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Abstract

In this paper we revisit local feature detec-

tors/descriptors developed for 2D images and extend

them to the more general framework of scalar fields defined

on 2D manifolds. We provide methods and tools to detect

and describe features on surfaces equiped with scalar func-

tions, such as photometric information. This is motivated

by the growing need for matching and tracking photometric

surfaces over temporal sequences, due to recent advance-

ments in multiple camera 3D reconstruction. We propose

a 3D feature detector (MeshDOG) and a 3D feature

descriptor (MeshHOG) for uniformly triangulated meshes,

invariant to changes in rotation, translation, and scale. The

descriptor is able to capture the local geometric and/or

photometric properties in a succinct fashion. Moreover,

the method is defined generically for any scalar function,

e.g., local curvature. Results with matching rigid and

non-rigid meshes demonstrate the interest of the proposed

framework.

1. Introduction

The detection, characterization, and matching of various

2D or 3D features from visual observations is of great im-

portance for a large variety of applications such as model-

ing, tracking, recognition or indexing, among others. The

vast majority of existing methods detect features using ei-

ther photometric information available with 2D images or

geometric information available with 3D surfaces. How-

ever, recent progress in image based 3D modeling and ren-

dering allows to recover both photometric and geometric in-

formation from multiple images [19]. Whenever such mod-

els are available, photometric 2D features or geometric 3D

features, if taken separately, have limited informative ca-

pabilities with respect to the potential richness of the data.

This is the case, for example, with deformable and/or ar-

ticulated objects, since image appearance is only partially

(a) (b) (c) (d)

Figure 1. The feature detection method described in this paper can

be applied to any scalar function defined over a 2D manifold such

as the meshed surface shown here: photometric data (a) and as-

sociated points of interest (b); mean surface curvature (c) and the

detected features (d).

robust to motions and geometric properties alone are not

always robust, e.g., the topology of the model can change

considerably with varying object poses. Therefore, we be-

lieve that photometric and geometric information need to be

handled in a consistent and simultaneous manner. To this

purpose, we observe that photometric information available

with 3D models can be viewed as scalar functions defined

over 2D manifolds and, as such, represent a generalization

of planar image domains to non-planar domains. We can

thus build on the existing image feature extraction theories

and investigate their extensions to 2D manifolds.

The contribution of this paper is twofold: first we de-

velop a methodology for feature-based characterization us-

ing operators acting on scalar functions defined over 2D

manifolds; second, we derive a novel family of interest

point detectors and descriptors that take into account both

the surface geometry and the photometric information. To

this aim, operators such as the discrete convolution and the

discrete gradient, are defined for scalar functions on dis-

crete surfaces, i.e., meshes, thus taking into account both

the functions’ differential properties as well as the surfaces’

intrinsic geometry. Based on these operators, a new inter-
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est point detector and a new local descriptor are introduced,

namely MeshDOG and MeshHOG. MeshDOG is a gener-

alization of the DOG operator [14, 13] and it seeks the ex-

trema of the Laplacian of a scale-space representation of

any scalar function defined on a discrete manifold. Mesh-

HOG is a generalization of the histogram of oriented gra-

dients (HOG) descriptor recently introduced for describing

2D images [3]. The new descriptor is defined with respect

to the measurements available at each of the discrete sur-

face’s vertices and it can work with features photometric

features, as well as with geometric feature, such as curva-

ture, geodesic integral, etc.

As it is the case with the more classical image operators,

detectors and descriptors are not uniquely defined over sur-

faces and MeshDOG and MeshHOG were chosen in light

of their quasi-invariance to transformations such as rotation

and scale. In addition, they exhibit a number of attractive

properties: (i) there are no perspective distortions, since

computations are achieved in 3D; (ii) there are no false de-

tections due to occlusions; (iii) the descriptor captures both

the local 3D geometry and the local gradient information of

the scalar function; (iv) no planar mesh embedding is nec-

essary; (v) within a multiple-camera setting, the descriptor

can fuse the photometric information coming from differ-

ent images in order to provide more robust image-invariant

photometric information.

The organization of the paper is as follows. Section 2

discusses related works. Section 3 describes the mathemat-

ical formulation used to to build a number of operators on

discrete manifolds. Section 4 and 5 introduce the local fea-

ture detector and descriptor, respectively. Section 6 presents

and discusses the results, before concluding in section 7.

2. Related Work

Photometric functions over planar domains (local im-

age features): Developing robust 2D features, invariant un-

der changes in illumination, viewpoint, scale and orienta-

tion has been one of the long term research goals in the area.

Currently, SIFT [13] and HOG (histogram of oriented gra-

dients) [3] are among the most widely used descriptors for

their robustness to the transformations just cited. Interest

points may coincide to the extrema of the Laplacian of the

photometric function, and they are detected at various res-

olution scales using the difference of Gaussians (DOG) ap-

proximation of the Laplacian, see [15] for a detailed review.

Alternatively, spatio-temporal descriptors have also been

proposed [24, 9], by considering the 3D spatio-temporal

volume defined by a short image sequence over time. Such

space-time features can be seen as local features defined

over 3D grids. We extend the DOG operator to non-planar

surfaces instead of dealing with volumetric grids.

Geometric functions over surfaces (local geometric

features): 3D spin images [8] and 3D shape contexts [11, 5]

are among the most successful surface descriptors. These

are descriptors that rely solely on the surface geometry. See

[22, 2] for a detailed survey. Typically these descriptors

characterize the neighbourhood of a specified surface re-

gion. A number of methods have been proposed for au-

tomatic identification of interest regions on surfaces, tak-

ing into account geometrical features. Scale-space extrema

based on the averaged mean curvature flow are proposed in

[18]. Alternatively, [16] defines the scale space in a planar

parametrization of the surface using the normal map and

searches for the extrema. Gradient operators are defined

over a planar vector field. While this formulation could be

used as an alternative mathematical framework in current

work, the required planar parameterization introduces an

additional level of complexity that the currently proposed

method avoids. [12] proposes a mesh saliency method,

based on the center-surround operator, adapted from the

visual attention literature. Photometric information is not

taken into account by these methods.

Photometric functions over surfaces (local aug-

mented surface features): In [25] a SIFT-based descriptor

on 3D oriented patches is proposed, i.e., VIP (Viewpoint In-

variant Patches), which was used for 3D model matching. It

constitutes a first attempt to devise a descriptor that includes

both geometry (normal orientation) and photometric infor-

mation. In [21] the authors propose a concatenated surface

descriptor taking into account both geometry (a region de-

scriptor based on geodesic-intensity histograms), and pho-

tometric information (edge and corner descriptors that take

into account the local isometric mapping to R
2). The ap-

proach proposed in this paper is similar in spirit to [25],

but, instead, considers full 3D gradients and histograms.

Many applications make use of local features, in partic-

ular in the context of surfaces: surface registration, non-

rigid shape matching and object recognition. For instance

[17] proposes an image-based descriptor using the local R
2

embedding of the normal information on the mesh in order

to perform surface registration. Also, a recent number of

works, e.g. [6, 1, 4, 23], address the non-rigid mesh match-

ing problem using observations from multiple views. The

vast majority of the proposed methods (the only notable

exception being [6]) uses both geometric information ex-

tracted from surfaces and photometric data available with

images. The latter is first extracted using 2D image descrip-

tors (such as SIFT [13]), and subsequently backprojected

onto the mesh. This sparse description is generally used to

bootstrap dense matching. Surface descriptors may well be

used for 3D object recognition, as it has been already done

in [20] using the Princeton shape benchmarking database 1.

1http://shape.cs.princeton.edu/benchmark/
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Our work contributes to these efforts by taking a different,

yet complimentary approach, namely image-feature detec-

tion and description methodologies are extended to features

defined onto 2D manifolds.

3. Problem formulation

Let S denote the set of all possible discrete parametriza-

tions of the admissible 2D manifolds in R
3. We will con-

sider in particular uniformly sampled triangulated meshes

S ∈ S, namely meshes whose facets are triangles of approx-

imately the same area and whose vertices’ valence is close

to 6. We notice that such an uniform mesh can be obtained

from a non-uniform mesh through simple mesh operations,

as proposed in [10]. This absolves us of the necessity of

complex techniques that ensure proper samplings of scalar

fields over S, while keeping generality. It is interesting to

notice that an image can be viewed as a “flat” uniformly

sampled mesh, i.e., a grid of vertices with valence 4 and

whose facets are squares or rectangles.

S can also be viewed as a graph S(V,E), where V =
{vi}1≤i≤N is the set of mesh vertices and E = {eij} is

the set of mesh edges between adjacent vertices. We denote

by eavg the average edge length. We associate a 3D point

v ∈ R
3 with each vertex v. The ring of a vertex rg(v, n) is

the set of vertices that are at distance n from v on S, where

the distance n is the minimum number of edges between

two vertices. Thus rg(v, 0) is v itself and rg(v, 1) is the set

of direct neighbours of v (see Figure 2). The neighbourhood

Nn(v) is then the set of rings {rg(v, i)}0≤i≤n. We further

denote −→
n v the unit vector normal to the surface S at vertex

v, computed as the average direction of the normals of the

triangles incident to v.

We consider a scalar function f : S → R. In order to

be able to estimate discrete gradient information, we first

recall the definition of the directional derivative of a scalar

function on a manifold [7]:

Definition 1 (Directional Derivative) Let ∇Sf denote the

gradient operator of f on S, the directional derivative of f
at v ∈ S is defined as:

D−→u f(v) = ∇Sf(v) · −→u , (1)

for any direction −→u in the tangent plane of S at v.

Using the fact that up to first order: f(vj) − f(vi) =
∇Sf(vi) · (vj − vi) around vi, we have the following def-

inition:

Definition 2 (Discrete Directional Derivative) The discrete

directional derivative of f is defined as:

D−→eij
f(vi) =

1

||−−→vivj ||
(f(vj) − f(vi)), (2)

v

v1

v2

v3v4

v5

v6
1st ring

2nd ring

rings

v

3rd ring

4th ring

5th ring

6th ring

Figure 2. A vertex v and its rings (left) and the first ring of v (right).

∀eij ∈ E and where ||−−→vivj || = ||vj − vi||.

∇Sf(vi) is by definition a vector in the tangent plane

at vi and the above definition allows us to estimate its di-

rectional values around vi. Hence, two such non-null local

directional gradients are, in principle, sufficient to estimate

the gradient ∇Sf(vi) at vi. This is a generalization of the

classical way of computing gradients in the image using two

orthogonal directions. In practice however, we prefer to use

all the directional gradients provided by the first ring of a

vertex: indeed, this redundancy guarantees a more robust

operator:

Definition 3 (Discrete Gradient) the gradient operator

∇Sf(vi) of f at vi ∈ S is defined as:

∇Sf(vi) =
∑

vj∈rg(vi,1)

(wijD−→eij
f(vi))

−→uij , (3)

where wij weighs the contribution of D−→eij
and −→uij is the

normalized projected direction of −−→vivj in the tangent plane

at vi.

The weights wij should be chosen in order to balance the

contributions of the local directional derivatives with re-

spect to their associated directions in the tangent plane. The

gradient is defined as a weighted mean of directional deriva-

tives, since directional derivatives are projections of the gra-

dient onto given directions. Assuming that S is uniformly

sampled and thus that neighbours around vi are equally

spaced we get: wij = 1
val(vi)

where val(vi) is the valence

of vi. For non uniformly sampled meshes, the weights are a

function of the angles between the directions −→uij around vi

in the tangent plane at vi.

Finally, we define the discrete convolution operator on a

mesh:

Definition 4 (Discrete Convolution). The convolution of

the function f with a kernel k is:

(f ∗ k)(vi) =
1

K

∑

vj∈Nn(vi)

k(||−−→vivj ||)f(vj), (4)
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where the kernel weighs the participation of neighbouring

vertices vj as a function of their distances from vertex vi and

K =
∑

vj∈Nn(vi)
k(||−−→vivj ||) is a normalization factor. No-

tice that, as for the discrete gradient, we assume a uniformly

sampled mesh and thus that contributions of neighbouring

vertices vj in the above expression are equally weighted

with respect to their spatial arrangements. Another remark

is that, generally, we use the above definition with the first

ring only, i.e., n = 1.

4. Feature Detection (MeshDOG)

Feature detection is comprised of three steps, as illus-

trated in Figure 3. First, the extrema of the function’s Lapla-

cian (DOG) are found across scales using a one-ring neigh-

bourhood. Second, the extrema thus detected are thresh-

olded. Third, the unstable extrema are eliminated, thus re-

taining those mesh locations exhibiting some degree of cor-

nerness.

Scale-space extrema. We propose a scale-space represen-

tation of scalar function f defined on a mesh. We consider

the convolution operation on meshes (see Definition 4) us-

ing a Gaussian kernel, defined as:

gσ(x) =
exp (−x2/2σ2)

σ
√

2π
.

The scale space of f is built progressively: f0 = f ,

f1 = f0 ∗ gσ , f2 = f1 ∗ gσ , etc. Convolved functions are

subtracted, e.g., DOG1 = f1 − f0, DOG2 = f2 − f1, etc.,

in order to obtain the difference of Gaussian operator. An

example can be observed in Figure 4, where the model used

is frame 30 from pop2lock sequence from the University of

Surrey, and the features being shown are colour and mean

curvature. An important observation is that, when build-

ing the scale space, the mesh geometry does not change,

but the different scalar functions defined on the mesh, i.e.

f1, f2, DOG1, DOG2. We have chosen σ = 2
1

3 eavg and

have performed 93 convolutions.

(a) (b) (c) (d)

Figure 3. Feature detection shown with photometric data. (a) Orig-

inal mesh (27240 vertices); (b) Scale-space extrema (5760 vertices

left); (c) Thresholding (1360 vertices left); (d) Corner detection

(650 vertices left).

(a) (b)

(c) f2 (d) f64 (e) DOG2 (f) DOG64

(g) f2 (h) f64 (i) DOG2 (j) DOG64

Figure 4. An example of processing (a) photometry and (b) mean

curvature. Scale space photometric representation (c)-(f) and scale

space representation of mean curvature (e)-(j).

The feature points are selected as the maxima of the

scale space across scales, followed by non-maximum-

suppression, using the one ring neighbourhood, in the cur-

rent and in the adjacent scales.

Thresholding. From the extrema of the scale space, only

the top β = 5% of the maximum number of vertices are

being considered, sorted by magnitude. We have chosen a

percentage value versus a hard value threshold in order to

keep the detector flexible, no matter which feature is being

considered, without the need for normalization.

Corner Detection. Additionally, in order to eliminate more

non-stable responses, we retain the features that exhibit cor-

ner characteristics. As proposed in [13] this can be done

using the Hessian operator: :

H(v) =

[

dxx(v) dxy(v)
dyx(v) dyy(v)

]

, (5)

where dxx, dxy and dyy are second partial derivatives.

We estimate them by applying the definition of directional

derivatives (1) twice, e.g. dxy = ∇SD−→x f(v) · −→y , where

the gradient is computed using (3). The directions −→x and −→y
represent here a local coordinate system in the tangent plane

of v, typically the gradient direction for −→x and its orthogo-

nal direction for −→y . The ratio between the largest λmax and

the lowest λmin eigenvalues of the Hessian matrix is a good

indication of a corner response, which is independent of the

local coordinate frame. We typically use λmax/λmin = 10
as a minimum value to threshold responses.
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5. Feature Descriptor (MeshHOG)

The descriptor tv for vertex v is computed using a sup-

port region, defined using a neighbourhood ring size r, as

depicted in Figure 2. For each vertex from the neighbour-

hood vi ∈ Nr(v), the gradient information ∇Sf(vi) is

computed using (3). As a first step, a local coordinate sys-

tem is chosen, in order to make the descriptor invariant to

rotation. Then, a histogram of gradient is computed, both

spatially, at a coarse level, in order to maintain a certain

high-level spatial ordering, and using orientations, at a finer

level. Since the gradient vectors are 3 dimensional, the his-

tograms are computed in 3D.

Neighborhood size. The number of rings r for the support

region is chosen adaptively based on a more global mea-

sure, such that the descriptor is robust to different spatial

samplings and to scaling. The value of r is chosen such that

it covers a proportion αr from the the total mesh surface,

where αr ∈ (0, 1). By denoting AS as the total surface area

of the mesh S, which can be computed as the sum of all

triangle areas, the ring size r is:

r = round

(

1

eavg

√

αrAS

Π

)

, (6)

assuming that the surface covering the ring neighbourhood

can be approximated with a circle and that the mesh S is

equally sampled, with the average edge size eavg . In prac-

tice, we use an r corresponding to αr = 1%.

Local Coordinate System. A local coordinate system

can be devised using the normal −→
n v and two other unit

vectors, residing in tangent plane Pv of v. Given a unit

vector −→a v ∈ Pv , the local coordinate system is given by

{−→a v,−→n v,−→a v × −→
n v}. Vector −→a v is computed as the di-

rection associated to the dominant bin in a polar histogram,

with ba = 36 bins. The histogram is computed by con-

sidering the projected vertices vi in Pv and taking into ac-

count their gradient magnitudes. We weigh ||∇Sf(vi)|| by

a Gaussian with σ = eavgr/2, based on the geodesic dis-

tance from v. In order to reduce aliasing and boundary ef-

fects of binning, votes are interpolated bilinearly between

neighbouring bins when computing the histograms. We use

the same weighting and interpolation technique for any fur-

ther binning.

Histograms. Instead of computing full 3D orientation his-

tograms, as proposed in [9], we project the gradient vectors

to the 3 orthonormal planes, describing the local coordinate

system. This provides us with a more compact represen-

tation of the descriptor. For each of the three planes, we

compute a 2 level histogram. Firstly, the plane is divided in

bs = 4 polar slices, starting with an origin and continuing

in the direction dictated by the right hand rule with respect

(a) (b)

`

12

3

4

5 6

7

8

axis

(c) (d)

Figure 5. a) 3D Histogram - polar mapping used for creating his-

tograms via binning of 3D vectors; b) Choosing 3 orthogonal

planes onto which to project the 3D Histogram. c) Polar Coor-

dinate system used for creating histograms via binning of 2D vec-

tors, shown in this example with 8 polar slices. d) Example of

a typical spatial and orientation histograms, using 4 spatial polar

slices and 8 orientation slices.

to the other orthonormal axis vector. When projected onto

the plane, each vertex vi will fall within one of the spatial

slices. For each spatial slice, we compute orientation his-

tograms with bo = 8 bins for each of the projected gradient

vectors ∇Sf(vi) of the vertices vi that projected onto that

spatial slice, as shown in Figure 5(d).

Descriptor. The final descriptor is obtained by concatenat-

ing bs × bo histogram values for each of the three planes,

followed by L-2 normalization.

6. Mesh Matching

We are validating the proposed detector and descrip-

tor using a mesh matching approach. Let us consider two

meshes S1 and S2 of the same object. The two meshes do

not necessarily have the same number of vertices. Using the

proposed approach, n1 interest points are detected on S1,

which are characterised by descriptors t
1
i , with i ∈ [1..n1].

Similarly, n2 interest points are detected on S2, charac-

terised by descriptors t
2
j , with j ∈ [1..n2].

Matching. We use an intuitive greedy heuristic in order

to select the a set of best matches. For each descriptor t
1
i

from surface S1, we find the best matching descriptor t
2
j

from surface S2 in terms of the Euclidean distance dij =
||t1

i − t
2
j || . We perform cross validation, by checking that

t
2
j ’s best match is indeed t

1
i . Finally, we only accept the

candidate match is the second best match is significantly

worse (γ = 0.7 or less from the best match score). This is

not meant to fully solve the matching problem, as would a

global approach [21]. It is merely intended for validation

and for evaluation of our detector and descriptor.

Datasets. In our evaluation we consider the following sce-

narios: (i) the two meshes are representations of the same

rigid object, which can thus be aligned using a rotation,

translation and scale; (ii) the two shapes are representations

of the same non-rigid object, i.e. a moving person. In this

context, we are introducing the datasets.
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• Matching rigid objects: we are considering reconstruc-

tions of the same object using different camera sets.

In particular, we are using meshes obtained employing

the method described in [27], using the publicly avail-

able datasets from the Middleburry Multi-View Stereo

site [19]. The Dino datasets contains two meshes, one

with 27,240 vertices obtained from 16 cameras and the

other of 31,268 vertices generated from 47 cameras.

Similarly, the Temple datasets contains two meshes,

one with 78,019 vertices obtained from 16 cameras and

the other of 80,981 vertices generated from 47 cam-

eras.

• Matching non-rigid objects from synthetic data: we

consider a synthetically generated dataset entitled

Synth-Dance of a human mesh with 7,061 vertices

moving across 200 frames.

• Matching non-rigid objects from real data: addition-

ally, we use frames 515-550 from the INRIA Dance-

1 sequence 2, where the same reconstruction method

[27] was employed to recover models using 32 cam-

eras. The models have vertices ranging between

16,212 and 18,332.

Photometric information. The colour of each vertex of the

surface is computed by considering the median colour in the

visible images. We assume that the colours of a vertex fol-

low a non-Gaussian distribution, due to errors that can occur

around occluding contours. In the Synth-Dance dataset the

vertices are randomly coloured.

6.1. Examples of Matching Rigid Objects

We present our results on the Dino and Temple datasets

in Figure 6, where we have run tests where the colour and

the mean curvature were used as features, as well as cases

in which we have created a new descriptor by concatenat-

ing the MeshHOG descriptors for colour and mean curva-

ture. The results are interesting. Even when just curvature

is used for the descriptor, there seems to be enough discrim-

inability to account for a number of correct matches varying

between 10-30, depending on the detector and the dataset.

Both the Dino and the Temple datasets are rather challeng-

ing, due to the fact that, at a first glance, they do not have

a large number of distinguishing non-repetitive features in

terms of their visual aspect. Additionally, it seems that us-

ing just the colour as a feature provides the best results in

terms of the number of matches. This is so, we can argue,

because the descriptor inherently incorporates certain mesh

geometry information by design of the operators.

2https://charibdis.inrialpes.fr/

These are the only results presented in the paper where

different features were used for the descriptor. All the other

results are generated using colour information.

6.2. Examples of Matching NonRigid Objects

Comparison with back-projected 2D features. We

present a comparison between the proposed mesh matching

framework using MeshHOG descriptor with another frame-

work, currently employed in a number of mesh matching

methods (see Section 2), that uses back-projected image

descriptors. In the image based framework, the matching

is performed in the images and only then is back-projected

onto the surface. In our comparisons, we used the SIFT

image descriptor. When matching the two surfaces, only

matches from the same cameras are considered. In order

to be able to carry such a comparison for the Synth-Dance

dataset, we have generated images for 16 virtual cameras,

distributed in a circular pattern around the object.

Synthetic comparative results are presented in Figure 7.

The mesh in the first frame was matched with the mesh

at any of the other 199 frames across the sequence. As it

can be observed, the MeshHOG descriptor generates very

few false positives in comparison with the SIFT equivalent,

clearly demonstrating the advantages of the proposed ap-

proach.

In addition, we present empirical results in Figure 8 for

for the INRIA Dance-1 sequence. As it can be observed,

the second best match ratio threshold γ = 0.7 tends to be

more aggressive for SIFT. There are only 54 matched found

using the SIFT back-projected method between frame 525

and 526, whereas MeshHOG finds 119 matches. Even when

matching across distant frames (530 and 550), our pro-

posed method finds 13 correct matches, versus the SIFT

descriptor, that fails. It is to be expected, since most of

the inter-frame matches are due to local creases formed by

the clothes.The head is the only unique feature that can be

robustly matched across time.

6.3. Resilience to Noise

There are two kinds of uniformly distributed noise be-

ing applied: geometry noise (changing the vertices v) and

colour noise (changing values f(v) held in each vertex).

The colour noise relates to % of the total amount of a maxi-

mum 255 RGB value noise, whereas the geometry noise re-

lates to the % of the total amount of a maximum eavg noise

level. As it can be observed in Figure 9, the method does not

generate more false positives when the amount of noise in-

creases. The Dino dataset has a larger number of false pos-

itives, since the two meshes are not perfectly identical, be-

ing the result of a 3D reconstruction method from multiple
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Figure 6. ”Rigid” matching results - Dino and Temple datasets. (a) (c) Matching results when using the colour both as a detector and as a

feature; (b) (d) Error distribution when using different combinations of features for both detection and matching.
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(b) MeshHOG

0 5 10 15 20 25
0

50

100

150

200

250

300

350

400

Binned Error (unit = avg. edge length)

N
o
. 
o
f 
m

a
tc

h
e
s

(c) MeshHOG (d) SIFT
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(e) SIFT

0 5 10 15 20 25
0

50

100

150

200

250

300

Binned Error (unit = avg. edge length)

N
o
. 
o
f 
m

a
tc

h
e
s

(f) SIFT

Figure 7. ”Non-rigid” matching using synthetic data - dancer-synth dataset. Comparison between MeshHOG and SIFT matching results.

Matches between frames 1 and 50 are visually depicted in (a),(d). There are 364 matches for MeshHOG and 343 matches for SIFT. They

are also quantified in the error histograms (b),(e). The histogram bins are of size equal to eavg . The last bin groups all the errors greater

than 20 ∗ eavg . Additionally, the average histogram errors are shown in (c),(f) for matching frame 1 with x, where x ∈ [2..200].

(a) MeshHOG (b) MeshHOG (c) SIFT (d) SIFT

Figure 8. ”Non-rigid” matching using real data - Dance-1 se-

quence. (a) Matches between frames 525 and 526 using Mesh-

HOG (119 matches); (b) Matches between frames 530 and 550

using MeshHOG (13 matches); (c) Matches between frames 525

and 526 using SIFT (54 matches); (d) Matches between frames

530 and 550 using SIFT (0 matches).

images, which introduces some errors. In the Synth-dance

dataset, the colour noise influences the descriptor accuracy

more than the geometry noise, whereas in the Dino dataset

the situation is reversed. This stems from the fact that the

meshes in the two datasets have a relatively different num-

ber of vertices, which will in turn directly influence the ring

neighbourhood size r (r = 7 for Synth-dance, and r = 15
and r = 16 for Dino), always chosen to represent αr of the

total mesh area.

Integration with mesh tracking. We have integrated the

MeshHOG descriptor within an existing mesh tracking ap-

proach, described in [23], by replacing the sparse match-

ing step based on back projected SURF descriptors with the

currently introduced descriptor. For more details, see [26].

The running time of computing such a descriptor de-

pends on the descriptor neighbourhood size. For exam-

ple, in the synth-dance dataset, computing 706 descriptors

using a neighbourhood size r = 7 took under 1 second,

while computing 2724 descriptors using a ring neighbour-

hood size r = 15 took 35 seconds. The machine used for

the test was a Core2Duo 2.4GHz Intel with 2 Gigs of RAM

running Mac OS.X. The code has been developed in C++

and it is available for download from 3.

7. Conclusion

We have introduced MeshDOG and MeshHOG, a new

3D interest point detector and a new 3D descriptor, defined

on uniformly sampled triangular meshes. The descriptor is

able to capture the local geometric and/or photometric prop-

erties in a succinct fashion. It is robust to changes in orien-

tation, rotation, translation and scale. We have presented re-

sults of matching various rigid and non rigid datasets, both

on real sequences and on synthetically generated data. They

demonstrate that local features detected on meshes using

3http://perception.inrialpes.fr/
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(a) Synth - TP
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(b) Synth - FP Ratio
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(c) Dino - TP
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(d) Dino - FP Ratio

Figure 9. Resilience to noise. Two kinds of noise are being applied: geometry noise (changing the vertices v) and colour noise (changing

values f(v) held in each vertex). a) Synth-dance dataset (frame 1 and 50) - True Positive (TP); b) Synth-dance dataset (frame 1 and 50) -

False Positive (FP) Ratio; c) Dino dataset - True Positives (TP); d) Dino dataset - False Positive (FP) Ratio.

both photometric and geometric information are more ro-

bust than traditional purely photometric features detected in

images.
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