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Abstract

Density of moles is a strong predictor of malignant
melanoma. Some dermatologists advocate periodic full-
body scan for high-risk patients. In current practice, physi-
cians compare images taken at different time instances to
recognize changes. There is an important clinical need to
follow changes in the number of moles and their appear-
ance (size, color, texture, shape) in images from two differ-
ent times. In this paper, we propose a method for finding
corresponding moles in patient’s skin back images at differ-
ent scanning times. At first, a template is defined for the hu-
man back to calculate the moles’ normalized spatial coor-
dinates. Next, matching moles across images is modeled as
a graph matching problem and algebraic relations between
nodes and edges in the graphs are induced in the match-
ing cost function, which contains terms reflecting proximity
regularization, angular agreement between mole pairs, and
agreement between the moles’ normalized coordinates cal-
culated in the unwarped back template. We propose and
discuss alternative approaches for evaluating the goodness
of matching. We evaluate our method on a large set of syn-
thetic data (hundreds of pairs) as well as 56 pairs of real
dermatological images. Our proposed method compares fa-
vorably with the state-of-the-art.

1. Introduction
Melanoma is one of the fastest growing cancers among

the white population in the world with an average 3% in-
crease in incidence for the last four decades. In the USA
and Canada alone, it is estimated that there will be 67,080
new cases of melanoma in 2008 [17, 1].

The mechanism of melanoma development is not fully
understood. Nevertheless, mole density (number of moles
per unit area of skin) has been reported as the strongest risk
factor, and about 50% of melanoma originates from pre-

existing moles. Early diagnosis of melanoma may lead to
potentially life-saving therapy. To allow for early diagno-
sis, patients are full-body scanned periodically and digital
color images of the skin are collected during the process.
One example of the back images at two different times is
shown in Figure 1(a). During a dermatological examina-
tion, a physician compares the skin images at different time
instances to observe changes in the number of moles and
their appearance, such as size, color, shape, and texture.
However, relying on visual inspection of moles is costly,
time consuming, and may be error prone due to fatigue [8].
Therefore, an automatic method for matching correspond-
ing moles would have significant health benefits, especially
for tracking moles in patients who are at a high risk of de-
veloping melanoma and, hence, require regular mole exam-
inations.

To the best of our knowledge, there exists limited previ-
ous work on skin mole or lesion matching. In [9], Huang
and Bergstresser proposed to utilize the area of the voronoi
cells surrounding moles in the similarity term for mole
matching. Then, a dynamic programming approach was
used to find corresponding moles. To favor preserving the
topology of the constellation of moles, moles were sorted
based on their distance to a reference mole. In [15], Pered-
nia and White proposed a two-step process to match moles.
First, they assumed some known mole matches and solved
for an affine transformation that brings the known matches
into alignment. Then, they corresponded each unmatched
mole to its closest neighbor after alignment. Similarly, the
approach in [18] also relies on an initial matching of moles
to establish a course alignment. The lines between the ini-
tial matches are then used to construct baselines. Certain
geometrical properties for each mole with respect to these
baselines are then used in a similarity metric to find the cor-
responding moles. Compared with [15], [18] is more robust
to non-rigid transformation caused by changes in the pa-
tients posture.
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The mole matching problem can be seen as a general
point cloud or graph matching problem. We, therefore,
highlight some key related works in this latter area. In [11],
a spectral method for finding consistent correspondences
between two sets of features is proposed by Leordeanu and
Hebert. After constructing an adjacency matrix represent-
ing the pairwise agreements between edges, the correct as-
signments are recovered based on how strongly they belong
to the main cluster of the matrix, using eigenvector decom-
position. In [14], Coherent Point Drift (CPD) algorithm
was proposed by Myronenko et al. CPD establishes cor-
respondence between two point sets based on a maximum
likelihood estimate that enforces motion (or velocity field)
coherence. CPD simultaneously finds both the non-rigid
transformation and the correspondence between two point
sets without making any prior assumption about the trans-
formation model except that of motion coherence. In [2],
shape context features are used in the similarity measure-
ment to find corresponding points and the best non-rigid
alignment of two shapes is provided by thin-plate splines.
Zheng and Doermann [23] formulate point matching as an
optimization problem to preserve local neighborhood struc-
tures during matching and use shape context distance to ini-
tialize the graph matching, followed by relaxation labeling
updates for refinement. Maciel and Costeira [12] formulate
the matching problem as an integer constrained minimiza-
tion and find global optimal solution via a relaxed concave
objective function. Gold et al. [7] define the pose term (the
affine transformation between points) into the point match-
ing objective and use soft assign to find good suboptimal
solutions. Zass and Shashua [22] derive the hyper-graph
matching problem in a probabilistic setting, which is solved
via convex optimization and based on an algebraic relation
between the hyperedges; the global optimum of the match-
ing is found via an iterative successive projection algorithm.

We note that previous mole matching approaches (e.g.
[18, 9, 15]) do not benefit from state of the art point
and graph matching techniques. Further, for improved
mole matching, we argue that matching algorithms (e.g.
[22]) must be extended to incorporate high-level, domain
knowledge about the anatomy, e.g. the human back. In
this paper, we propose to augment anatomical knowledge
into the state-of-the-art matching algorithms and develop
an anatomy-aware mole matching technique. We are in-
spired by works on human brain atlases, which have ben-
efited the medical image analysis research in many ways;
mainly by providing a common frame-of-reference that fa-
cilitates cross-sectional and longitudinal comparisons of
brain anatomy [19, 20, 5, 13]. We propose the first hu-
man back template (or atlas) to encode spatial mole coor-
dinates in a common normalized coordinate system (sec-
tions 3 and 4). After a discussion on graph representation
of the constellation of moles in section 5, we extend the hy-

(a) (b)

Figure 1. (a) Constellation of moles on a back image [6], (b) A close up
on a big mole using a dermoscope with non-polarized light.

per graph matching algorithm [22] to incorporate proximity
regularization, angular agreement between mole pairs, and
template-normalized coordinates (section 6). We evaluate
encoding these criteria into two alternative objective func-
tion formulations. Furthermore, we propose and compare
different approaches for evaluating the goodness of match-
ing relative to ground truth correspondences and for learn-
ing the optimal weighting between the terms of the objec-
tive function (section 6). We apply our algorithm on a large
synthetic data set (hundreds of pairs) as well as 56 pairs of
real dermatologic images and demonstrate improved mole
matching results compared to the other methods (section
7). We conclude the paper with a discussion and closing
remarks (section 8).

2. Back Skin Segmentation and Mole Detection

In order to have a fully automatic mole-tracking system,
we first need to extract the contours of the human back skin
from the dermatological color images. Skin segmentation
can be performed using a variety of methods, e.g. using
color [16] and texture similarity [21]. The extracted human
back boundaries and several Type I [3] anatomical land-
marks (e.g. left armpit, right hip) are used to map (or warp)
the subject-specific back coordinates into the normalized
back template (as described in section 4). The output of the
back segmentation step is also used as a region of interest
(or mask) for the mole detection stage. Mole detection and
segmentation methods are divided into two main classes.
The first class of methods segments a single mole, occu-
pying hundreds of pixels and centered in the image with a
skin background [4] (Figure 1(b)). The second class detects
one or typically more moles in an image capturing a larger
field of view, in which each mole occupies only a few pixels,
such as those appearing in the full back images of interest in
this current work (Figure 1(a)). In [10], for example, back
image moles are extracted using a variant of the mean shift
algorithm, whereas in [16], facial skin irregularities (nevi)
are localized using a multi-scale template matching and tex-
ture analysis procedure. The focus of our current work is
on mole matching and not on the skin or mole segmentation
steps. The latter are currently done using a semi-automatic,
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user-assisted algorithm to rule out errors in matching due to
incorrect segmentation (see future work in section 8).

3. Human Back Template
In order to have an anatomically meaningful compari-

son between moles in the human back images, we need to
perform spatial normalization (similar to works on brain at-
lases [19, 20, 5, 13]). In this work, we propose the first hu-
man back template (atlas) to obtain this normalization. The
template is constructed as follows. Four pairs of points cor-
responding to anatomically meaningful (i.e. Type I) land-
marks are used as reference points in the template (Figure
2(a)): (i) the point where the left side of the neck meets
the left shoulder, or neck-left (nl for short) and similarly
neck-right (nr); (ii) the point where the left shoulder meets
the left arm or shoulder-left (sl) and similarly shoulder-
right (sr); (iii) the left (al) and right (ar) arm pit; and (iv)
the points corresponding to the left (hl) and right (hr) hip.
The template is then constructed as a square patch with
a pre-defined number of longitudes and latitudes (Figure
2(b)). The central latitude connects al and ar, whereas the
central longitude connects the medial points nm, sm, am,
and hm, where the subscript m indicates the midpoint be-
tween the corresponding left and right reference points, e.g.
nm = (nl + nr)/2. Note that in the template space these
medial longitudes and latitudes are two straight line seg-
ments perpendicular to each other. Finally, based on the
anatomical landmarks and the reference central latitude and
longitude, a template-based rectilinear coordinate system is
defined and a complete Cartesian grid is overlaid on the
template.

4. Spatial Normalization of Back Coordinates
To perform spatial normalization, each subject-specific

back image is registered into the template coordinate sys-
tem as follows. The anatomical landmarks in the derma-
tologic image are identified and mapped to their respective
reference points in the template, e.g. the left shoulder point
in the image space, sl, is mapped to Sl in the template space
(Figure 2(b)). The neck, shoulder, and armpit points in the
image are identified as inflection points, i.e. based on the
curvatures of the back boundary obtained in section 2 (Fig-
ure 2(a)). However, it is more challenging to define the hip
points segmentation (see future work in section 8).

As the focus of this work is on mole matching, we rely
on the user to confirm or edit the extracted position of these
anatomical landmark points in the image, and therefore do
not provide any evaluation of the accuracy or repeatabil-
ity of this anatomical landmark detection step (see section
8). Note that, in the image space, all latitudes and longi-
tudes are no longer straight lines but rather smooth curves
fit to the locations of the anatomical (and the medial) land-

(a) Landmark (b) Template

Figure 2. Human back template. (a) Landmarks are shown in the image.
(b) Template of the back image. The red and green points correspond
to the normalized coordinates of the moles and the reference anatomical
landmarks, respectively. The vertical and horizontal red lines correspond
to the central longitude and latitude.

Figure 3. Examples of back images with overlaid grid.

marks in physical coordinates. Consequently, the grid in
the image space is no longer rectilinear but rather curved.
Equal arc length sampling is used to correspond the grid
lines in the image space with those in the template. Ta-
ble 1 contains the the details of how the latitudes and lon-
gitudes are defined in the image domain. Finally, with the
latitudes and longitudes defined in both the image and the
template domain, the intersection points of the latitudes
and longitudes now correspond across both domains. In
order to establish correspondence between any point (not
only latitude and longitude intersections points) in the two
continuous domains, we evaluated two interpolation meth-
ods: Barycentric coordinates (BC) and Thin plate splines
(TPS). TPS is more accurate than BC but it is more compu-
tationally expensive. The result is a function f : Ω → Ω̂
that establishes a bijective mapping between points in any
location within the two continuous domains: the image
space Ω ⊂ [0, xmax] × [0, ymax] and the template space
Ω̂ ⊂ [−0.7, 0.3] × [−0.5, 0.5], where xmax × ymax is the
size of the image and the limits of Ω̂ cover a unit-square
patch. Given this mapping f , any coordinate in the image,
mainly mole locations, are mapped to spatially-normalized
coordinates in the template. In Figure 3, some examples of
a grid overlaid on the back images are shown.

5. Graph Representation
After calculating the normalized coordinates of two sets

of moles from two different images captured at different
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Left/Right longi-
tudes:

Degree 3 polynomials least-squares fitted to the lateral edge points of the back’s left silhouette and
constrained to pass through al, similarly for the right side.

Central longitude: Medial curve between the left and right longitudes.
Central latitude: Line connecting al to ar.
Superior latitude: Degree 5 polynomial least-sqaures fitted to the superior edge points of both shoulders’ silhouettes.
Inferior latitude: Line connecting hl and hr.

Table 1. Definitions of latitudes and longitudes for the back image grid

times, we turn our attention to matching the moles across
time. Finding correspondences between moles is mod-
eled as a graph matching problem. Let G = (v, e) and
G′ = (v′, e′) be two graphs with vertices v and v′ and edges
e and e′, respectively. Vertices in G and G′ are related to
the moles from the two images and the edge weights repre-
sents some features related to the vertices connected by that
edge. Based on these definitions, a matching betweenG and
G′ is a vertex to vertex mapping Πv : v → v′. This may be
viewed as a bipartite graph matching, where edges from one
set to other set represent the likelihood of matching nodes
from G to G′. Note that for dermatological studies, it is im-
portant to not only match moles but also to detect appearing
and disappearing moles.

6. Mole Matching Objective function
Assuming moles do not change their anatomical position

with time and a perfect construction of the back anatomy
based coordinate system, corresponding moles from two
different times should be mapped into the exact same coor-
dinate in the template. In that ideal scenario, perfect match-
ing can be obtained by simply using the Euclidean distance
between vertices ofG andG′, i.e. corresponding moles will
have a nil Euclidean distance in the template space. How-
ever, due to different sources of error, including limitations
of the imaging system, back skin segmentation errors, in-
accuracies in mole detection, imperfect localization of the
anatomical landmark positions, etc, it is unavoidable that
this ideal situation will not take place. Instead, correspond-
ing vertices in one set can be obtained through a nonlinear
smooth warp (or nonlinear spatial transformation) that pre-
serves local neighborhoods. This desired regularization mo-
tivates edge-to-edge rather than vertex-to-vertex matching,
i.e.

Πe(ei) = Πe(vi1, vi2) = (v′j1, v
′
j2) = e′j ∈ e′

vi1, vi2 ∈ v, v′j1, v′j2 ∈ v′
(1)

where Πe maps an edge in e to an edge in e′. A favorable
mapping is one which maps edges with the same length
and the same anatomical direction (e.g. inferior-superior,
medial-lateral, or other oblique direction), and maps the
vertices of those edges to the proximate normalized spa-
tial coordinates. These criteria describe how well the rela-

tive pairwise geometry is preserved after mapping. Conse-
quently, we combine three terms into the objective function,
which the sought optimal mapping should minimize: Eu-
clidian distance between individual vertices of edges mea-
sured in the anatomy-based template space; difference be-
tween the lengths and between the directions of pairs of
edges.

There are two main approaches to combine these terms
into an objective function:

EΠe = (Pα)ωα(Pβ)ωβ (Pθ)ωθ (2)

EΠe = ωαPα + ωβPβ + ωθPθ (3)

where the Pα, Pβ , and Pθ measure the reward of matching
two edges based on Euclidean distance, difference in edge
length, and difference in edge direction, respectively, and
are given by:

Pα(ei, e′j) = e−(dist(vi1,v
′
j1)+dist(vi2,v

′
j2))

Pβ(ei, e′j) = e−(abs(dist(vi1,vi2)−dist(v′
j1,v

′
j2)))

Pθ(ei, e′j) = e−(arccos((~vi. ~v′
j)/(|~vi|| ~v′

j |)))

~vi = (vi1, vi2); ~v′j = (v′j1, v
′
j2)

(4)

where dist(p, q) calculates the Euclidian distance between
points p and q. Although it is more common in the literature
to use an objective function of the form (3), we argue that
(2) is more suitable in our current situation since the opti-
mal solution should ideally maximize all three terms (i.e.
an AND operation), whereas in (3) maximizing any of the
terms will produce a larger value for the objective function
(i.e. an OR operation). In section 7, we demonstrate quan-
titatively that this is indeed the case. In section 6.2, we de-
scribe how we optimize the weights (ωα, ωβ , ωθ). We now
seek the matching Π̂e = argmaxΠe(EΠe).

In order to extract a vertex to vertex mapping from EΠe,
we make use of hypergraph matching method proposed in
[22], which we summarize in the next section for notational
completeness.

6.1. Hypergraph Matching

Hyperedges connect d nodes, where d ≥ 2 is the degree
of the hyperedge. In order to find vertex to vertex matching,
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matching hyperedges is considered in [22]. For instance, for
d = 4, the ratio between the area of the triangles described
by v1, v2, v3 and v2, v3, v4 (vi is a vertex of G) is used as a
similarity measure for matching hyperedges. A probability
matrix reflecting the likelihood of an edge-to-edge match-
ing is constructed as EΠe = E(e, e′) = P (Πe(e) = e′ |
G,G′).

According to [22], under the assumption of Πv(vi) ⊥
Πv(vj), EΠe is written as d times Kronecker product of
X(v, v′), i.e. EΠe = ⊗dX , where X is a doubly semi-
stochastic (X ≥ 0, X1 ≤ 1, XT 1 ≤ 1) whose entries store
the probability of matching vi and v′j . Therefore, we need
to find X̂ = argminXdist(EΠe ,⊗dX).

This function can be reduced to a simpler form
by defining a marginalization matrix Y : Yv,v′ =∑d
i=1

∑
e|vi=v,e′|v′

i=v
′ E(e, e′) where e = (v1, v2, ..., vd)

and e′ = (v′1, v
′
2, ..., v

′
d). Therefore, the minimization can

be rewritten as X̂ = argminXd(Y,X). A successive pro-
jections algorithm is used to find the globally optimal so-
lution of the matching probability matrix X and a linear
assignment problem is solved to obtain a hard matching,
if desired. For d = 2, the matching cost function in [22]
simplifies to the difference between the lengths of edges.
However, in the presence of noise, relying on edge-lengths
is not sufficient to find correct corresponding points and,
according to [22], hyperedge matching is recommended.
In this case, the time complexity of the algorithm would
be: O(|v|d.|v′|d), which is impractical when the number
of nodes is high. Zass and Shashua reduced the algorithm
complexity to O(|v|.|v′|.z2(d−1)) by sampling the z clos-
est hyperedges per vertex and used only the correlation be-
tween the sampled Hyperedges.

However, in our mole-matching problem, with the pres-
ence of appearing and disappearing moles, z could not be
far frommin(|v|, |v′|), which means that high running time
problem still exists. In this work, we use d = 2 and adopt
Zass and Shashuas approach to solve for X from EΠe .

6.2. Learning the optimal weights

Given a specific choice of weights of ωα, ωβ , ωθ, the
objective function EΠe is evaluated according to (2) or (3)
and the matching probabilities X are computed as in [22].
Clearly, different choices for the weights will result in a
different objective function and, hence, a different opti-
mal solution. It is, therefore, imperative to use appropriate
weights.

In order to find the best choice of weights, we rely on
generating comprehensive training data with ground truth
correspondence and evaluating the matching performance
given different choices of weights. In particular, we gener-
ate multiple reference training data sets, where each training
set consists of two groups of points: a reference set V and

a target set V ′, mimicking the moles to be matched across
two images. The total number of points in V and V ′ are
nV = niV +noV and nV ′ = niV ′ +noV ′ , where the niV points
in V correspond to the niV ′ points in V ′ (i.e. niV = niV ′)
and the positions of the latter set of points are generated
by displacing the former by random distances drawn from
uniform distributions with different support intervals σn.
These perturbations in positions mimic the aforementioned
errors (e.g. mole detection, anatomical landmark localiza-
tion, etc.). noV is the number of moles that exist only in V
but not in V ′, i.e. mimicking disappearing moles, whereas
noV ′ exist in V ′ but not in V , i.e. new appearing moles.

As we control the generation of the two sets of points,
the ground truth matrix of matching between points, XReal,
is known. Next, the dissimilarity betweenX , resulting from
the matching algorithm, and XReal is calculated for differ-
ent weights. Then, the best weights are chosen as the set
giving the minimum dissimialrity between X and XReal.

(ω̂α, ω̂β , ω̂θ) = argmin(ωα,ωβ ,ωθ)d(X,XReal) (5)

There are different ways to measure the dissimilarity be-
tween X and XReal. We evaluate the following measures
for the goodness of matching: Hamming distance error,
HDE, between defuzzified (crisp mapping) X and XReal;
the number of incorrect matching, NIM; and the spatial Eu-
clidian distance, SED, between the mole position mapped to
by X and by XReal. The distance between X and XReal,
d(X,XReal) for each of these measurements is given by:

dHDE :
∑
i,j

X(i, j)⊕XReal(i, j)

dNIM :
∑
i,j

XReal(i, j)−X(i, j) ∧XReal(i, j)

dSED :
∑

{(i,j)|X(i,j)−X(i,j)∧XReal(i,j)=1}

SED(i, j)

(6)

Figure 4 visualizes SED(i,j) for different cases. Note that
HDE and NIM are only defined for hard (crisp) matching
whereas SED is defined for both hard and soft matchings.
As it can be seen in Figure 5, there is a high correlation
between NIM and HDE, but they are not perfectly corre-
lated, ρNIM,HDE = 0.89, whereas ρSED,NIM = 0.46 and
ρSED,HDE = 0.61.

7. Results

The real data used in this study were obtained from color
slides taken from an epidemiologic study concerning the
use of broad-spectrum sunscreen and mole development.
The images were digitized with 24-bit color at 2000 dpi,
with a final resolution of about 0.25 mm/pixel. A set of 56
pairs of digitized images containing moles was chosen to
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Figure 4. Visualization of SED for different cases. (a) Two sets of moles
{a, b, c} and their ground truth corresponding moles {a′, b′, c′} are con-
nected by red lines. n and m′ are disappearing and appearing moles, re-
spectively and are connected to the null node. Let A, D and C be the
subsets of Appearing, Disappearing and Common moles in G and G′, re-
spectively. Assume that mole v is mapped incorrectly to mole v′. With
respect to the position of v and v′ in A, D and C, SED measures dif-
ferent distances. In this example: a, b, c, a′, b′, c′ ∈ C, m′ ∈ A and
n ∈ D, (b) when v = a ∈ C, v′ = c′ ∈ C and Πv(a) = c′

then SED(v, v′) = dist(a′, c′) + dist(a, c) (c) when v = n ∈ D,
v′ = m′ ∈ A and Πv(n) = m′ then SED(v, v′) = dist(n,m′),
(d) when v = a ∈ C, v′ = m′ ∈ A and Πv(a) = m′ then
SED(v, v′) = dist(a′,m′) + dist(a,m′), similar error is measured
when v = n ∈ D and v′ = a′ ∈ C.

Figure 5. Scatter plot and correlation between different distance mea-
sures.

evaluate the proposed method. Ground truth expert corre-
spondence was provided for all the moles in these pairs of
images [6].

Table 2 shows the best weights obtained for the synthetic
data (100 pairs of point sets times 3 cases in which σn varies
from 0 to 10% of the size of the unit-square template). As
expected (Figure 5), the best weights based on HDE and
NIM are similar. In table 2, for cost function (2), the best
weights based on SED are similar to the weights obtained
by either HDE or NIM. Therefore, we prefer (2) as our cost
function to find corresponding moles given its robustness
to the evaluation metric. The final weights used in our ex-
periments are fixed equal to the average weights (i.e. the
average of the left column in Table 2). Intuitively, the cost
function (2) is more preferable than (3) because (2) and (3)
are related to AND and OR of different energy terms, re-
spectively, and the best matching should ideally optimize
the three energy terms, i.e. AND-ing them.

Next, we performed a cross validation study, in which 10
real training images [6] were used to find the best weights,
and repeated for all permutations of these 10 images. The
results are shown in Table 3. These weights (approximately

Figure 6. Point matching evaluation (using HDE, NIM, and SED crite-
ria) of different methods (along the horizontal axis) when spatial image
coordinates (blue bars) or normalized coordinates (red bars) are used in
the matching. Refer to the text for the meaning of acronyms. Note that
SED values for normalized coordinates will generally be smaller because
of the smaller range of normalized values (i.e. [−0.7, 0.3] × [−0.5, 0.5]
as opposed to 100s for pixel coordinates). Note also that using normalized
coordinates does not affect the performance of CPD, whereas it improves
the accuracy of SC+TPS. Observing HDE and NIM for our proposed Mod-
ifiedHyp, we note a substantial improvement in accuracy when normalized
coordinates are used.

1/3, 1/3, 1/3) are close to the weights resulting from the
synthetic data experiment (Table 2), which reinforces the
adoption of weights obtained from synthetic to matching
moles in real images data.

In order to evaluate the proposed algorithm on real data,
moles and anatomical landmarks were identified manually.
A comparison between our proposed method (Modified-
Hyp) and (Vor) [9] , Coherent Point Drift (CPD) [14] , shape
contexts (SC+TPS) [2], the spectral technique of (Spect)
[11] and original Hypergraph matching (d = 2) (Hyp) [22]
is presented in Figure 6. Blue and red bars show the re-
sults when spatial image space coordinates and normalized
space coordinates are used, respectively. As it can be seen,
the performance of CPD does not improve when normal-
ized coordinates are used. However, CPD fails when the
number of common moles is not large enough as shown in
Figure 7. As it can be seen in Figure 6, the modified ver-
sion of hypergraph matching (with the three different en-
ergy terms) performs worse when it is fed by image space
mole coordinates. However, when our proposed anatomy-
based normalized coordinates are used, mean and variance
of error measurements for this method are better than the
other methods. Some examples of finding corresponding
moles in real image data are shown in Figure 8.

8. Conclusions
An automatic method for matching moles on human

back images is of utmost importance for early detection of
potential malignancies. Mole matching can be treated as a
graph matching problem. However, general state-of-the-art
point matching methods do not incorporate anatomical in-
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Figure 7. Synthetic experiment with known ground truth. num and DisApp denote size of ni
V = ni

V ′ and no
V respectively. (left) errors for fixed value

of ni
V , no

V and noise for increasing values of no
V ′ . (middle) errors for fixed value of ni

V and noise for increasing values for no
V = no

V ′ . (right) errors for
fixed value of ni

V and no
V = no

V ′ for increasing values for noise. As it can be seen, Modified Hypergraph matching gives better results.

Equation (2) Equation (3)
Case Error (ωα, ωβ , ωθ) ē σ2(e) Case Error (ωα, ωβ , ωθ) ē σ2(e)

HDE (.30, .39, .30) 0.47 0.02 HDE (.10, .48, .40) 0.44 0.02
case1 NIM (.32, .37, .30) 0.52 0.04 case1 NIM (.07, .50, .42) 0.43 0.04

SED (.34, .28, .36) 31.9 282.6 SED (.32, .28, .39) 36.51 566.16
HDE (.31, .38, .29) 0.38 0.03 HDE (.08, .49, .41) 0.38 0.034

case2 NIM (.31, .38, .29) 0.61 0.03 case2 NIM (.08, .49, .42) 0.60 0.03
SED (.34, .30, .35) 12.23 72.37 SED (.31, .32, .35) 16.01 166.77
HDE (.35, .32, .32) 0.36 0.03 HDE (.09, .49, .40) 0.30 0.04

case3 NIM (.35, .32, .32) 0.64 0.03 case3 NIM (.10, .49, .40) 0.62 0.07
SED (.34, .31, .33) 16.72 157.47 SED (.32, .32, .34) 12.64 207.66

Table 2. The best weights resulted from training on synthetic data for the two cost functions (in (2) and (3)). Synthetic data are generated under different
cases (case1-3) and each case is related to different values of the variables: case1 = {σn ∈ [0, .1], no

V ∈ [0, 7], no
V ′ ∈ [0, 7], ni

V = 10}, case2 =

{σn ∈ [0, .1], no
V ∈ [0, 7], no

V ′ = 0, ni
V = 10}, case3 = {σn ∈ [0, .1], no

V = no
V ′ = 0, ni

V = 10}. (100 random generations for each case). ē and
σ2(e) represent mean and variance of the error.

Equation (2) Equation (3)
Error (ωα, ωβ , ωθ) Error (ωα, ωβ , ωθ)
HDE (.29, .40, .29) HDE (.01, .55, .42)
NIM (.30, .40, .29) NIM (.01, .55, .42)
SED (.32, .36, .31) SED (.23, .35, .41)

Table 3. The best weights resulting from the cross validation experiment
with 10 training images [6].

formation. We proposed the first human back template and
demonstrated, on large sets of both real and synthetic data,
that the use of template-normalized spatial coordinates and
additional matching cost terms outperform several state-of-
the-art matching algorithms. Further, we provided an exten-
sive study on choosing the form of the objective function,
learning its optimal weights, and evaluating the resulting
matching; issues often marginally addressed in the litera-
ture. Our human back atlas is the first in the field and we are

already reaping the benefits of it by substantially improv-
ing the mole matching. Nevertheless, we plan on exploring
other template alternatives and anticipate other groups will
do too. One of the challenges, as observed in this study,
will be to develop a robust definition of the hip anatomi-
cal landmark, which we plan to address through discussions
and consultations with dermatologists. The mole matching
results we obtained are very encouraging from the compu-
tational and clinical perspectives. This encouraged us to
pursue a fully-automated back skin segmentation and mole
detection algorithms to provide an end-to-end system ap-
plied in clinical practice.
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