
Blind motion deblurring from a single image using sparse approximation

Jian-Feng Cai†, Hui Ji‡, Chaoqiang Liu† and Zuowei Shen‡

National University of Singapore, Singapore 117542
Center for Wavelets, Approx. and Info. Proc.† and Department of Mathematics‡

{tslcaij, matjh, tslliucq, matzuows@nus.edu.sg}

Abstract

Restoring a clear image from a single motion-blurred
image due to camera shake has long been a challenging
problem in digital imaging. Existing blind deblurring tech-
niques either only remove simple motion blurring, or need
user interactions to work on more complex cases. In this
paper, we present an approach to remove motion blurring
from a single image by formulating the blind blurring as a
new joint optimization problem, which simultaneously max-
imizes the sparsity of the blur kernel and the sparsity of the
clear image under certain suitable redundant tight frame
systems (curvelet system for kernels and framelet system
for images). Without requiring any prior information of
the blur kernel as the input, our proposed approach is able
to recover high-quality images from given blurred images.
Furthermore, the new sparsity constraints under tight frame
systems enable the application of a fast algorithm called lin-
earized Bregman iteration to efficiently solve the proposed
minimization problem. The experiments on both simulated
images and real images showed that our algorithm can ef-
fectively removing complex motion blurring from nature im-
ages.

1. Introduction
Motion blur caused by camera shake has been one of the
prime causes of poor image quality in digital imaging, espe-
cially when using telephoto lens or using long shuttle speed.
In past, many researchers have been working on recovering
clear images from motion-blurred images. The motion blur
caused by camera shake usually is modeled by a spatial-
invariant blurring process:

f = g ∗ p+ n, (1)

where ∗ is the convolution operator, g is the clear image to
recover, f is the observed blurred image, p is the blur ker-
nel (or point spread function) and n is the noise. If the blur
kernel is given as a prior, recovering clear image is called a

non-blind deconvolution problem; otherwise called a blind
deconvolution problem. It is known that the non-blind de-
convolution problem is an ill-conditioned problem for its
sensitivity to noise. Blind deconvolution is even more ill-
posed. Because both the blur kernel and the clear image are
unknown, the problem becomes under-constrained as there
are more unknowns than available measurements. Motion
deblurring is a typical blind deconvolution problem as the
motion between the camera and the scene can be arbitrary,

1.1. Previous work

Early works on blind deblurring usually use a single im-
age and assume a prior parametric form of the blur kernel
p such that the blur kernel can be obtained by only esti-
mating a few parameters (e.g., Pavlovic and Tekalp [22]).
Linear motion blur kernel model used in these works often
is overly simplified for true motion blurring in practice. To
solve more complex motion blurring, multi-image based ap-
proaches have been proposed to obtain more information of
the blur kernel by either actively or passively capturing mul-
tiple images on the scene (e.g., Bascle et al. [2], Ben-Ezra
and Nayar [3], Chen et al. [10], Lu et al. [19], Raskar [23],
Tai et al. [27]).

Recently, there have been steady progresses on remov-
ing complex motion blurring from a single image. There
are two typical approaches. One is to use some probabilistic
priors on images’ edge distribution to derive the blur kernel
(e.g., Fergus et al. [15], Levin [18], Joshi [17]) or manu-
ally selecting blurred edges to obtain the local blur kernel
(Jia [16]). The main weakness of this type of methods is
that the assumed probabilistic priors do not always hold true
for general images. The other popular approach is to formu-
late the blind deconvolution as a joint minimization problem
with some regularizations on both the blur kernel p and the
clear image g:

E(p, q) = min
p,g

Φ(g ∗ p− f) + λ1Θ1(p) + λ2Θ2(g), (2)

where Φ(p∗g−f) is the fidelity term, Θ1(p) and Θ2(g) are
the regularization terms on the kernel and the clear image
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respectively. In this paper, we focus on the regularization-
based approach.

Among existing regularization-based methods, TV (To-
tal Variation) norm and its variations have been the dom-
inant choice of the regularization term to solve various
blind deblurring problems (e.g., Bar et al. [1], Chan and
Wong [9], Cho et al. [11]). In these approaches, the fidelity
term in (2) is usual `2 norm on image intensity similarity;
and the regularization terms Θ1 and Θ2 in (2) are both TV-
norms of the image g and the kernel p. Shan et al. [25]
presented a more sophisticated minimization model where
the fidelity term is a weighted `2 norm on the similarity of
both image intensity and image gradients. The regulariza-
tion term on the latent image is a combination of a weighted
TV norm of image and the global probabilistic constraint on
the edge distribution as ([15]). The regularization term on
the motion-blur kernel is the `1 norm of the kernel intensity.
These minimization methods showed good performance on
removing many types of blurring. In particular, Shan et al.’s
method demonstrated impressive performance on removing
modest motion blurring from images without rich textures.

However, solving the resulting optimization problem (2)
usually requires quite sophisticated iterative numerical al-
gorithms, which often fail to converge to the true global
minimum if the initial input of the kernel is not well set.
One well-known degenerate case is that the kernel con-
verges to a delta-type function and the recovered image re-
main blurred. Thus, these methods need some prior infor-
mation on the blur kernel as the input, such as the size of the
kernel (e.g., Fergus et al. [15], Shan et al. [25]). Also, the
classic optimization techniques (e.g. interior point method)
are highly inefficient for solving (2) as they usually requires
the computation of the gradients in each iteration, which
could be very expensive on both computation amount and
memory consumption as the number of the unknowns could
be up to millions (the number of image pixels).

1.2. Our approach

In this paper, we propose a new optimization approach to
remove motion blurring from a single image. The contribu-
tion of the proposed approach is twofold. First, we propose
new sparsity-based regularization terms for both images and
motion kernels using redundant tight frame theory. Sec-
ondly, the new sparsity regularization terms enable the ap-
plication of a new numerical algorithm, namely linearized
Bregman iteration, to efficiently solve the resulting `1 norm
related minimization problem.

Most of nature images have sparse approximation un-
der some redundant tight frame systems, e.g. translation-
invariant wavelet, Gabor transform, Local cosine transform
([20]), framelets ([24]) and curvelets ([8]). The sparsity of
nature images under these tight frames has been success-
fully used to solve many image restoration tasks includ-

ing image denoising, non-blind image deblurring, image in-
painting, etc (e.g. [12, 6, 4]). Therefore, we believe that the
high sparsity of images under certain suitable tight frame
system is also a good regularization on the latent image
in our blind deblurring problem. In this paper, we chose
framelet system ([24, 13]) as the redundant tight frame sys-
tem used in our approach for representing images. The
motion-blur kernel is different from typical images. It can
be viewed as a piece-wise smooth function in 2D image do-
main, but with some important geometrical property: the
support of the kernel (the camera trajectory during expo-
sure) is approximately a thin smooth curve. Thus, the best
tight frame system for representing motion-blur kernel is
Curvelet system, which is known for its optimal sparse rep-
resentation for this type of functions ([8]).

The sparsity-based regularization on images or kernels is
not a completely new idea. Actually, the widely used TV-
norm based regularization can also be viewed as a sparsity
regularization on image gradients. However, tight frames
provide a wide range of transforms to sparsely represent all
types of images. And the redundancy of tight frames will
increase the robustness to the noise. More importantly, as
Donoho pointed out in [14] that the minimal `1 norm solu-
tion is the sparsest solution for most large under-determined
systems of linear equations, using tight frames to represent
images/kernels is very attractive because the tight frame co-
efficients of images/kernels are indeed heavily redundant.

Furthermore, TV-norm or its variations are not very ac-
curate regularization terms to regularize motion-blur ker-
nels, as they do not impose the support of the kernel being
an approximately smooth curve. However, by representing
the blur kernel in the curvelet system, the geometrical prop-
erty of the support of motion kernels are appropriately im-
posed, because a sparse solution in curvelet domain tends
to be smooth curves instead of isolated points.

Another benefit using the sparse constraint under tight
frame system is the availability of more efficient numeri-
cal methods to use the resulting `1 norm minimization. As
we will show later, the perfect reconstruction property of
tight framelet system allows the application of the so-called
linearized Bregmen iteration (Osher et al. [21]), which has
been shown in recent literatures (Cai et al. [6, 5]) that it is
more efficient than classic numerical algorithms (e.g. inte-
rior point method) do when solving this particular type of
`1 norm minimization problems.

The rest of the paper is organized as follows. In Section
2, we formulate the minimization model and the underlying
motivation. Section 3 presented the numerical algorithm
and its convergence analysis. Section 4 is devoted to the
experimental evaluation and the discussion on future work.
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2. Formulation of our minimization model
As we see from (1), blind deblurring is an under-

constrained problem with many possible solutions. Extra
constraints on both the image and the kernel are needed to
overcome the ambiguity and the noise sensitivity. In this pa-
per, we present a new formulation to solve (1) with sparsity
constraints on the image and the blur kernel under suitable
tight frame systems.

We propose to use framelet system (Ron and Shen et al.
[24]) to find the sparse approximation to the image under
framelet domain The blur kernel is a very special function
with its support being an approximate smooth 2D curve. We
use the curvelet system (Candes and Donoho [8]) to find the
sparse approximation to the blur kernel under curvelet do-
main. Before we present our formulation on the blind de-
blurring, we first give a brief introduction to framelet system
and curvelet system, which are used in our method. See the
references (e.g. [24, 8])for more details.

2.1. Tight framelet system and curvelet system

A countable set of functions X ∈ L2(R) is called a tight
frame of L2(R) if

f =
∑
h∈X

〈f, h〉h, ∀f ∈ L2(R).

where 〈·, ·〉 is the inner product of L2(R). The tight frame
is a generalization of an orthonormal basis. The tight frame
allows more flexibility than an orthonormal basis by sacri-
ficing the orthonormality and the linear independence, but
still has the perfect reconstruction as the orthonormal basis
does. Given a finite set of generating functions

Ξ := {ψ1, · · · , ψr} ∈ L2(R),

a tight wavelet frame X is a tight frame ∈ L2(R) defined
by the dilations and the shifts of generators from Ξ:

X := {ψ`,j,k : 1 ≤ ` ≤ r; j, k ∈ Z} (3)

with ψ`,j,k := 2
j/2
ψ`(2j ·−k), ψ` ∈ Ξ. The construction of

a set of framelets starts with a refinable function φ ∈ L2(R)
such that

φ(x) =
∑
k

h0(k)φ(2x− k)

for some filter h0. Then a set of framelets is defined as

ψ`(x) =
∑
k

h`(k)φ(2x− k)

which satisfies so-called unitary extension principle ([24]):

τh0(ω)τh0(ω + γπ) +
r∑
`=1

τh`
(ω)τh`

(ω + γπ) = δ(γ)

(a) (b) (c) (d)

Figure 1. (a) and (b) are two framelets in the same scale. (c) and
(d) are one curvelet in different scale.

for γ = 0, 1, where τh(ω) is the trigonometric polynomial
of the filter h:

τh(ω) =
∑
k

h(k)eikω.

h0 is a lowpass filter and h`, ` = 1, · · · , r are all high-pass
filters. In this paper, we use the piece-wise linear framelet
([24, 13]):

h0 =
1
4

[1, 2, 1]; h1 =
√

2
4

[1, 0,−1]; h2 =
1
4

[−1, 2,−1].

2D framelets can be obtained by the tensor product of
1D framelets: Φ(x, y) = φ(x)⊗ φ(y),

{Ψ} = {ψ`1(x)⊗ φ(y), φ(x)⊗ ψ`2(y),
ψ`1(x)⊗ ψ`2(y), 1 ≤ `1, `2 ≤ r}

The associated filters are also the Kronecker product of 1d
filters: H0 = h0 ⊗ h0 and

{H`} = {h`1 ⊗ h0, h0 ⊗ h`2 , h`1 ⊗ h`2 , 1 ≤ `1, `2 ≤ r}.

Then given a function f ∈ L2(R2), we have

f(x, y) =
∑

`,j,k1,k2

u`,j,k1,k2Ψ`,j,k1,k2 , (4)

where {u`,j,k1,k2 = 〈f,Ψ`,j,k1,k2〉} with

Ψ`,j,k1,k2 = 2j/2Ψ`(2jx− k1, 2jy − k2), j, k1, k2 ∈ Z.

u`,j,k1,k2 are called framelet coefficients of f .
The curvelet system ([8, 7]) is also a tight frame in

L2(R2) where the generating functions are multiple rotated
versions of a given function ψ:

X := {Ψ`,j,k1,k2 = Ψ(2jRθ`
((x, y)T − x`,j,k1,k2))} (5)

with

x`,j,k1,k2 = R−1
θ`

(2−jk1, 2−j/2k2)T , j, k1, k2 ∈ Z,

where θ` = 2π2bjc` is the equi-spaced sequence of rotation
angles such that 0 ≤ θ` < 2π, Rθ is the 2D rotation by θ
radians and R−1

θ its inverse. It is noted that curvelet system
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has different scaling from framelet system: length ≈ 2−j

and width ≈ 2−2j . Thus the scaling in curvelet system
is a parabolic scaling such that the length and width of the
curvelets obey the anisotropic scaling relation:

width2 ≈ length.

The combination of the parabolic scaling and the multiple
rotations of the wavelet give a very sparse presentation for
singularities along curves or hyper-surfaces in the image.
Given a function f ∈ L2(R), we also have

f(x, y) =
∑

`,j,k1,k2

v`,j,k1,k2Ψ`,j,k1,k2 , (6)

where {v`,j,k1,k2 = 〈f,Ψ`,j,k1,k2〉} with Ψ`,j,k1,k2 defined
in (5). We call v`,j,k1,k2 the curvelet coefficients of f .

2.2. Problem formulation and analysis

2.2.1 Sparse representation under framelet and
curvelet system

The perfect reconstruction formulas of both (4) and (6) es-
sentially give us the decomposition and reconstruction of a
function in L2(R2) under a tight frame system. In the dis-
crete implementation, we have also a completely discrete
form of the decomposition and reconstruction.

If we denote an n × n image f as a vector f ∈ Rn2
by

concatenating all columns of the image, The perfect recon-
struction (4) can be rewritten as

f = ATAf , (7)

where A the decomposition operator of the tight framelet
system in discrete case and the reconstruction operator is its
transposeAT . Thus we haveATA = I . We emphasize that
A usually is a rectangular matrix with row dimension much
larger than column dimension andAAT 6= I unless it is the
orthonormal basis. In our implementation. We use a multi-
level tight framelet decomposition without down-sampling
the same as Cai et al. [4] does. Discrete Curvelet transform
is also linear by thinking of the output as a collection of
coefficients obtained from the digital analog to (6) ([7]).

In summary, given an image (kernel) f ∈ Rn2
, we have

f = ATu = AT (Af); and f = CTv = CT (Cf), (8)

where A and C are decomposition operator under framelet
system and curvelet system respectively, u = Af and v =
Cf are the corresponding framelet coefficients and curvelet
coefficients. In the implementation, there exist fast multi-
scale algorithms for the framelet (curvelet) decomposition
and reconstruction ([20, 7]).

2.2.2 Formulation of our minimization

Given a blurred image f = g ∗ p+ n, our goal is to recover
the latent image g and the blur kernel p. In this paper, we
denote the image g (or the kernel p) as a vector g (or p) in
Rn

2
by concatenating its its columns. Let “◦” denote the

usual 2D convolution after column concatenation, then we
have

f = g ◦ p + n. (9)

Let u = Ag denote the framelet coefficients of the clear
image g, and let v = Cp denote the curvelet coefficients
of the blur kernel p. The perfect reconstruction property of
tight frame system (8) yields

f = g ◦ p + n = (ATu) ◦ (CTv) + n. (10)

We take a regularization-based to solve the blind mo-
tion deblurring problem (10). The most commonly used ap-
proach to tackle such a challenging minimization problem is
the alternative iteration scheme. Thus, we formulate the ba-
sic procedure of our approach as follows: for k = 0, 1, · · · ,

1. given the curvelet coefficients of the blur kernel v(k),
compute the framelet coefficients of the latent image
u(k+1) by solving

argmin
u
‖u‖1, s.t. ‖(CTv(k)) ◦ (ATu)− f‖2 ≤ δ;

(11)

2. given the framelet coefficients of the latent image
u(k+1), compute the framelet coefficients of the blur
kernel v(k+1) by solving

argmin
v
‖v‖1, s.t. ‖(ATu(k+1)) ◦ (CTv)− f‖2 ≤ δ.

(12)

δ in (11) and (12) is the noise parameter of the observed
image f .

The role of the objective function and the constraint in
(11)–(12) is explained as follows. It is known that `1 norm
is a good measurement on the sparseness of the solution
when the linear system is under-determined. Thus, the first
term in (11) measures the `1 norm of framelet coefficients
of the latent image g, which penalizes the sparsity of the
image g under framelet system. The constraint in (11) is the
fidelity constraint between the observed blur image and the
resulted blur image. The same argument is also applicable
to (12).

Therefore, the motivation in our formulation is among all
solutions which have reasonable good `2 norm approxima-
tion to the given blurred image f , we are seeking for the one
whose recovered image g is the sparsest solution in framelet
domain and the estimated blur kernel g is the sparsest so-
lution in curvelet domain. At a quick glance, (11) and (12)
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are quite challenging large-scale minimization problems. In
next section, we will present an alternative minimization ap-
proach to solve these two minimizations efficiently. The key
idea is to adopt a modified version of linearized Bregman
iteration technique which recently is emerging as a power-
ful technique in sparse approximation for visual informa-
tion process.

3. Numerical algorithm and analysis
In practice, the minimizations (11) and (12) may not al-

ways yield a physical solution. Thus, we chose to impose
the following physical conditions:{

p = CTv ≥ 0, and
∑

p = 1;
g = ATu ≥ 0. (13)

which says both the kernel and the image are non-negative
and the kernel is normalized. Algorithm 1 outlines our al-
ternative iteration approach. Among all steps of Algorithm

Algorithm 1 Outline of the algorithm for blind motion de-
blurring

1. Set v(0) = Cf ,u(0) = Aδ0,, where δ0 is the Delta
function.

2. Iterate on k until convergence.

a Fixing the curvelet coefficients v(k), solve (11) w.r.t.
u, i.e., set u(k+1/2) be a solution of

min
u
‖u‖1 s.t. ‖(CTv(k)) ◦ (ATu)− f‖2 ≤ δ,

(14)
Then impose u(k+1) = Ag(k+1), where

g(k+1)(j) =
{
ATu(k+ 1

2 )(j), ifAtu(k+ 1
2 )(j) ≥ 0,

0, otherwise.

b Fixing the framelet coefficients u(k+1), solve (12)
w.r.t. v, i.e., set v(k+1), be a solution of

min
u
‖v‖1 s.t. ‖(ATu(k+1)) ◦ (CTv)− f‖2 ≤ δ.

(15)
Then impose v(k+1) = C p(k+1)

‖p(k+1)‖1
, where

p(k+1)(j) =
{
CTv(k+ 1

2 )(j), if CTv(k+ 1
2 )(j) ≥ 0,

0, otherwise.

followed by the normalization p(k+1) := p(k+1)

‖p(k+1)‖1
.

1, there exist only two difficult problems (14) and (15) of
the same type. For such a large-scale minimization problem

with up to millions of variables, there exists a very efficient
algorithm based on so-called linearized Bregman iteration
technique. Let [p]∗ denote the matrix form of the convo-
lution operator by the kernel p. The algorithm for solving
(14) is presented in Algorithm 2. And Algorithm 2 can be
applied to solve (15) with little modifications.

Algorithm 2 Algorithm for solving (14)

1 Set w(0) = x(0) = 0.

2 Iterate on i until ‖CTv(k)) ◦ (ATw(i+1) − f‖2 ≤ δ,{
x(i+1) = x(i) −A[Cv(k)]T∗ (Ω(k)([Cv(k)]∗(ATw(i) − f))),
w(i+1) = νΓµ(x(i+1)),

(16)
where Γµ is the soft-thresholding operator defined by

Γµ(x)(j) = sign(x(j)) max(|x(j)| − µ, 0),

and Ω(k) is a pre-conditioning matrix defined by

Ω(k) =
(
[Cv(k)]T∗ ([Cv(k)]∗) + λ∆)−1, (17)

with ∆ being the discrete Laplacian.

3 u = w(i+1).

Proposition 3.1[6] The sequence w(i) generated via (16)
with a proper ν converges to the unique solution of{

minu ‖u‖1 + 1
2νµ‖u‖

2
2,

s.t. (CTv(k)) ◦ (ATu) = f ,
(18)

if there exists at least one solution of (CTv(k))◦(ATu) = f .

Proposition 3.1 showed that the sequence w(i) generated
by (16) actually converges to an approximated solution of
(14) when νµ → ∞. In other words, the larger is the value
of ν or µ in (16), the better the solution from Algorithm 2
approximates the true solution of (14). The method (16) is
extremely efficient. In the implementation, the value of µ is
set to be small for solving (16) until the last few iterations
in Algorithm 1. Usually it takes only a few iterations for
(16) to get a fair approximation to the solution of (14) ([6]),
and the accuracy of the approximation is adequate during
the iterations of Algorithm 1 until the last a few steps.

4. Experiments and conclusions
In our implementation, the initial kernel is set as a delta

function and the initial image is the given blurred image.
The maximum iteration number of Algorithm 1 is set to
100. λ in (17) is set as 0.001. The parameters in (16) are
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(a) Iteration 10 (b) Iteration 20 (c) Iteration 30 Iteration 40 Iteration 50

Figure 3. (a)–(e) are the recovered images during k-th iteration when applying the algorithm in Section 3 on deblurring the image shown in
Fig. 2 (a) and (b) respectively, for k = 10, 20, · · · , 50. The estimated blur kernels are shown on the top right of the corresponding images.

(a) One clear image (b) the blurred image

(c) Another clear image (d) the blurred image

Figure 2. (a) and (c) are two clear images; (b) and (d) are the
blurred image of (a) and (c) with the kernel shown on the bottom
left of the images.

chosen as µ = 0.2‖x‖∞ and ν = 1. Each iteration in Algo-
rithm 1 takes roughly 9 seconds on a windows PC with an
Intel 2 GHz CPU for blurred color images with the resolu-
tion 1280× 1024.

4.1. Simulated images

In the first part of the experiment, we synthesized two ex-
amples to verify the efficiency and performance of the algo-
rithm proposed in Section 3. The first example used in the
experiment is shown in Fig. 2 (a)–(b). (a) is the image of a
clear flower with an out-of-focus blurred background. The
synthesized blurred image is shown in Fig. 2 (b) with the
corresponding blur kernel is shown on the bottom left of the
blurred image. The second example is shown in Fig. 2 (c)–
(d). (a) is the clear image of a clear flower with a clear
background. Its blurred version is shown in Fig. 2 (d) with

a more complicated blur kernel.
The intermediate results obtained on each 10 iteration

are shown to illustrate the convergence behavior of our al-
gorithm. The intermediately recovered image are shown in
Fig. 3 (a)–(f). with the estimated kernel shown on the top
right of the corresponding image. Our algorithm is quite ef-
ficient, as it only takes fifty iterations to obtain a clear image
with accurate estimation on the blur kernel.

4.2. Real images

In the second part of the experiment, We tested Algorithm 1
on two real tele-photos taken by a Nikon D80 DSLR camera
and one image from [15]. We compared our results against
the results of other single-image based methods with avail-
able codes. One is Fergus et al.’s method ([15]); and the
other is Shan et al. ’s method ([25]). Both methods require
the input of the kernel size, which could be very important
when the size of motion-blur kernel is the large (≥ 30 pix-
els). Therefore, we run both methods on the blurred image
using three kernel sizes {25, 35, 45} as the input. Then the
best result are manually selected by visually inspection on
all three recovered images.

Fig. 4–6 showed the comparisons among three differ-
ent methods on three tested real blurred images of different
structures. Fig. 7 showed one small region of the results
from Fig. 4–6 for easier visual inspection. The blur ker-
nels estimated by Algorithm 1 are shown on the top right
of the corresponding recovered images. The blurred image
in Fig. 4 is from [15], and our algorithm also successfully
recovered the image as Fergus et al.’s method did. In Fig. 5,
Both Fergus et al.’s method and Shan et al.’s method only
partially deblurred the image and the resulted image still
looks blurred. The result from Algorithm 1 is the most vi-
sually pleasant. In Fig. 6, the result from Algorithm 1 is
more crisp than the results from both Fergus et al.’s method
and Shan et al.’s method. One possible cause why Fergus
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(a) Blurred image (b) Fergus et al. [15] (c) Shan et al. [25] (d) Algorithm 1

Figure 4. (a): the blurred image; (b)–(d): recovered images using the method from [15]; from [25] and from Algorithm 1 respectively.

(a) Blurred image (b) Fergus et al. [15] (c) Shan et al. [25] (d) Algorithm 1

Figure 5. (a): the blurred image; (b)–(d): recovered images using the method from [15], [25] and Algorithm 1 respectively.

et al.’s method and Shan et al.’s method did not perform
well on some tested images is that these images do not obey
the edge distribution rules used in these two method. Also
the local prior edge model used in Shan et al.’s method
depends on the pre-processing of extracting local smooth
structure from blurred image, which could be instable for
heavily blurred image with rich textures.

4.3. Conclusions

In this paper, a new algorithm is presented to remove cam-
era shake from a single image. Based on the high sparsity
of the image in framelet system and the high sparsity of
the motion-blur kernel in curvelet system, our new formu-
lation on motion deblurring leads to a powerful algorithm
which can recover a clear image from the image blurred by
complex motion. Furthermore, the curvelet-based represen-
tation of the blur kernel also provides a good constraint on
the curve-like geometrical support of the motion blur ker-
nel, thus our method will not converge to the degenerate
case as many other approaches might do. As a result, our
method does not require any prior information on the kernel
while existing techniques usually needs user interactions to
have some accurate information of the blurring as the input.
Moreover, a fast numerical scheme is presented to solve the
resulted minimization problem with convergence analysis.
The experiments on both synthesized and real images show
that our proposed algorithm is very efficient and also effec-
tive on removing complicated blurring from nature images
of complex structures. In future, we would like to extend
this sparse approximation framework to remove local mo-

tion blurring from the image caused by fast moving objects.
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