ◦ y)′KL,L(α ◦ y)

)
. (5)

By utilizing both criteria, the samples from the auxiliary
and target domain can be used to improve the classification
performance of SVM classifier in the target domain. More-
over, an effective kernel function can be learned for a better
representation of data in different domains.

Similar to the kernel learning method proposed in [8],
the nonparametric kernel matrix K and the dual variables α
of the optimization problem in (5) can be learned by solving
a semi-definite programming (SDP) problem [3] with a con-
straint K� 0. However, it is computationally prohibitive to
solve a SDP problem when the data size is large.

3.2. Multiple Kernel Learning for DTSVM
Instead of learning a nonparametric kernel matrix K, fol-

lowing [8, 11, 14], we can assume the kernel function k is a
linear combination of a set of base kernel functions km, i.e.,
k =

∑M
m=1 dmkm, where dm ≥ 0,

∑M
m=1 dm = 1. We

further assume that

Ω (tr(KS)) =
1

2
(tr(KS))2 . (6)

This quadratic term is strictly convex, and so the second-
order derivatives can be used to achieve faster convergence
in kernel learning. Let us define two kernel matrices K =∑M

m=1 dmKm, KL,L =
∑M

m=1 dmKL,L
m , where Km ∈

<(nA+nT )×(nA+nT ) and KL,L
m ∈ <n×n are the mth base

kernel matrices defined for both domains and for the labeled
patterns, respectively. Note the base kernel matrices Km

(resp. KL,L
m ) are psd, so K (resp. KL,L) is still a psd kernel

matrix. We then simplify (5) as:

min
d∈M

max
α∈A

1

2

(
tr

(
M∑

m=1

dmKmS

))2

+ θ

(
α′1− 1

2
(α ◦ y)′

(
M∑

m=1

dmKL,L
m

)
(α ◦ y)

)
, (7)

where d = [d1, . . . , dm]′, and a simplex M = {d ∈
<M |d ≥ 0, d′1 = 1} is the feasible set of d.

However, (7) is a saddle-point minimax problem, and
standard iterative update procedures may not converge. Let
us define pm = tr (KmS) and p = [p1, . . . , pM ]′, then
we have tr

(∑M
m=1 dmKmS

)
= d′p. Using the following

Proposition 1, (7) can be transformed as:

mind∈M h(d) = mind∈M
1
2
d′pp′d + θJ(d), (8)
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where

J(d)=min
w,b

1

2

M∑
m=1

‖wm‖2

dm
+C

n∑
i=1

`h

(
yi

(
M∑

m=1

w′ϕm(xi)+b

))
, (9)

`h(f) = max(0, 1 − f) is the hinge loss, and ϕm is the
feature mapping function induced from the base kernel km.

Proposition 1. The optimization problem in (9) is the same
as the optimization problem:

max
α∈A

α′1− 1

2
(α ◦ y)′

(
M∑

m=1

dmKL,L
m

)
(α ◦ y). (10)

For the derivation of this proposition, please refer to [11].

Theorem 1. The optimization problem in (8) is jointly con-
vex with respect to d, wm and b.

Due to the space limitation, we omit the proof of Theo-
rem 1. With Theorem 1, we can apply the alternative coordi-
nate descent procedure proposed in [11] to update different
variables (α and d) in (8) iteratively to obtain the globally
optimal solution.

3.2.1 Detailed Algorithm
Update SVM parameters α: With a fixed d, using Propo-
sition 1, J(d) in (9) can be solved by the dual of SVM us-
ing the kernel matrix

∑M
m=1 dmKL,L

m in (10) and standard
SVM solvers, such as LIBSVM.
Update Kernel Parameters d: When the parameters of the
SVM decision function are fixed, using Proposition 1, J(d)
is linear with respect to d (see (10)), and (8) can be updated
using second-order information and the reduced gradient
method as suggested in [11]. Note that pp′ is not full rank,
to avoid numerical instability, we replace pp′ by pp′ + εI
where ε is set to 10−4 in the experiments. Then, the gradi-
ent of h in (8) is∇h = (pp′+εI)d+θ∇J where∇J is the
gradient of J in (9) (or (10)). As there is a quadratic term
in (8), the hessian ∇2h = (pp′ + εI)� 0 is well-defined.
Compared with first-order gradient methods, second-order
derivative based methods usually converge faster. So we use
g = (∇2h)−1∇h = d + θ(pp′ + εI)−1∇J as the update
direction. To maintain d ∈ M, the update direction g is
reduced as in [11], so the updated weight d is:

dt+1 = dt − ηtgt ∈M, (11)

where dt and gt are the weight vector d and the reduced
update direction g at the tth iteration respectively, and ηt

is the learning rate. The overall procedure of the proposed
DTSVM is shown in Algorithm 1.

3.3. Discussions of Related Work
Our work is different from the prior cross-domain learn-

ing methods such as [5, 6, 7, 17, 20]. These methods use
standard kernel functions for SVM training, in which the

Algorithm 1 DTSVM Algorithm.
1: Initialize d = 1

M 1.
2: For t = 1, . . . , Tmax

3: Solve α of SVM objective in (9).
4: Update d of multiple base kernels in (8) using (11).
5: End.

kernel parameters are usually determined through cross-
validation. Recall that the kernel function plays a crucial
role in SVM. When the labeled data from the target domain
is limited, the cross-validation approach may not choose
an optimal kernel. This degrades the generalization perfor-
mance of SVM.

The work most closely related to DTSVM was proposed
by Pan et al. [10], in which a two-step approach is used
for cross-domain learning. The first step is to learn a kernel
matrix of samples using the MMD criterion, and the second
step is to apply the learned kernel matrix to train a SVM
classifier. DTSVM is different from [10] in the following
aspects: 1) A kernel matrix is learned in an unsupervised
setting in [10] without using any label information, which
is not as effective as our semi-supervised learning method
DTSVM. 2) In contrast to the two-step approach in [10],
DTSVM simultaneously learns a kernel function and SVM
classifier. 3) The learned kernel matrix in [10] is nonpara-
metric, thus it cannot be applied to unseen data. Instead,
DTSVM can handle any new test data.

Multiple Kernel Learning (MKL) methods [8, 14, 11]
also simultaneously learn the decision function and the ker-
nel in an inductive setting. However, the default assumption
of MKL is that the test data and the training data are drawn
from the same domain.

4. Experiments
In this section, we compare our proposed method

DTSVM with the baseline SVM, Transductive SVM (T-
SVM) [22] and other cross-domain learning algorithms: FR
[5], A-SVM [20], CD-SVM [7] and KMM [6]. We also
report the results of the Multiple Kernel Learning (MKL)
algorithm, in which the optimal kernel combination is ob-
tained by minimizing the second term in (7) corresponding
to the structural risk functional of SVM.

4.1. Description of Data Sets
The TRECVID video corpus is one of the largest an-

notated video benchmark data sets for research purposes.
The TRECVID 2005 dataset contains 61,901 keyframes
extracted from 108 hours of video programs from six
broadcast sources (English, Arabic and Chinese), and the
TRECVID 2007 dataset contains 21,532 keyframes ex-
tracted from 60 hours of news magazine, science news,
documentaries and educational programming videos. 36
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semantic concepts are chosen from the LSCOM-lite lexi-
con [9], a preliminary version of LSCOM, which covers 36
dominant visual concepts present in broadcast news videos,
including objects, scenes, locations, people, events and pro-
grams. The 36 concepts have been manually annotated
to describe the visual content of the key-frames in both
TRECVID 2005 and 2007 data sets.

4.2. Experimental Setup
As shown in [7], TRECVID data sets are challenging

for cross-domain learning methods because the TRECVID
2007 data set is quite different from the TRECVID 2005
data set in terms of program structure and production val-
ues. In this work, the auxiliary data set DA is obtained by
randomly sampling 100 positive samples per concept from
the TRECVID 2005 data set, and 10 positive samples per
concept from the TRECVID 2007 data set are randomly se-
lected as the labeled training data set DT

l of the target data
set. The remaining samples in TRECVID 2007 data set are
used as the test set.

FR, A-SVM, CD-SVM and KMM are learned from a
combined training data set, which consists of the auxil-
iary data set DA and the labeled training data set DT

l

from the target domain. For SVM, MKL and DTSVM,
the labeled data D can be DT

l or the whole labeled data
from both domains (i.e., D = DT

l ∪ DA). We therefore
refer to SVM (resp. MKL, DTSVM) of the above two
cases as SVM T (resp. MKL T, DTSVM T) and SVM AT
(resp. MKL AT, DTSVM AT) respectively. Considering that
KMM and DTSVM can take advantage of both labeled and
unlabeled data to measure the mismatch of data distribu-
tion between two domains using the MMD criterion, we use
semi-supervised setting in this work. In practice, 4,000 un-
labeled test samples from the target domain are randomly
selected as DT

u for KMM and DTSVM. Note that these
test samples are used as unlabeled data during the learning
process. Moreover, we fix the parameter θ in (7) as 1 for
DTSVM. For all methods, we train one-versus-others SVM
classifiers with the fixed regularization parameter C = 1.

Three low-level global features Grid Color Moment (225
dim.), Gabor Texture (48 dim.) and Edge Direction His-
togram (73 dim.) are used to represent the diverse con-
tent of key-frames, because of their consistent, good perfor-
mance reported in TRECVID [7, 20]. Then the three types
of features are put together to form a 346-dimensional fea-
ture vector for each keyframe. See [19] for more details
about the features.

Kernels are determined before training in all methods.
As suggested in [7], in SVM T, SVM AT, FR, A-SVM, CD-
SVM and KMM, we use Gaussian kernel (i.e., k(xi, xj) =
exp(−γ‖xi − xj‖2)) as the default kernel, where γ is set
as 1

d (d is the feature dimension). For DTSVM and MKL,
we additionally use another three types of kernels: Lapla-

cian kernel (i.e. k(xi, xj) = exp(−√γ‖xi − xj‖)), inverse
square distance kernel (i.e. k(xi, xj) = 1

γ‖xi−xj‖2+1 ) and
inverse distance kernel (i.e. k(xi, xj) = 1√

γ‖xi−xj‖+1 ).

We also use four kernel parameters 1.2δγ, where δ is
set as {0, 0.5, 1, 1.5} for Gaussian kernel and δ is set as
{3, 3.5, 4, 4.5} for other three types of kernels. In total, we
have 16 base kernels.

4.3. Performance Comparisons
For performance evaluation, we use non-interpolated

Average Precision (AP) [13, 16], which has been used as
the official performance metric in TRECVID since 2001. It
corresponds to the multi-point average precision value of a
precision-recall curve, and incorporates the effect of recall
when AP is computed over the entire classification results.

Similarly as in [7], we group 36 concepts into three cate-
gories according to the frequency of positively labeled sam-
ples in the TRECVID 2007 data set. The first group con-
sists of 12 concepts with high positive frequency (more than
0.05), the second group consists of 11 concepts with moder-
ate positive frequency (0.01 ≤ positive frequency ≤ 0.05),
and the third group consists of the remaining 13 concepts
with low positive frequency (less than 0.01). In Fig. 1, we
use three rows to show the per-concept AP for the three
groups. Table 1 gives the Mean Average Precision (MAP)
of the concepts of three groups and all 36 concepts, re-
ferred to as MAP Group-1, MAP Group-2, MAP Group-3
and MAP ALL respectively.

From Fig. 1 and Table 1, we have the following obser-
vations. Firstly, FR, A-SVM, CD-SVM and KMM outper-
form SVM AT and SVM T in terms of MAP over 36 con-
cepts, which demonstrates that the information from both
domains can be effectively used to improve classification
performance in the target domain by cross-domain learn-
ing methods. We also observe that the overall MAP im-
provements from CD-SVM and KMM are relatively small,
when compared with SVM AT. Both CD-SVM and KMM
match the distributions of patterns from two domains by re-
weighting the samples of auxiliary domains. In CD-SVM,
k-nearest neighbors from the target domain are used to de-
fine the weights for the auxiliary patterns. When the total
number of training samples in target domain is limited (for
example, 10 samples per concept in this work), the weights
of the auxiliary patterns are not reliable, which may degrade
the performance of CD-SVM. Similarly, KMM learns the
weights in an unsupervised setting without using any label
information, which may not be as effective as other cross-
domain learning methods (e.g., FR and A-SVM).

Secondly, using only training samples from the target do-
main, MKL T outperforms SVM T and SVM AT in terms
of MAP ALL, which demonstrates the effectiveness of the
MKL method. We also observe that the overall MAP over
36 concepts of MKL AT is worse than that of SVM T and
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SVM T SVM AT FR A-SVM CD-SVM KMM MKL T MKL AT DTSVM T DTSVM AT DTSVM Predict
MAP Group-1 37.1% 40.0% 40.0% 40.6% 40.1% 40.2% 37.9% 40.3% 39.3% 44.6% 44.6%
MAP Group-2 12.2% 12.6% 12.9% 12.7% 12.4% 12.7% 12.5% 12.5% 12.9% 13.5% 13.5%
MAP Group-3 15.6% 12.7% 15.4% 15.1% 13.1% 13.0% 16.3% 11.8% 16.5% 12.8% 16.5%

MAP ALL 21.7% 21.8% 22.8% 22.8% 21.9% 22.0% 22.4% 21.5% 23.0% 23.6% 24.9%

Table 1. Performance comparison of DTSVM with other methods. Mean Average Precision (MAP) are from concepts of three groups and
all 36 concepts.

Figure 1. Performance comparison of DTSVM with other methods on all 36 concepts. The concepts are grouped into three categories
according to the positive frequency.

SVM AT. It is possibly because MKL algorithms assume
that the training and test data are drawn from the same do-
main. The feature distribution from different domains may
change tremendously. Using MKL method on both the aux-
iliary domain and the target domain may not produce the
optimal kernel for the classification.

Finally, our proposed methods, DTSVM AT and
DTSVM T, outperform all other algorithms in terms of

the MAP ALL, which demonstrates that DTSVM AT and
DTSVM T successfully match the data distribution of
two domains as well as minimize the structural risk of
SVM through effective combination of multiple kernels.
DTSVM AT or DTSVM T achieve the best results in 24
out of 36 concepts. Some concepts enjoy large performance
gains e.g., the AP for the concept “Waterscape Waterfront”
significantly increases from 18.0% (KMM) to 23.9%
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(DTSVM AT), equivalent to a 32.8% relative improvement.
When compared with the SVM AT and MKL T, the relative
MAP ALL improvement of DTSVM AT is 8.3% and 5.4%
respectively.

In addition, we also compare DTSVM with T-SVM.
Again, the labeled data can be from DT

l or DT
l ∪DA. We

therefore refer to T-SVM in the above two cases as T-SVM T
and T-SVM AT respectively. Note that T-SVM T and T-
SVM AT can also utilize the unlabeled test data, under the
assumption that the labeled and unlabeled data are from the
same distribution. The MAP of T-SVM T and T-SVM AT
over all 36 concepts are 20.3% and 20.7% respectively,
which are worse than DTSVM T and DTSVM AT. We also
observe that T-SVM T (resp. T-SVM AT) is even worse
than SVM T (resp. SVM AT) in terms of MAP ALL, pos-
sibly because of the sample selection bias of labeled data
from the target domain.

4.4. Predicting Method
As shown from the Table 1, SVM AT is better than

SVM T in terms of MAP for the concepts in the first group,
but it is worse than SVM T in terms of MAP for the con-
cepts in the third group. The similar phenomenon can be ob-
served for the pair MKL AT and MKL T as well as the pair
DTSVM AT and DTSVM T. As shown in [7], the concepts
in the first group generally have high positive frequency and
the concepts in the third group generally have low positive
frequency in both the auxiliary and the target domains. In-
tuitively, when sufficient positive samples exist in both do-
mains, they will distribute densely in feature space. The
data from the auxiliary domain may be helpful for concept
detection in the target domain because the distributions of
samples from two domains may overlap [7]. On the other
hand, positive samples from both domains will distribute
sparsely in feature space, if the patterns from both domains
are limited. Therefore, it is more likely that the data from
the auxiliary domain may degrade concept detection [7].

Based on the above analysis, we also develop a crite-
rion for method predicting, in which DTSVM AT is used
for the concepts in the first two groups and DTSVM T is
used for the concepts in the third group. Using this sim-
ple criterion, our method referred to as DTSVM Predict
achieves 24.9% MAP over all 36 concepts. Compared with
SVM AT, KML T and other cross-domain learning method
FR (or A-SVM), the relative MAP ALL improvements of
DTSVM Predict are 14.2%, 11.2% and 9.2% respectively.

5. Conclusion
We have proposed a unified cross-domain learning

framework DTSVM to simultaneously learn a kernel func-
tion as well as a SVM classifier by minimizing the struc-
tural risk functional of SVM as well as the distribution mis-
match of samples between the auxiliary and target domains.

For efficiency, we assume that the kernel function in SVM
learning is a linear combination of multiple base kernels,
which can be efficiently solved by a proposed learning al-
gorithm under a unified convex optimization framework.
Moreover, we propose a simple but effective criterion to
determine which cross-domain learning method to use for
each concept. Experimental results show that DTSVM out-
performs existing cross-domain learning and multiple ker-
nel learning methods in the challenging TRECVID data set.
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