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Abstract

A texture descriptor is proposed, which combines local

highly discriminative features with the global statistics of

fractal geometry to achieve high descriptive power, but also

invariance to geometric and illumination transformations.

As local measurements SIFT features are estimated densely

at multiple window sizes and discretized. On each of the dis-

cretized measurements the fractal dimension is computed to

obtain the so-called multifractal spectrum, which is invari-

ant to geometric transformations and illumination changes.

Finally to achieve robustness to scale changes, a multi-scale

representation of the multifractal spectrum is developed us-

ing a framelet system, that is, a redundant tight wavelet

frame system. Experiments on classification demonstrate

that the descriptor outperforms existing methods on the

UIUC as well as the UMD high-resolution dataset.

1. Introduction

A major challenge for texture analysis and recognition

lies in achieving robustness to a wide range of geometric

and photometric transforms (Zhu [23]), e.g. illumination

changes, occlusions, non-rigid deformations of the surface,

and viewpoint changes. Thus, there have been enduring in-

terests in constructing a compact description which not only

is highly discriminative to intra-class textures, but also ro-

bust to inter-class variations and environmental changes.

In the past, a number of texture descriptions have been

proposed to achieve robustness to environmental changes

by using local descriptors or filter responses (e.g. [3], [6],

[7], [8], [10], [11], [12], [19], [20]). The basic idea of these

approaches is to compute a texton histogram based on some

appearance-based texton dictionary. These approaches can

be classified into the dense and the sparse ones. The dense

approach uses appearance descriptors at every pixel. For
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example, Varma et al. [19] used filter bank responses. The

sparse approach uses appearance descriptors at a sparse set

of keypoints. For example, Lazebnik et al. [7] and Zhang et

al. [22] showed good results on texture classification using

a texture description based on affine-invariant appearance

descriptors.

Both, the sparse and the dense approach, have advan-

tages and disadvantages. By using appearance descriptors

only on selected interesting points, the sparse approach can

make the resulting description more robust to environmental

changes. However, with only a sparse subset, it might miss

important texture primitives and does not provide enough

measurements for later statistical characterization. Also, of-

ten there are issues on the stability and repeatability of the

associated region detector. The dense approach uses the ap-

pearance descriptors at all available pixels, which provides

rich information for characterizing the texture. However, it

also is more sensitive to significant environmental changes.

The reason is that the appearance descriptors usually are

not invariant to significant environmental changes, unless

sophisticated adaptive region processing is used, which in

general only works well on a sparse set of points.

There are two major components to all sparse and dense

methods: the local appearance descriptor and the global

statistical characterization. In order to achieve invariance

to environmental changes, both components should be in-

variant to these changes. Most current approaches take the

histogram as the statistical characterization. An interest-

ing replacement of the histogram was proposed in Xu et al.

[21], the so-called MFS (multi-fractal spectra). While the

histogram bins the elements according to some criteria and

counts the elements in each bin, the MFS characterizes the

elements in each bin using fractal geometry, and this charac-

terization encodes the spatial distribution of the image pix-

els in the bin. The MFS has also been used in other appli-

cations, e.g., texture segmentation (Conci et al. [2]). The

pixel classification of the method (Xu et al. [21]) is based

on the local density function. The method showed solid in-

variance to a wide range of geometrical changes including
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viewpoint changes and non-rigid surface changes and rea-

sonable robustness to illumination changes. However, since

the method is based on very simple measurements (inten-

sity, Laplacian and gradients) and has very low dimension,

it has limited discriminability. On the other hand, there has

been great progress on designing robust features in recent

years. The best known is the SIFT feature by Lowe et

al. [9]. This inspires us to develop a new texture descrip-

tion, which combines the statistical power of multi-fractal

analysis with state-of-the-art local appearance descriptors

to achieve both high discriminative power and solid invari-

ance to most environmental changes.

The appearance descriptor in our proposed approach is

based on the well-established SIFT descriptor (Lowe et al.

[9]), but without the keypoint detection. By calculating

the orientation histograms on the square neighborhood of

a pixel, the SIFT descriptor becomes very robust to local

rotation and illumination changes. However, the orienta-

tion histogram is not robust to changes in scale, because the

size of the neighborhood is fixed. In order to obtain invari-

ance to the scaling effect, the orientation histogram has to

be used under multiple levels (multiple neighborhood sizes

on which the orientation histogram is evaluated). This also

has the benefit that more information is produced for later

statistical characterization.

We propose an approach to obtain robustness to scale

changes using as input the multi-level orientation histogram

at every pixel. The basic idea is as follows. For each level

we calculate an MFS using the pixel classification based on

the orientation histogram of this level. Then, given a set of

MFSs, the robustness to scale changes is obtained by adding

another statistical layer to the MFS, such that the represen-

tation is not sensitive to the level at which the MFS is esti-

mated. This second-layer statistical characterization on the

set of MFSs is based on the multi-scale representation of the

MFS under a redundant framelet system ([4]).

In summary, our approach starts from the orientation his-

togram of all pixels under multiple levels. A first statistical

characterization is obtained by calculating the MFS with re-

spect to the orientation histogram of each level. Then a sec-

ond statistical characterization is obtained from the set of

MFSs of all levels by using the leading coefficients of the

set under a tight framelet system. This results in a texture

description that is robust to both geometrical changes and

illumination changes.

The remainder of the paper is organized as follows. Sec-

tion 2 gives a brief review on two mathematical tools used

in our approach: multi-fractal analysis and tight framelet

system. Section 3 presents the detailed description of our

approach. Section 4 presents experimental results on tex-

ture classification and demonstrates the performance of our

method in comparison to other methods.

2. Preliminary knowledge

Here we give a brief review on two mathematical tools

used in our approach. One is multi-fractal analysis; the

other is tight framelet system.

2.1. Multi­Fractal analysis ([5])

We begin with the introduction of the concept of frac-

tal dimension. Consider a point set on the image, for ex-

ample the set of image points which have a certain value.

The fractal dimension of a given point set E is a statistical

measurement describing how the point set E appears to fill

space when one zooms in to finer scales. A popular model

of the fractal dimension is the so-called box-counting frac-

tal dimension. Let the space be covered by a mesh of n× n

squares. Given a point set E ⊂ R
2, let #(E, i

n
) be the

number of i
n

-mesh squares that intersectE for i = 1, 2, · · · .

Then the fractal dimension dim(E) of E ([5]) is defined as

dim(E) = lim
n→∞

log #(E, 1
n
)

− log 1
n

.

In practice, as the resolution is limited, we estimate the

slope of log #(E, i
n
) with respect to − log i

n
for i =

1, 2, · · ·m(m ≤ n) using the least squares method.

Multi-fractal analysis is a generalization of the fractal di-

mension when a single exponent is not enough to describe a

complicated dynamics. Divide the space into multiple point

set Eα according to some categorization. For each point set

Eα, which is the collection of all points with the same α,

let dim(Eα) denote its fractal dimension. The MFS is de-

scribed by the multi-fractal curve D(α) vs. α. In the clas-

sical definition of the MFS, the categorization is defined by

the density function [21].

2.2. Tight framelet system ([4])

A tight framelet system is a redundant generalized

wavelet system, which is particularly suited for presenting

the signal under multiple resolutions. A countable set of

functions X ⊂ L2(R) is called a tight frame of L2(R) if

f =
∑

h∈X

〈f, h〉h, ∀f ∈ L2(R). (1)

where 〈·, ·〉 is the inner product of L2(R). The tight frame

is a generalization of an orthonormal basis. It has greater

flexibility than an orthonormal basis by sacrificing the or-

thonormality and the linear independence, but it still allows

for perfect reconstruction like the orthonormal basis. The

filters of framelets have attractive properties, not present in

those of wavelets: e.g., symmetry (anti-symmetry), smooth-

ness, shorter support.

Given a finite set of generating functions

Ψ := {ψ1, · · · , ψr} ⊂ L2(R),
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Figure 1. Piecewise linear framelets.

one particularly interesting type of tight frame X ⊂ L2(R)
is a tight frame defined by the dilations and the shifts of the

generators from Ψ:

X := {ψℓ,j,k : 1 ≤ ℓ ≤ r; j, k ∈ Z} (2)

with ψℓ,j,k := 2
j/2

ψℓ(2
j · −k), ψℓ ∈ Ψ. A tight framelet

system is generated by constructing the set of framelets Ψ,

which starts with a refinable function φ ∈ L2(R) such

that φ(x) =
∑

k h0(k)φ(2x − k) for some low-pass fil-

ter h0. Then the set of framelets is defined as ψℓ(x) =
∑

k hℓ(k)φ(2x − k) with high-pass filters hℓs, which sat-

isfy the so-called unitary extension principle:

τh0
(ω)τh0

(ω + γπ) +

r
∑

ℓ=1

τhℓ
(ω)τhℓ

(ω + γπ) = δ(γ)

for γ = 0, 1, where τh(ω) is the trigonometric polynomial

of the filter h: τh(ω) =
∑

k h(k)e
ikω. In this paper, we use

the piece-wise linear framelets ([4]):

h0 =
1

4
[1, 2, 1]; h1 =

√
2

4
[1, 0,−1]; h2 =

1

4
[−1, 2,−1].

See Fig. 1 for the corresponding φ and ψ1, ψ2.

Therefore, we have a multi-scale decomposition of any

function f ∈ L2(R):

f(x) =
∑

ℓ=1,2,j,k∈Z

2
j
2 〈f, ψℓ(2

jx− k)〉ψℓ(2
jx− k). (3)

In this paper, we use a discrete implementation which

uses a more redundant multi-level tight framelet decompo-

sition without downsampling, as in Cai et al. [1]. Given the

linear-piecewise framelet system associated with hk, k =
0, 1, 2, let H denote the convolution operator with filter h

under the Neumann boundary condition, The multi-level

decomposition operator up to L can be written as

A =



















(

∏L−1
ℓ=0 H

(L−ℓ)
0

)T
;

(

H
(L)
1

∏L−1
ℓ=1 H

(L−ℓ)
0

)T
;
(

H
(L)
r

∏L−1
ℓ=1 H

(L−ℓ)
0

)T
;

.

.

.
(

H
(1)
1

)T
;
(

H
(1)
r

)T



















T

,

(4)

where H(i) denote the convolution operators associated

with the given filter H at the i-th level without downsam-

pling (See Cai et al. [1] for more details). Given any vector

f ∈ R
n, then the framelet coefficients Af and f are related

as

f = AT (Af).

It is noted that we have ATA = I but AAT 6= I unless

the tight framelet system is degenerated to an orthonormal

wavelet system.

3. Our texture description

There are three stages in the computation of our texture

description.

1. Compute the orientation histogram at each pixel with

respect to 8 different neighborhood sizes ranging from

3 × 3, 5 × 5, · · · , 17 × 17.

2. For each neighborhood size, discretize the orientation

histograms into 29 values, and for each value compute

the MFS of the image resulting in a 8 × 29 matrix of

MFSs.

3. Perform a multi-scale decomposition under a tight

framelet system on each of the 29 columns of the MFS

matrix to construct a descriptor of size (2L+1)×8×29
and extract the leading coefficients, where L is scale.

Next we give a detailed description of each step.

3.1. Multi­level orientation histograms

The orientation histogram proposed in [9] has shown

good robustness to illumination changes and is invariant to

rotation. Given a pixel, the gradient magnitude and the ori-

entation are computed for all pixels in the neighborhood,

from which the orientation histogram is formed by dis-

cretizing orientations and weighing by the gradient mag-

nitude. See Fig. 2 for illustration. The final orientation

histogram is rotated to align its dominant orientation with

a fiducial direction.

In our implementation we use only 8 gradient directions,

covering 45 degrees each, as too many orientations will lead

to instability for small neighborhood sizes. Neighborhoods

of different sizes will lead to different histograms. In our

approach we use multiple neighborhood sizes to generate a

sequence of orientation histograms at every point, in total

8 orientation histograms. The size of the square neighbor-

hood ranges from 3 × 3 to 17 × 17 with a step size of 2.

3.2. Pixel classification and the MFS

In order to boost the efficiency of our algorithm, we take

a fixed bin partitioning scheme based on 29 classes of orien-

tation histogram templates. The 29 template classes (shown

in Fig. 3) are constructed based on the spatial structure of

the orientation histogram, that is, the number of signifi-

cant image gradient orientations and their relative positions.
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Figure 2. Orientation histogram when using the neighborhood of

size 5 × 5.

Figure 3. Basic elements of 29 orientation histogram templates.

Each of the class templates includes all rotated and mirror-

reflected versions of the basic element (as shown in Fig. 3).

Fig. 4 shows one rotated example and one mirror reflected

example. To obtain from the orientation histogram a tem-

plate, each bin in the orientation histogram is set to 0 if the

amount is less than 1
8 of the total amount and set to 1 other-

wise.

Then for each level (neighborhood size of orientation

histogram) we compute one MFS feature vector as follows:

For each of the 29 templates we obtain a binary image by

setting the pixel to 1 if it has that template, and 0 otherwise.

The box-counting fractal dimension is computed for these

29 binary images resulting in the MFS vector. In total we

have 8 MFS vectors of dimension 29. We denote such a

multi-level set of MFSs by a 8 × 29 matrix K(s, n) with

s denoting the level (neighborhood size of the orientation

histogram) and n denoting the histogram template.

It is easy to see that using orientation histogram tem-

plates, the pixel classification is invariant to rotation,

Figure 4. One rotated element and one mirror-reflected element

from the basic elements shown in the right column.

mirror-reflection, and also it is more robust to illumination

changes than the original orientation histogram in [9]. In

addition, adopting the MFS as the statistical characteriza-

tion leads to global invariance to bi-Lipschitz spatial trans-

forms ([21]), which includes 3D view-point changes and

non-rigid surface changes.

3.3. Construction of texture description

The multi-level MFS K(s, n) already achieves invari-

ance to illumination and many geometrical transforms. In

order to get better robustness to scale changes, we con-

struct a multi-scale representation of K(s, n) using a non-

downsampling tight framelet transform along the axis s.

The non-downsampling tight framelet transform pro-

vides a redundant presentation which can characterize the

point singularity well in a multi-scale fashion. The L-scale

decomposition of K(s, n) under a 1d tight framelet system

with respect to s is defined as

F(j, s, n) := AE,

where A is defined in (4). E are the framelet coefficients.

F consists of two parts: one output of low-pass filter-

ing using h0 at the scale 2−L; multiple outputs of high-

pass filtering using h1, · · · , hr at multiple scales ranging

from 2−1, · · · , 2−L. The output of each high-pass filter-

ing has three variables: scale 2−j , j = 1, · · · , L, level

s, s = 1, · · · , 8 and bin index n, n = 1, 2, · · · , 29. The

new constructed texture representation F of K(s, n) under

a tight framelet system inherently provides invariance to not

too large scale changes in the image.

The motivation for using the multi-scale representation

F(j, s, n) of E(s, n) is that a scale change in the image

corresponds to the same scale change in the neighborhood

size of the orientation histogram. For example, if the image

is zoomed in by 20%, the orientation histogram of a pixel

w.r.t. a neighborhood size of 5 × 5 corresponds to that of

the same pixel w.r.t. a neighborhood size of 6 × 6. Thus,

robustness to the scaling effect in the image is equivalent to
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robustness to a shift ofE(s, n) along the axis of s. By using

a multi-scale representation F(j, s, n) of E, the robustness

to a shift of E(s, n) is improved. As we see, the output of

low-pass filtering under scale L is the local average across

multiple levels s, and the output of multi-scale high-pass fil-

tering could be viewed as the information about the changes

of E w.r.t. scale changes, which often is consistent across

multiple scales for natural textures.

Fig. 6 shows the single-scale framelet-based represen-

tation F for four MFSs corresponding to the four texture

images shown in Fig. 5 (a).

4. Experimental evaluation

We evaluated the performance of the proposed texture

descriptor on the classical texture classification task. Two

datasets are tested: one is from UIUC ([16]) and the other

is from UMD ([17]). The UIUC texture dataset consists

of 1000 uncalibrated, unregistered images: 40 samples for

each of 25 textures with a resolution 640 × 480 pixels, and

the UMD texture dataset consists of 1000 uncalibrated, un-

registered images: 40 samples for each of 25 textures with

a resolution of 1280 × 900 pixels. Significant viewpoint

changes and scale differences are present within these two

texture datasets, and the illumination conditions are uncon-

trolled.

In our classification experiments, the training set is se-

lected as a fixed size random subset of the class, and all

remaining images are used as the test set. The texture de-

scription in our implementation is based on a two-scale

framelet-based representation of the MFSs. The reported

classification rate is the average over 200 random subsets.

An SVM classifier (Tresp et al. [15]) is used in the experi-

ments, which was implemented as in Pontil et al. [13]. The

features of the training set are used to train the hyperplane

of the SVM classifier using RBF kernels as described in

Scholkopf et al. [14]. The optimal parameters are found by

cross-validation.

We compared our method against the three methods in

Lazebnik et al. [7], Varma et al. [18] and Xu et al. [21]. The

first one is the (H+L)(S+R) method by Lazebnik et al. [7],

which is based on a sophisticated point-based texture repre-

sentation. The basic idea is to first characterize the texture

by clusters of elliptic regions. The ellipses are then trans-

formed to circles such that the local descriptor is invariant

to affine transforms. Two descriptors (SPIN and SIFT) are

defined on each region. The resulting texture descriptor is

the histogram of clusters of these local descriptors, and the

descriptors are compared using the EMD distance. The sec-

ond method is the VG-fractal method by Varma and Garg

[18], which use properties of the local density function of

various image measurements resulting in a 13 dimensional

descriptor. The resulting texture descriptor is the histogram

of clusters of these local descriptors. The third method is

the MFS method by Xu et al. [21], which is closest to our

method. In [21] the pixel classification is based on the local

density function at each point. In total three local density

functions based on image intensity, image gradient and im-

age Laplacian were defined, and the texture descriptor is

obtained by combining the three MFSs based on the corre-

sponding pixel classification.

The results on the UIUC dataset using the SVM classi-

fier for the (H+L)(S+R) method is from [7]. All other results

are obtained from our implementations. We denote our ap-

proach as OTF method. Fig. 7 shows the classification rate

vs. the number of training samples on the UIUC dataset.

Fig. 8 shows the classification percentage vs. the index of

classes on the UIUC dataset based on 20 training samples.

Fig. 9 and Fig. 10 show the same experiments for the UMD

dataset.

From Fig. 7–Fig. 10 it can be seen that on the two

datasets our method clearly outperformed the VG-fractal

method and the MFS method. Also our method obtained

better results than the (H+L)(S+R) method. We empha-

size that heavy clustering is needed in both, the VG-fractal

method and the (H+L)(S+R) method, which is very compu-

tationally expensive. On the contrary, our approach is much

simpler and efficient without requiring clustering.

5. Summary and Conclusions

In this paper we proposed a texture descriptor based on

the MFS defined on local orientation histograms under mul-

tiple neighborhood sizes. Using the multi-level orientation

histograms leads to a pixel classification which is robust to

illumination changes and local geometric changes. Com-

bining the orientation histograms globally using the MFS

multi-fractal spectrum introduced in [21], we obtain a tex-

ture representation which has strong invariance to both il-

lumination changes and environmental changes. Further-

more, we projected the MFSs into a tight frame system to

enhance the invariance to large scale changes. Our texture

descriptor also is very efficient and simple to compute with-

out requiring feature detection and clustering. The experi-

ments show that our method performed particularly well on

texture classification when using an SVM-based classifier.
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(a) Original MFSs of four different texture images. (b) The framelet coefficients of MFSs for framelet h0.

(c) The framelet coefficients of MFSs for framelet h1. (d) The framelet coefficients of MFSs for framelet h2.

Figure 6. MFSs of four different texture images in Fig. 5 (a) and the corresponding framelet coefficients filtered by piece-wise linear

framelets.

(a) (b) (c)

Figure 7. Classification rate vs. number of training samples on UIUC dataset based on SVM classifier. Four methods are compared: the

(H+L)(S+R) method in Lazebnik et al. [7], the MFS method in Xu et al. [21], the VG-Fractal method in Varma et al. [18] and our OTF

method. (a) Classification rate for the best class. (b) Mean classification rate for all 25 classes. (c) Classification rate for the worst class.
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(a) (b) (c) (d)

Figure 8. Classification percentage vs. index of classes on UIUC dataset based on SVM classifier. The number of training samples is 20.

The number on the top of each sub-figure is the average classification percentage of all 25 classes. (a) Result of the (H+L)(S+R) method.

(b) Result of the MFS method. (c) Result of the VG-Fractal method. (d) Result of our OTF method.

(a) (b) (c)

Figure 9. Classification rate vs. number of training samples on UMD dataset based on SVM classifier. Four methods are compared: the

(H+L)(S+R) method, the MFS method, the VG-Fractal method and our OTF method. (a) Classification rate for the best class. (b) Mean

classification rate for all 25 classes. (c) Classification rate for the worst class.

(a) (b) (c) (d)

Figure 10. Classification percentage vs. index of classes on UMD dataset based on SVM classifier. The number of training samples is 20.

The number on the top of each sub-figure is the average classification percentage of all 25 classes. (a) Result of the (H+L)(S+R) method.

(b) Result of the MFS method. (c) Result of the VG-Fractal method. (d) Result of our OTF method.
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