
CHoG: Compressed Histogram of Gradients
A Low Bit-Rate Feature Descriptor

Vijay Chandrasekhar† Gabriel Takacs† David Chen† Sam Tsai† Radek Grzeszczuk‡ Bernd Girod†

† Stanford University
Information Systems Lab

{vijayc,gtakacs,dmchen,sstsai,bgirod}@stanford.edu

‡ Nokia Research Center
Palo Alto, CA

radek.grzeszczuk@nokia.com

Abstract
Establishing visual correspondences is an essential com-

ponent of many computer vision problems, and is often done
with robust, local feature-descriptors. Transmission and
storage of these descriptors are of critical importance in
the context of mobile distributed camera networks and large
indexing problems. We propose a framework for comput-
ing low bit-rate feature descriptors with a 20× reduction in
bit rate. The framework is low complexity and has signifi-
cant speed-up in the matching stage. We represent gradient
histograms as tree structures which can be efficiently com-
pressed. We show how to efficently compute distances be-
tween descriptors in their compressed representation elimi-
nating the need for decoding. We perform a comprehensive
performance comparison with SIFT, SURF, and other low
bit-rate descriptors and show that our proposed CHoG de-
scriptor outperforms existing schemes.

1. Introduction
Local image features have become pervasive in the areas

of computer vision and image retrieval. These features are
increasingly finding applications in real-time object recog-
nition [1], 3D reconstruction [2], panorama stitching [3],
robotic mapping [4], and video tracking [5]. Depending
on the application, either transmission or storage issues (or
both) can limit the speed of computation or the size of
databases. In the context of mobile devices (camera phones)
or distributed camera networks, communication and power
costs are significant for transmitting information between
nodes. Feature compression is hence vital for reduction in
storage, latency and transmission.

Server-side Storage: Image retrieval applications need
query images to be matched against databases of millions of
features stored at application servers. Feature compression
can yield significant savings in storage space,

Application Latency: When data are sent over a net-
work, the system latency can be reduced by sending fewer
bits resulting from compression of image features.

Data Transmission: For mobile applications, band-
width is a limiting factor. Feature compression can reduce
the amount of data transmitted over wireless channels and
backhaul links in a mobile network.

Motivated by these demands, we propose a new frame-
work for computing low bit-rate feature descriptors.

1.1. Prior Work

Research on robust local descriptors continues to be a
very active area of computer vision. Of the many proposed
descriptors, SIFT [6] is probably the most commonly used.
Other popular descriptors include GLOH by Mikolajczyk
and Schmid [7], and SURF by Bay et al. [8]. The review
paper by Mikolajczyk et al. [9] provides a comprehensive
analysis of several descriptors. Winder and Brown [10]
also investigate various published descriptors, and propose
a framework for optimizing parameters in the descriptor
computation process.

Low-bit-rate descriptors are of increasing interest in the
vision community. Often, feature data are reduced by de-
creasing the dimensionality of descriptors. Ke and Suk-
thankar [11] investigate dimensionality reduction via Prin-
ciple Component Analysis. Hua et al. [12] propose a
scheme that uses Linear Discriminant Analysis. Takacs et
al. [1] quantize and entropy code SURF feature descriptors
for reducing their bit rate. Chandrasekhar et al. [13] pro-
pose a general framework for transform coding image fea-
tures. Chuohao et al. [14] reduce the bit rate of descriptors
by using random projections on SIFT descriptors to build
binary hashes. Descriptors are then compared using their
binary hashes. Shakhnarovich, in his thesis [15], uses a ma-
chine learning technique called Similarity Sensitive Coding
to train binary codes on image patches.

1.2. Contributions

We first show how to capture gradient statistics from
canonical patches in a histogram. In contrast to prior work,
we explicity exploit the underlying gradient statistics that
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arise from canonical patches around interest points. Retain-
ing the statistics as a histogram enables us to use more ef-
fective distance measures like Kullback-Leibler (KL) diver-
gence and Earth Mover’s Distance (EMD) for comparing
descriptors. We then use tree coding techniques to quan-
tize and compress these histograms into low bit-rate feature
descriptors. We show how these Compressed Histogram
of Gradients (CHoG) descriptors can be compared in the
compressed domain. This reduces the computational com-
plexity by eliminating decompression from distance com-
putations. We show that exact nearest-neighbor searching
for CHoG is 10× faster than for SIFT. Finally, we com-
pare CHoG to several low-bit-rate descriptors and show that
CHoG outperforms other schemes at equivalent bit rates.

2. Descriptor Design

The goal of a feature descriptor is to robustly capture
salient information from a canonical image patch. We use
a histogram-of-gradients descriptor and explicitly exploit
the anisotropic statistics of the underlying gradient distri-
butions. By directly capturing the gradient distribution, we
can use more effective distance measures for comparing his-
tograms. In this section we choose the parameters of our
Uncompressed Histogram of Gradients (UHoG) descriptor.
We first describe the framework used for evaluation.

2.1. Descriptor Evaluation

For evaluating the performance of low-bit-rate descrip-
tors, we use two data sets provided by Winder and
Brown [10], Trevi Fountain and Notre Dame. Each data set
has matching pairs of 64×64 pixel patches. For algorithms
that require training, we use matching pairs from the Trevi
Fountain. For testing, we randomly select 10,000 matching
pairs and 10,000 non matching pairs from the Notre Dame
set. In addition to the process used by Winder and Brown,
we orient all patches in the direction of the most domi-
nant gradient. Patch orientation ensures that the gradient
statistics are similar to the statistics of canonically oriented
patches obtained from interest point detectors.

We use the method proposed by Winder and Brown [10]
for descriptor evaluation. We compute a distance between
each pair of descriptors. From these distances, we form
two histograms, one for matching pairs and one for non-
matching pairs. From the two histograms we obtain a Re-
ceiver Operating Characteristic (ROC) curve which plots
correct match fraction against incorrect match fraction.

The 128-dimensional SIFT descriptor [6] is considered
the gold standard of descriptors [7], and hence we use it
as our reference descriptor. We also compare against the
64-dimensional SURF [8] descriptor, which works well in
practice. Both SIFT and SURF are quantized to 8 bits, re-
sulting in 1024 and 512 bit descriptors, respectively.

2.2. Histogram of Gradient Based Descriptors

A number of different feature descriptors are based on
the distribution of gradients within a patch of pixels. In this
Section, we describe the pipeline used to compute gradient
histogram descriptors. We then show the relationships be-
tween SIFT, SURF and UHoG.

As in [9], we model illumination changes to the patch
appearance by a simple affine transformation, aI +b, of the
pixel intensities, which is compensated by normalizing the
mean and standard deviation of the pixel values of each
patch. Next, we apply an additional Gaussian smoothing
of σ = 2.7 pixels to the patch. The smoothing parameter is
obtained as the optimal value from the learning algorithm
proposed by Winder and Brown, for the data sets in con-
sideration. Local image gradients dx and dy are computed
using a centered derivative mask [−1,0,1]. Next, the patch
is divided into localized cells, which gives robustness to in-
terest point localization error. Then, some statistics of dx
and dy are extracted seperately for each cell, forming the
descriptor.

SIFT and SURF descriptors can be calculated as func-
tions of the gradient histograms, provided that such his-
tograms are available for each cell and the dx, dy values are
sorted into sufficiently fine bins. Let PDx,Dy(dx,dy) be the
normalized joint (x,y)-gradient histogram in a cell. Note
that the gradients within a cell may be weighted by a Gaus-
sian window prior to descriptor computation [6, 8].

The 8 SIFT components of a cell, DSIFT , are

DSIFT (i) = ∑
(dx,dy)∈Ωi

√
d2

x +d2
y PDx,Dy(dx,dy) (1)

where Ωi = { (dx,dy) | π(i−1)
4 ≤ tan−1 dy

dx
< πi

4 , i = 1 . . .8}.
Similarly, the 4 SURF components of a cell, DSURF , are

DSURF (1) = ∑
dx

∑
dy

PDx,Dy(dx,dy)|dx| (2)

DSURF (2) = ∑
dx

∑
dy

PDx,Dy(dx,dy) dx (3)

DSURF (3) = ∑
dx

∑
dy

PDx,Dy(dx,dy)|dy| (4)

DSURF (4) = ∑
dx

∑
dy

PDx,Dy(dx,dy) dy (5)

In contrast to SIFT and SURF, we propose coarsely
quantizing the 2D gradient histogram, and capturing the
histogram directly into the descriptor. We approximate
PDx,Dy(dx,dy) as P̂D̂x,D̂y

(d̂x, d̂y) for (d̂x, d̂y) ∈ S, where S rep-
resents a small number of quantization centroids or bins
as shown in Figure 1. We refer to this uncompressed
descriptor representation as Uncompressed Histogram of
Gradients (UHoG). The ith UHoG descriptor is defined as
D i

UHoG
=

[
P̂i

1, P̂
i
2, . . . , P̂i

N
]
, where P̂i

k represents the gradient
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Figure 1. The joint (dx,dy) gradient distribution (a) over a large
number of cells, and (b), its contour plot. The greater variance
in y-axis results from aligning the patches along the most domi-
nant gradient after interest point detection. The quantization bin
constellations VQ-3, VQ-5, VQ-7, VQ-9 and VQ-17, and their as-
sociated veronoi cells are shown at the bottom.

histograms in cell k of descriptor i, and N is the total num-
ber of cells. Similar gradient histogram binning techniques
have also been proposed by Dalal and Triggs [16], and Free-
man and Roth [17]. Note that the dimensionality of UHoG
is given by N×B, where N is the number of cells, and B is
the number of bins in the gradient histogram.

2.3. Gradient Histogram Binning

As stated earlier, we wish to approximate the histogram
of gradients with a small set of bins, S. We propose his-
togram binning schemes that exploit the underlying gradi-
ent statistics observed in patches extracted around interest
points. The joint distribution of (dx,dy) for 10000 cells
from the training data set is shown in Figure 1(a,b). We ob-
serve that the distribution is strongly peaked around (0,0),
and that the variance is higher for the y-gradient. This an-
isotropic distribution is a result of canonical image patches
being oriented along the most dominant gradient by the in-
terest point detector.

We perform a Vector Quantization (VQ) of the gradient
distribution into a small set of bin centers, S, shown in Fig-
ure 1. We call these bin configurations VQ-3, VQ-5, VQ-7,
VQ-9, and VQ-17. All bin configurations have a bin center
at (0,0) to capture the central peak of the gradient distri-
bution. The additional bin centers are evenly spaced over
ellipses, the eccentricity of which are chosen in accordance
with the observed skew in the gradient statistics.

To evaluate the performance of each bin configuration
we plot the ROC curves in Figure 2. For these curves, we
use KL divergence, which we show in Section 2.5 performs
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Figure 2. ROC curves for various bin configurations. GRID-16
cell configuration and KL divergence are used. The VQ-5 config-
uration matches the performance of SIFT.

well as the distance measure for histogram comparison. As
we increase the number of bin centers, we obtain a more ac-
curate approximation of the gradient distribution. As a re-
sult, the performance of the descriptor improves until VQ-7.
After VQ-7, we begin to over-quantize the distribution lead-
ing to a less robust descriptor. We observe that the VQ-5
configuration with 5 bins suffices to match the performance
of SIFT.

2.4. Cell Configuration

Since we want the smallest possible feature descriptor,
we have experimented with reducing the number of cells.
Fewer cells means fewer histograms and a smaller descrip-
tor. However, it is important that we do not adversely affect
the performance of the descriptor.

SIFT [6] and SURF [8] use a square 4×4 grid with 16
cells (GRID-16). Mikolajczyk et al.[7] propose using log-
polar cell configurations (GLOH-9, GLOH-7). Here, we
consider these three different cell configurations, shown
in Figure 3. The performance of GLOH-7 matches that
of GRID-16, and provides a dimensionality reduction of
56% compared to GRID-16. GLOH-9 performs better than
GRID-16, while providing a dimensionality reduction of
44%. We therefore select GLOH-9 as the cell configuration
for low bit-rate descriptors.

2.5. Distance Measures

Since UHoG is a direct representation of a histogram we
can use distance measures that are well-suited to histogram
comparison. Several quantitative measures have been pro-
posed to compare distributions in the literature. We consider
three measures, the L2-norm, Kullback-Leibler divergence
[18], and the Earth Mover’s Distance [19]. The distance
between two UHoG (or CHoG) descriptors is defined as
d(D i,D j) = ∑N

k=1 dhist(P̂i
k, P̂

j
k ), where N is the number of

cells, dhist is a distance measure between two distributions,
and P̂i represents the gradient distribution in a cell.
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Figure 3. ROC curves for various cell configurations. VQ-5 bin
configuration and KL divergence are used. The log-polar GLOH-9
cell configuration performs better than GRID-16.

Let B denote the number of bins in the gradient his-
togram, and P̂i = [pi

1, pi
2....p

i
B]. We define dKL as the sym-

metric KL divergence between two histograms such that,

dKL(P̂i, P̂ j) =
B

∑
n=1

pi
n log

pi
n

p j
n

+
B

∑
n=1

p j
n log

p j
n

pi
n
. (6)

The EMD is a cross-bin histogram distance measure, un-
like L2-norm and KL divergence which are bin-by-bin dis-
tance measures. The EMD is the minimum cost to trans-
form one histogram into the other, where there is a ”ground
distance” defined between each pair of bins. This ”ground
distance” is the distance between the bin-centers shown in
Figure 1. Note that EMD is a metric and follows the triangle
inequality, while KL divergence is not.

In Figure 4 we plot ROC curves for different distance
measures for VQ-5 and VQ-9. The KL divergence and
EMD consistently outperform the L2-norm, particularly for
VQ-9. These results show that gradient histograms can
be compared effectively by using KL divergence. This
motivates techniques to compress probability distributions
which provide a bound on the distortion in KL divergence.

3. Descriptor Compression

Keeping the descriptor as a set of histograms not only
allows us to exploit patch statistics and meaningful distance
metrics, but also allows us to leverage work from the in-
formation theory literature on histogram compression. Our
goal is to produce low bit-rate Compressed Histogram of
Gradients (CHoG) descriptors while maintaining the high-
est possible fidelity. In this section we demonstrate that we
can represent a histogram as a tree structure and thereby re-
duce the data while keeping an upper bound on the resulting
distortion. A block diagram of the compression pipeline is
shown in Figure 5.
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Figure 4. ROC curves for distance measures with bin configura-
tions VQ-5 (b) and VQ-9 (b). KL and EMD consistently outper-
form L2-norm.

3.1. Tree Coding

Lossy compression of probability distributions is an in-
teresting problem that has has not received much attention
in the compression literature. Gagie [20] recently proposed
two algorithms for compressing probability distributions
with a bound on the KL divergence between the original and
compressed distributions. We refer to these two algorithms
as Gagie and Huffman tree coding. For both algorithms,
let P = [p1, p2, ...pn] ∈Rn+ be the original distribution, and
Q = [q1,q2, ....qn] ∈ Rn+ be the lossily quantized probabil-
ity distribution defined over the same sample space.

3.1.1 Huffman Tree Coding

Given a probability distribution, one to way to compress it
is to construct and store a Huffman tree built from the dis-
tribution. From this tree, the Huffman codes, {c1, . . . ,cn},
of each symbol in the distribution are computed. The re-
constructed distribution, Q, can be subsequently obtained
as qi = 2−bi , where bi is the number of bits in ci. As shown
in [20], Huffman tree coding guarantees that D(P ||Q) < 1,
where D(P ||Q) = ∑n

i=1 pi log2
pi
qi

.
Huffman trees are strict binary trees, such that each node

has exactly zero or two children. The maximum depth of
a strict binary tree with n leaf nodes is n− 1. Therefore, a
Huffman tree can be stored in (n− 1)dlog(n− 1)e bits by
storing the depth of each symbol in the Huffman tree with a
fixed length code. The depth of the last leaf node need not
be stored, since a Huffman tree is a strict binary tree and
∑qi = 1. An example of constructing Huffman tree codes
for a VQ-5 gradient histogram is shown in Figure 6.

3.1.2 Gagie Tree Coding

The Gagie tree algorithm constructs a distribution, Q, such
that D(P ||Q) < log2(2 + 23−k), where Q can be stored in
exactly kn− 2 bits. Readers are referred to [20] for the
proof and algorithms. Here, we present the special case
of the algorithm with k = 2. The compression provides
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Figure 5. Block diagram for histogram compression. Distribu-
tions are quantized with Huffman or Gagie trees, which are en-
coded directly for large n, or with fixed-length or entropy coding
for small n.

D(P ||Q) < 2, and the distribution can be stored in exactly
2n−2 bits as a strict ordered binary tree.

We compute a Gagie Tree as follows,

1. Compute S = {s1, . . . , sn}, such that si =
pi
2 +∑i−1

j=1 p j.

2. Construct codes, ci, to be the first bi bits of si, where
bi = dlog( 2

pi
)e. The ci from a prefix-free code.

3. From the ci, construct an ordered, binary tree, T
′

Gagie
.

Prune internal nodes of T
′

Gagie
that have only one child

to obtain a strict, ordered, binary tree TGagie .

4. Represent TGagie succinctly in 2n−2 bits as a sequence
of balanced parentheses [21].

An example of constructing Gagie tree codes is shown in
Figure 6. Gagie trees are ordered and, hence, the tree itself
stores the entire distribution P. However, Huffman trees
are not ordered, because symbol probabilities are sorted
in the tree building process. The Huffman tree results in
a lower D(P ||Q), but requires a higher number of bits,
(n−1)dlog(n−1)e, compared to 2n−2 bits for Gagie trees.
While the tree coding schemes can be used for all n, we
show how to reduce the bit rate further for small n in the
next Section.

3.2. Tree Fixed Length Coding

We reduce the bits needed to store a tree by enumerating
all possible trees, and using fixed length codes to represent
them. The number of possible Gagie trees is given by the
Catalan number,

Cn−1 =
1
n

(
2n−2
n−1

)
, (7)

which yields the number of strict, ordered, binary trees with
n leaf nodes. The Huffman trees are a superset of the Gagie
trees which can be enumerated as all unique permutations
of the leaf nodes of Gagie trees. A simple example of all
possible Gagie and Huffman trees with 4 leaf nodes is illus-
trated in Figure 7. The tree enumeration technqiue can be
employed for n≤ 14 for Gagie trees, and n≤ 9 for Huffman
trees. Beyond this, enumeration is not practical due to the
large number of possible trees. Figure 8 shows the reduc-
tion in bit rate obtained by using fixed length coding. We
next show how the bit rate can be further reduced for n≤ 7
for both schemes.

Figure 6. Example of Gagie (top) and Huffman (bottom) tree cod-
ing. Both schemes start with the same distribution, P, and result
in the compressed distribution, Q. This example results in a KL
divergence of 0.2945 and 0.2620 for Gagie and Huffman, respec-
tively.

3.3. Tree Entropy Coding

We can achieve further compression by entropy coding
the fixed-length indices. This is because not all trees are
equally likely to occur from gradient statistics. For this
compression we use an arithmetic coder. The resulting bit-
rate reduction for n ≤ 7 is illustrated in Figure 8. Entropy
coding is not practical for large n as the statistics cannot be
reliably estimated for such a large sample space.

3.4. Compression Results

After presenting two different methods of compressing
gradient distributions we now compare their performance.
For both Huffman and Gagie schemes, we pick the lowest
possible bit-rate for a given n, as shown in Figure 8.

Figure 9 shows the results of compressing descriptors us-
ing Gagie (a) and Huffman (b). For both schemes, the bit
rate increases as the number of bins increases, and so does
the performance of the descriptor. The Gagie scheme can
achieve close to the performance of SIFT using the VQ-9
configuration with 99 bits. The Huffman scheme can match

Figure 7. All possible unique, strict, binary trees with 4 leaves.
Huffman trees are a superset of Gagie trees which can be con-
structed as unique permutations of the leaves of Gagie trees. The
leaves are color coded by depth.
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Figure 8. Bit-rate per cell for Huffman and Gagie histograms us-
ing different schemes. We can obtain 2-4× compression compared
to the Tree Coding representation. Note the ranges of n in which
Tree Fixed Length and Tree Entropy Coding can be used.

the performance of SIFT using VQ-5 with 53 bits, while the
VQ-7 configuration at 108 bits outperforms SIFT.

Additionally, we note that compression with Huffman
tree coding affects the performance of the descriptor less
than compression with Gagie trees. This results from the
smaller bound on KL divergence that arises from compress-
ing distributions with Huffman trees. Importantly, we ob-
serve that the performance of the descriptor compressed
with Huffman Tree compression is close to the performance
of the uncompressed descriptor.

Finally, for a fair comparison of Huffman and Gagie Tree
compression schemes at the same bit rate, we consider the
Equal Error Rate (EER) point on the different ROC curves
for each scheme. The EER point is defined as the point on
the ROC curve where the miss rate (1− correct match rate)
and the incorrect match rate are equal. As shown in Fig-
ure 10, the Huffman compression scheme provides a lower
EER for a given bit-rate than Gagie compression.

4. Descriptor Matching
For reducing both speed and memory consumption, we

would like to operate on descriptors in their compressed
representation. We refer to this as compressed domain
matching. Doing so means that the descriptor need not be
decompressed during comparisons. Additionally, compu-
tational complexity is reduced by eliminating compression
and decompression from distance computations. In this
Section, we show how to do 10× faster nearest neighbor
search with CHoG features in their compressed representa-
tion.

4.1. Compressed Domain Matching

As shown in Section 3.2, we can represent the index
of Huffman and Gagie trees with fixed length codes when
n is sufficiently small. To allow for compressed domain
matching we pre-compute and store the distances between
the different compressed distributions. This allows us to
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Figure 9. ROC curves for compressing distributions with Gagie
and Huffman compression schemes with GLOH-9 and KL diver-
gence. In (a) and (b) we can match the performance of SIFT with
99 and 53 bits for Gagie and Huffman compression schemes, re-
spectively.

efficiently compute distances between descriptors by using
tree indices as look-ups into a distance table. Since the dis-
tance computation only involves performing table look-ups,
more effective histogram comparison measures like KL di-
vergence and EMD can be used with no additional computa-
tional complexity. Figure 11 illustrates compressed domain
matching for the VQ-5 bin configuration.

4.2. Accelerated Search Strategies

There are many important uses of feature descriptors that
require nearest-neighbor searches. Some examples include
vocabulary trees [22] and nearest neighbor matching of fea-
tures [23]. One of the most commonly used data structures
is an approximate kd-tree (ANN) [24]. However, since we
wish to use arbitrary metrics as well as compressed domain
matching, kd-trees cannot be used with CHoG descriptors.
To enable O(logn) search, we use distance metrics such as
EMD or L2-norm, along with a metric ball tree. The tree
exploits the Triangle Inequality while forming a binary tree
using only distances between descriptors. Metric-trees can
easily be extended for approximate searches with a (1 + ε)
guarantee in the same way as [24].

Table 1 shows the timing results for nearest-neighbor
querying with both SIFT and CHoG. For the experiment,
103 features descriptors were queried into a database of 106

descriptors. The descriptors for both SIFT and CHoG were
computed from the same set of patches. For CHoG, we
use a 45-dimensional descriptor resulting from GLOH-9,
VQ-5 and Huffman Tree compression. Exact nearest neigh-
bor searching is ∼10× faster for CHoG than SIFT. Further-
more, CHoG is 2× faster than SIFT with ANN (ε = 1),
which incurs an error rate of 0.30%. The speed-up comes
from lower dimensionality, and the use of look-up tables
for fast distance computation. Additionally, for matching
against a small number of feature descriptors (∼1000), op-
timized brute-force search is fast, and the KL divergence
can be used for better ROC performance.
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Figure 10. Comparing Huffman and Gagie coding schemes. The
Huffman scheme provides a lower EER for a given bit-rate than
the Gagie scheme.

5. Comparisons

We now demonstrate that CHoG outperforms several
other recent compression schemes. To make a fair com-
parison, we compare the Equal Error Rate (EER) for var-
ious schemes at the same bit rate. Figure 12 compares
CHoG with Huffman or Gagie compression against the
other schemes. Each scheme is briefly described in the fol-
lowing Sections.

5.1. Patch Compression

One simple approach to reduce bit rate is to use image
compression techniques to compress canonical patches ex-
tracted from interest points. SIFT descriptors can then be
extracted from these compressed patches. We compress
32×32 pixel patches with JPEG [25], and then compute
a 128-dimensional 1024-bit SIFT descriptor on the recon-
structed patch. As seen in Figure 12, JPEG requires 295
bits to compete with the performance of CHoG-Huffman at
53 bits.

5.2. Random Projections

Chuohao et al. [14] propose the use of quantized random
projections to build binary hashes from SIFT descriptors.
Hamming distance between hashes is used as the distance
measure. The Random Projection scheme requires more
than 500 bits to compete with the performance of CHoG-
Huffman at 53 bits. A practical disadvantage of random
hashing is that the computational complexity increases with
the number of hash bits.

Time (sec) Error (%)
CHoG Metric Tree 27.96 0.00

SIFT kd-tree Exact NN 371.80 0.00
SIFT kd-tree Approx NN 47.01 0.30

Table 1. Nearest-neighbor run-times on a 2 GHz Intel Xeon pro-
cessor compared for SIFT and CHoG with L2-norm. There are 103

queries into a database of size 106.

Figure 11. Block diagram of compressed domain matching. The
gradient histogram is first quantized, and then tree coded. The tree
indices are used to look-up the distance in a precomputed table.

5.3. Boosting Similarity Sensitive Coding

Shakhnarovich [15] uses a machine learning algo-
rithm called Boosting Similarity Sensitive Coding (Boost
SSC) [26] to train binary codes that reflect patch similarity.
The Boosting SSC algorithm learns an embedding of the
original Euclidean space into a binary space such that the
hamming distance is correlated with Euclidean distance.

We trained Boosting SSC with 10000 matching SIFT de-
scriptor pairs and 40000 non-matching pairs. Figure 12
shows that Boosting SSC outperforms random projections
at low bit rates. However, at higher bit rates, the perfor-
mance of the scheme degrades due to over-training. Addi-
tionally, Boosting SSC requires an expensive training step,
while CHoG does not.

5.4. Transform Coding

Transform coding of SURF and SIFT descriptors was
proposed by Chandrasekhar et al. [13]. The compression
pipeline first applies a Karhunen-Lòeve Transform (KLT)
transform to decorrelate the different dimensions of the fea-
ture descriptor. This is followed equal step size quanti-
zation of each dimension. The quantized features are en-
tropy coded with an arithmetic coder. SIFT-Transform cod-
ing requires 270 bits to match the performance of CHoG-
Huffman at 53 bits. SURF-Transform coding requires 133
bits to match the performance of 53-bit CHoG-Huffman.

5.5. Tree Structured Vector Quantization

Nistér and Stewénius [22] proposed the idea of using hi-
erarchical k-means to quantize SIFT descriptors, leading to
a Tree Structured Vector Quantizer (TSVQ). Here, we quan-
tize SIFT descriptors with a 106 node TSVQ with a branch
factor of 10 and depth of 6, requiring 20 bits per descrip-
tor. A significantly larger TSVQ is not practical due to the
size of the code book. As seen in Figure 12, TSVQ com-
pression performs poorly and does not come close to the
performance of CHoG.
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Figure 12. Comparison of EER versus bit-rate for all compression
schemes. Better performance is indicated by a lower EER. CHoG-
Huffman at 53 bits outperforms all the other schemes.

6. Conclusion

We have proposed a novel framework for computing low
bit-rate feature descriptors with 20× reduction in bit rate,
low complexity and significant speed-up in the matching
stage. By quantizing and encoding gradient histograms with
Huffman and Gagie trees we can create very low bit-rate
descriptors. We efficently compute distances between de-
scriptors in their compressed representation eliminating the
need for decoding. We perform a comprehensive perfor-
mance comparison with SIFT, SURF, and other low bit-
rate descriptors and show that CHoG outperforms existing
schemes at lower or equivalent bit rates. The CHoG descrip-
tor enables many applications that are limited by bandwidth,
storage, or latency. Such applications include mobile aug-
mented reality, large-scale image retrieval, and visual sen-
sor networks.
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