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Abstract

Maximum likelihood (ML) estimation is widely used in
many computer vision problems involving the estimation of
geometric parameters, from conic fitting to bundle adjust-
ment for structure and motion. This paper presents a de-
tailed discussion on the bias of ML estimates derived for
these problems. Statistical theory states that although ML
estimates attain maximum accuracy in the limit as the sam-
ple size goes to infinity, they can have non-negligible bias
with small sample sizes. In the case of computer vision
problems, the ML optimality holds when regarding variance
in observation errors as the sample size. A natural question
is how large the bias will be for a given strength of observa-
tion errors. To answer this for a general class of problems,
we analyze the mechanism of how the bias of ML estimates
emerges, and show that the differential geometric properties
of geometric constraints used in the problems determines
the magnitude of bias. Based on this result, we present a
numerical method of computing bias-corrected estimates.

1. Introduction
The problems of estimating geometric parameters from

image(s), such as ellipse fitting, the estimation of a funda-
mental matrix, and the problem of structure from motion
(SFM), are all formulated as follows. When observed data
X are given, assuming an error model p(X; θ) of observa-
tion, estimate the parameter θ. Maximum likelihood (ML)
estimation is often used to solve this problem, which is to
compute a parameter value θ = θ̂maximizing the likelihood

l(θ; X) ≡ p(X; θ). (1)

ML estimation is commonly used because it is optimal
in that the estimate is consistent and efficient for a sample
size tending to infinity. Roughly speaking, it is the most ac-
curate of all estimators when the sample size is sufficiently
large. In the case of computer vision problems, this opti-
mality holds true when we assume that the observation is
repeated multiple times (e.g., multiple images are captured
for the same scene) and then regard the number of repeti-
tions as the sample size. In this case, a large sample size
means small variance of errors in observation. (Note that
this optimality does not hold under a natural interpretation

of the sample size whereby the number of observed data is
the sample size [6, 4].)

ML estimates are optimal only when the sample size is
sufficiently large; they may be inaccurate for small sam-
ple sizes. In the latter case, a major issue is that estimates
can be biased. For example, consider the problem of esti-
mating unknown mean µ and variance ψ of a normal distri-
bution N(µ, ψ) from N observations x1, . . . , xN that follow
the distribution. The ML estimate ψ̂ of ψ has expectation
E[ψ̂] = ψ − ψ/N, where ψ/N is bias. Thus, although bias
may be negligible for large N, it causes serious error for
small N. In statistics, it is well known that ML estimates
can generally be biased for a small sample size; when bias
is not negligible, its correction is usually taken into consid-
eration.

In the computer vision community, few studies have fo-
cused on the bias of ML estimates. (In contrast, many stud-
ies have dealt with the bias of least squares fitting; see [7].)
Considering the above basic properties of ML estimates, we
believe that this issue should be investigated in greater de-
tail. What if it were possible to improve the accuracy of
the widely used bundle adjustment technique for multi-view
SFM, which is based on ML estimates?

Recently, Kanatani has dealt with this issue [4]. He an-
alytically derived high-order error terms of an ML estimate
and removed them from the estimate to make it more ac-
curate. (Although he called it a “hyperaccurate” method,
it can be classified as one of the standard approaches for
bias correction used by statisticians.) However, there are
several problems with his approach. The first is that it as-
sumes a probabilistic model of observations that is not phys-
ically meaningful. The observation model that has a physi-
cal background and thus is widely used is such that the ob-
servations have a normal distribution in their space. In his
approach, the geometric constraint (e.g., x′⊤Fx = 0) is lin-
earized by transforming the observations into another space
by nonlinear transformation. Therefore, the transformed
observations will have a new distribution in the transformed
space, and it is no longer is a normal distribution. Never-
theless, the approach approximates a new distribution with
a normal distribution. Moreover, the approach cannot be
applied to all problems.

Werman and Keren considered related issues and pro-
posed a Bayesian approach to them [9]. It is reported that
the proposed method can fit a circle to noisy data points in
an unbiased manner. However, such Bayesian approaches
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are limited in that the prior distribution of the observa-
tions (more rigorously, the latent variables) is required. For
example, in the estimation of a fundamental matrix, it is
required to know in advance how 3D points distribute in
space.

In this paper, we present a detailed description of the bias
of ML estimates that emerges in computer vision problems.
Unlike [4], we deal with the case where the observation
noises have a normal distribution in the observation space.
Our study makes three main contributions. First, for a par-
ticular class of problems, which includes ellipse fitting and
the estimation of a fundamental matrix, we show that the
curvature of the hypersurface constraining the true values of
the observations has a direct relation to the bias of the ML
estimates. Second, based on this result, for the same class of
problems, we propose a method of numerically computing
a bias-corrected estimate. Third, our study provides some
linkage to researches in statistics that has dealt with this is-
sue.

2. Maximum likelihood estimates for computer
vision problems

2.1. Estimation of geometric parameters
First, we describe the formulation of the problems that

are being considered. Denoting an observation by k-
vector xi, we assume that n observations, x1, . . . , xn, are
given. Assuming an additive Gaussian error for the obser-
vation process, we assume xi to have a normal distribution
Nk(ηi, σ

2I), where ηi is the true value of xi. The true value
ηi is constrained by a geometric constraint given as

f (ηi, θ) = 0, i = 1, . . . , n, (2)

where f is a function representing the geometry of in-
terest and θ is an unknown parameter we want to es-
timate. For example, in ellipse fitting, f is given as
f ([x, y]⊤, [a, b, x0, y0]⊤) = (x − x0)2/a2 + (y − y0)2/b2 − 1.
In the estimation of a fundamental matrix, f is given as
f ([x, y, x′, y′]⊤, F) = [x, y, 1]F[x′, y′, 1]⊤.

The geometric constraint on ηi can be represented in an
explicit manner by incorporating a variable ξi for each ob-
servation as

ηi = g(ξi, θ), i = 1, . . . , n. (3)

In ellipse fitting, using a scalar variable ξi, the true ellipse
point is given as [ηi1, ηi2]⊤ = [a cos ξi+ x0, b sin ξi+y0]⊤. In
the estimation of a fundamental matrix, a similar expression
can be obtained.

In both equations (2) and (3), assuming a fixed θ, the
equation constrains ηi in k-dimensional space; the set of
constrained ηi forms a (k − l)-dimensional submanifold in
the space, where l is the dimensionality of f or ξi. In both
cases, the ML estimates of the parameters are obtained by
minimizing the negative log-likelihood

L ∝
n∑

i=1

(xi − ηi)
2. (4)

In the case of (2), L is minimized with respect to θ and
η1, . . . , ηn subject to constraint (2). In the case of (3), L is
minimized simply with respect to θ and ξ1, . . . , ξn. Note
that in both cases, a variable exists for each observation xi,
i.e., ηi in (2) and ξi in (3).

2.2. Two asymptotics
As mentioned earlier, ML estimation is proven to be op-

timal in the asymptotic sense that the sample size increases
to infinity [2, 8]. Two types of asymptotics are possible for
the problems formulated above. The first is such that the
number of observations n increases to infinity, i.e., n → ∞.
The second is such that the variance of observation errors
decreases to 0, i.e., σ2 → 0. In the former, the number of
observations n is the sample size. In the latter, assuming
each point ηi was observed repeatedly, we regard the num-
ber of repetitions m of the observation as the sample size.
When an identical ηi is observed m times, we may regard
the mean of the m observations as a new observation xi.
Then, the variance σ2

m of the errors of the new observation
is given by σ2

m = σ2
1/m, where σ2

1 is the original variance
for a single observation. Thus, m → ∞ is equivalent to
σ2 → 0 [4, 6].

These two asymptotics lead to different conclusions. It
is easy to show that in the latter case of σ2 → 0 (or equiv-
alently, m → ∞), the above optimality of ML estimates
holds [2]. However, in the former case of n → ∞, it is
known that an ML estimate is generally not optimal [6, 4].
This is because the number of unknowns increases with the
number of observations n, since there exists a latent vari-
able per observation, as described above. Problems having
this structure are referred to as Neyman-Scott problems [5].
It remains unsolved in statistics how to obtain an optimal
estimate when n→ ∞.

In this paper, we consider only the former asymptotics
that is easier to deal with, i.e. the case of σ2 → 0 (or equiv-
alently, m → ∞), in which we discuss the bias of a ML
estimate. However, the bias itself may be related to the is-
sue with the Neyman-Scott structure; as described below,
the presence of latent variables is responsible for the emer-
gence of the bias. Thus, the present study could also provide
some insights into the issue with the case of n→ ∞.

3. Bias of maximum likelihood estimates
3.1. Example: Bias of circle fitting

To illustrate by example the bias of an ML estimate and
then discuss its properties, here, we consider a problem of
fitting a circle to a set of points [1, 8].

Example 1. Consider a circle with radius r centered at the
origin of the xy coordinate system: x2 + y2 = r2. Assume
that for i = 1, . . . , n, an observation xi = [xi, yi]⊤ of a point
ηi on the circle distributes according to N(ηi, σ

2I). Then,
we want to estimate the radius r from the n observations
x1, . . . , xn.

The observation xi (i = 1, . . . , n) is explicitly expressed
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(a) (b)
Figure 1. Results of ML estimation for the radius r(= 100) of a
circle. (a) The mean of the estimates over 1,000,000 trials. (b)
The standard deviation. The horizontal axis indicates the standard
deviation σ of the observation error. The solid lines indicate the
sample mean and sample variance, and the chained lines represent
their predictions by Efron’s curvature.

as follows: {
xi = r cos ξi + εi,
yi = r sin ξi + ε

′
i ,

(5)

where εi and ε′i are i.i.d. random variables generated ac-
cording to N(0, σ2). The ML estimates of r and ξ1, . . . , ξn
are calculated by minimizing the negative log-likelihood:∑

i(xi − r cos ξi)2 + (yi − r sin ξi)2. First, the ML estimate
of ξi is derived as ξ̂i = arctan (yi/xi). Substituting this
into the log-likelihood, we have a function only of r. The
minimization of the function yields the ML estimate of r:

r̂ =
∑

i

√
x2

i + y2
i /n.

Suppose we estimate r from the minimum number of ob-
servations, i.e., a single point (n = 1). Fig.1 shows the re-
sult of experiments performed using synthetically generated
observations. Fig.1(a) shows the mean of estimates r̂ over
1,000,000 trials when σ varies from 0.1 to 10. We can see
from the plot that the bias (i.e., r̂ − 100) increases with σ.
This demonstrates the aforementioned asymptotic proper-
ties of ML estimates.

3.2. Bias and number of observations
In the above experiment, r is estimated from a single ob-

servation. This result applies to the case in which n obser-
vations are used to estimate r since the expectation of the
ML estimate r̂ is independent of the number of observa-
tions n. Let r̂n be the ML estimate using n observations and
r̂1 be that using a single observation. Then, it can be shown

that E[r̂n] = E[
∑

i

√
x2

i + y2
i /n] = nE[r̂1]/n = E[r̂1]. This

means that even if an ML estimate is obtained using an in-
finite number of observations (i.e., n → ∞), the resulting
estimate will have the same magnitude of bias. Considering
the mechanism of how the bias emerges, which is shown in
the next section, we conjecture the following:

Conjecture 1. The bias of ML estimates is not directly de-
pendent on the number of observations n.

Although it may be independent of the bias, increas-
ing the number of observations n improves the accuracy of
the estimate; more rigorously, the variance of the estimate
will monotonically decrease with n. For example, in the
above problem of circle fitting, because of the independence
among observations the variance V[r̂n] of the estimate from

n observations is 1/n times the variance V[r̂1] of that from
a single observation.

Now, we consider whether it is necessary to correct the
bias of an estimate. Obviously, the answer depends on the
magnitude of the bias. However, the absolute magnitude
of the bias is not so important; it should be compared with
the variance (or the standard deviation) of the estimate. In
other words, if the bias is much smaller than the standard
deviation of the estimate, it is not necessary to correct it.
However, if the bias is comparable to the standard devia-
tion, it should be corrected. From the above observation
that the variance of an estimate depends on the number of
observations n while its bias does not, we can conjecture the
following:

Conjecture 2. As the number of observations n increases,
so does the necessity for correcting bias.

Let us take the above case of circle fitting as an exam-
ple. Fig.1(b) shows the standard deviation of the estimate r̂
versus σ of the observation errors for n = 1; its standard de-
viation increases with σ. Then, the necessity for correcting
the bias can be evaluated for each value of σ by comparing
the bias shown in (a) with the standard deviation shown in
(b). Comparing the two, the bias is approximately three dig-
its smaller than the standard deviation, and therefore we can
determine that it would be meaningless to correct it. When
σ = 10, although the difference becomes smaller, it is still
greater than a single digit, and therefore, bias correction re-
mains unnecessary. However, as mentioned above, the es-
timate has a smaller standard deviation for a larger number
of observations. For example, for n = 100, the vertical axis
of Fig.1(b) is scaled down by 1/10, and for n = 10000, it is
scaled down by 1/100. In the latter case, when σ = 2, the
bias and the standard deviation of the estimate are compara-
ble (approximately 0.02); therefore bias correction becomes
necessary.

3.3. Profile likelihood
In some problems, there exist multiple unknown parame-

ters that are inseparable in their estimation. It can be shown
that for these problems, ML estimates can always be biased
[2]. When there exist multiple parameters, their estimates
are calculated as follows. For the sake of simplicity, con-
sider the case of two parameters where the log-likelihood
is given by L(θ1, θ2); θ = (θ1, θ2) are unknown parame-
ters. The ML estimate of (θ1, θ2) is given by the parame-
ter values maximizing L. In order to calculate them, un-
less L is separable as L(θ1, θ2) = L(θ1)L(θ2), we first con-
sider, say, θ1 as a constant and maximize L with respect to
θ2. The resulting maximizer θ̂2 can be considered to be a
function of θ1 as θ̂2(θ1). Then, plugging this in L, we have
L̃(θ) = L(θ1, θ̂2(θ1)). Maximizing L̃(θ), we finally obtain θ̂1,
which is the ML estimate of θ1; the ML estimate of θ2 is
calculated as θ̂2 = θ̂2(θ̂1). The function L̃ defined above is
called a profile likelihood function [8].

It can be shown [2] that if the ML estimate of a parame-
ter is calculated independently of other parameters, the es-
timate is unbiased. Otherwise, the ML estimate can be bi-

961



x

^
d(η,x)^

η
ηθS

u

v

Figure 2. Local geometry of hypersurface S θ. η on S θ is true value
of observation x that follows N(η, σ2 I), and η̂ is the nearest point
on S θ to x. d is a signed distance from η̂ to x.

ased. Mathematically, if ∂L/∂θ1 is independent of θ2, then
the ML estimate of θ1 is unbiased; otherwise, it can be bi-
ased. This can be confirmed for the problem mentioned in
Section 1, which is to estimate the mean µ and variance ψ
of a normal distribution from x1, . . . , xN , each of which fol-
lows N(µ, ψ). It is easy to see that ∂L/∂µ is independent of
ψ, whereas ∂L/∂ψ depends on µ. In fact, µ̂ =

∑
i xi/N is

unbiased and ψ̂ =
∑

i(xi − µ̂)2/N is biased.
A major characteristic of computer vision problems for-

mulated in Section 2.1 is that there exists the same number
of latent variables as the observations. These latent vari-
ables (i.e., ηi’s in Eq.(2) and ξi’s in Eq.(3)) play the same
role as θ2 in the above discussion. Thus, ML estimates will
generally be biased for the computer vision problems.

4. Bias and geometric constraints
In the last section, we stated that the magnitude of the

bias depends on the variance of observation errors (and not
directly on the number of observations). In this section, we
show that the magnitude of the bias also depends on the geo-
metric constraint. Specifically, we show a relation between
the bias and a local differential-geometric property of the
geometric constraint. It is based on a study by Efron [1].

4.1. Efron’s curvature
Suppose a scalar function of a k-vector η, θ = t(η) . As-

suming a constant value for θ, the function gives a hyper-
surface in k-dimensional space:

S θ =
{
η | t(η) = θ} . (6)

Consider a point η on S θ. Assume that a k-vector x has a
normal distribution with mean η and covariance I. Let η̂ be
the nearest point on S θ to x, as shown in Fig.2. Then, η̂ is
given by

η̂ = argmin
η′∈S θ

|x − η′|2. (7)

Here, we assume that an orientation can be given to the hy-
persurface S θ so that a signed distance d(η̂, x) from η̂ to x
can be defined. (It does not matter which sign convention
is chosen but it needs to be consistently defined.) When S θ

and the original point η are fixed, d(η̂, x) is a function only

of x. (Note the relation of d to the profile likelihood de-
scribed in Section 3.3; specifically,

∑
d2 corresponds to the

profile likelihood described in Section 3.3.)
To describe Efron’s theorem, we introduce a matrix D

that is associated with the curvature of S θ at η. It is assumed
here that a local coordinate system u-v can be defined such
that the u-axis is normal to S θ at η and the v-axes are within
the tangent space to S θ at η. There are two choices for the
positive directions of u, and we choose the opposite direc-
tion to the positive direction of the signed distance d(η̂, x)
that has already been chosen, as shown in Fig.2. Then, D, a
(k − 1) × (k − 1) symmetric matrix, is defined such that S θ

is locally expressed as u = v⊤Dv in the u-v coordinates. As
in [1], we will call D the curvature matrix in what follows.

The theorem below is asymptotic in that it becomes
increasingly accurate as the curvature approaches 0, i.e.,
D → O, or S θ approaches a locally flat surface. Instead
of D → O, we can assume N observations and take the
limit N → ∞. Specifically, we assume that y1, . . . , yN
are independent and identically distributed according to
N(η, I). Then, let x be the mean of y1, . . . , yN ; it is seen
that x follows N(η, I/N). We now scale the space by

√
N

and define x′ =
√

Nx so that x′ follows N(η′, I), where
η′ =

√
Nη. This scaling also results in D′ = D/

√
N since

u′ = v′⊤D′v′ (or equivalently,
√

Nu = (
√

Nv)⊤D′(
√

Nv))
should be equivalent to u = v⊤Dv. Thus, N → ∞ is equiva-
lent to D→ O.

The following is shown in the above asymptotic sense
[1]:

Theorem 1. When x has a normal distribution N(η, I), the
signed distance d(η̂, x) is asymptotically normal with the
first four cumulants

[tr(D), (1 − tr(D2))2, 0, 0] (8)

to O(N−1); the errors of (8) are O(N−3/2).

Note that tr(D) is (k − 1)/2 times the mean curvature of
S θ. Even if S θ is given only in an implicit form, tr(D) is
calculated by using a formula for the mean curvature for an
implicit hypersurface [3].

In [1], using this result, confidence intervals for ML esti-
mates having higher-order accuracies than first-order stan-
dard intervals are analytically derived. For any function
θ = t(η), the ML estimate θ̂ of θ is given by θ̂ = t(η̂), where
η̂ is the ML estimate of η; then, the analytical confidence in-
terval for θ̂ is calculated directly from the above result. The
original objective of [1] was to show a close agreement with
bootstrap confidence intervals and the analytical intervals.

In the above asymptotic analysis, the observation x is
assumed to have a constant covariance I. However, in our
discussion, it is more convenient to assume σ2I. Then, as
discussed earlier, N → ∞ transforms to σ2 → 0. In this
asymptotic discussion, Theorem 1 can be restated as fol-
lows:

Corollary 1. When x has a normal distribution N(η, σ2I),
the signed distance d(η̂, x) is asymptotically normal as
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σ2 → 0 with first four cumulants:

[σ2tr(D), σ2(I − σ2tr(D2))2, 0, 0]. (9)

4.2. Bias for a particular class of problems
The equation θ = t(η) considered in the above analysis

can be thought of as a particular case of the implicit geo-
metric constraint (2). Thus, when Eq.(2) is represented in
the form θ = t(η), or equivalently, when the parameter to
be estimated is a scalar and it can be estimated from only a
single observation, the bias of the estimate is approximately
given by σ2tr(D). Thus, in this class of problems, the bias
is proportional to the variance σ2 of the observation errors
as well as the mean curvature of the hypersurface (or rigor-
ously the trace tr(D) of the curvature matrix).

The circle fitting problem discussed earlier belongs to
this class of problems. Denoting the coordinates of a point

on the circle by η = [η1, η2]⊤ and defining t(η) =
√
η2

1 + η
2
2,

the circle can be expressed as θ(= r) = t(η). When estimat-
ing from a single observation, the observation x gives the
ML estimate of the true coordinates η of the circle point.
Because of the invariance of ML estimates to parameter
transformation (that is, if α̂ is the ML estimate of α and if
h is any function of α, then the ML estimate of β = h(α) is
simply given as β̂ = h(α̂)), the ML estimate r̂ of the radius r
is given as r̂ = t(x). Then, the signed distance d is given by
r̂−r. Since the hypersurface S θ is simply a circle with radius
r and its curvature is 1/(2r), Corollary 1 states that d = r̂− r
approximately follows N(σ2/(2r), σ2(1 − (σ/(2r))2)2); the
bias of r̂ is approximately σ2/(2r). In Fig.1(a), this analyti-
cally calculated bias is plotted along with the bias computed
by simulation; we can see that there is close agreement be-
tween them.

4.3. Mechanism of the emergence of biases
The analytical calculation of biases given above is pos-

sible only for a particular class of problems (i.e., θ = t(η)).
However, Theorem 1 itself (and also Corollary 1) holds true
for general hypersurfaces.

Corollary 2. Corollary 1 holds for a more general hyper-
surface S θ = {η | f (η, θ) = 0}.

Its proof is omitted here. Using this, we can consider the
behavior of the bias for a wider class of problems in which
constraint (2) is given in the form f (η, θ) = 0. Note that
although (2) in the most general form is given by a vec-
tor function f (η, θ), we require it to be a scalar function
because of the necessity that S θ should be a hypersurface.
Many problems, such as ellipse fitting, the estimation of a
fundamental matrix, etc belong to this class.

In this case, the ML estimate θ̂ of the parameter θ is
calculated by minimizing L(θ) =

∑
i(xi − ηi)

2 subject to
f (ηi, θ) = 0. Using the notation used above, θ̂ can be ex-
pressed as follows:

θ̂ = argmin
θ

L(θ) = argmin
θ

n∑
i=1

d(η̂(xi; θ), xi)2, (10)

x

η̂

η

^
d(η,x)^

θS

θS

Figure 3. The estimated hypersurface S θ̂ is “pulled out” from the
true hypersurface S θ in the direction that S θ is convex.

(a) (b) (c)

^

η η

θS

θS

θS

Figure 4. Relation between the local shape of a hypersurface and
the distribution of observations. Depending on the curvature of
the hypersurface, the distance from the hypersurface to the obser-
vations can differ in an average sense for the two regions divided
by the hypersurface.

where η̂(xi; θ) is the nearest point on S θ to xi and d is the
signed distance from η̂ to xi, as defined earlier. Then, we
can consider θ̂ to be the minimizer of the sum of the squared
signed distance d2.

A problem with this minimization is that when it is con-
sidered to be a probabilistic variable, the signed distance
d has an asymmetric distribution with a nonzero mean, as
stated in Corollary 1. (Another problem is that the variance
of d is different for each observation, although this has a less
significant impact.) As described above, the estimate θ̂ is
determined such that d2 is minimized or, ideally, is equated
to 0. Thus, there arises the following disagreement: in real-
ity, d has an asymmetric nature for a true hypersurface S θ,
whereas the estimate S θ̂ of S θ is determined such that the
square of the signed distance d to S θ̂ approaches 0. Be-
cause of this disagreement, the estimated hypersurface S θ̂
typically deviates from the true one S θ. This is illustrated
in Fig.3; S θ̂ tends to be “pulled out” in the direction that the
hypersurface is convex. (More rigorously, it is pulled out in
the direction having the opposite sign to the sign of tr(D).)

Fig.4 illustrates the mechanism of how this deviation
emerges. Each circle represents the distribution of an ob-
servation x, which is given as N(η, σ2I). (In reality, it is
a k-dimensional hypersphere, where k is the dimensionality
of the observation vectors.) The true point η lies on the cen-
ter of the circle, and the true hypersurface S θ passes through
this center.

Now, consider the two subregions of the circle divided
by the hypersurface. The observation x is randomly gener-
ated equally in all directions from the circle center. Thus,
each subregion corresponds to the sign of the signed dis-
tance d. More specifically, d is determined for each x in
such a way that its sign is determined by which subregion x
falls in and its absolute value |d| equals the distance from S θ
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to x. If the hypersurface is flat, as shown in Fig.4(a), |d| is
the same for each subregion in an average sense. However,
if the hypersurface is curved, as shown in Fig.4(b), |d| dif-
fers for each subregion in an average sense. In this case, d
will have an asymmetric distribution. Moreover, the prob-
ability that x falls in each subregion is proportional to its
volume, which reinforces this asymmetric nature. Hence,
the distribution of d has a nonzero mean that is proportional
to the curvature.

As described above, the estimate θ̂ is determined by min-
imizing the sum of d2. Geometrically speaking, this is
equivalent to searching for the hypersurface that cancels the
asymmetric nature of d. The resulting hypersurface is such
that the volumes of the two subregions are more balanced,
as shown in Fig.3(c). This illustrates the mechanism of why
the estimated hypersurface S θ̂ deviates from the true one
S θ.

In Section 3.3, we have described that when the estima-
tion of the interest parameter θ depends on that of the latent
variable η, the resulting ML estimate θ̂ can be biased. The
above discussion geometrically illustrates this in greater de-
tail; the estimation of η at a curved hypersurface results
in the asymmetric nature of the signed distance d, which
makes the final estimate θ̂ biased.

4.4. Remarks and example
An important implication of the above analysis is that

when the hypersurface has curvatures of different magni-
tudes for different parts, the deviation of the estimated hy-
persurface can differ for each part; it could be large for a
local part having large curvature. The interest parameter θ
is usually estimated from many data points, and thus, how
each local part affects the final estimate of θmay not be pre-
dictable. Nevertheless, it is possible to derive a few useful
observations from this discussion. For example, even for
the same problem, it is possible that the shape of the hy-
persurface changes drastically depending on the parameter
values; therefore, local parts having large curvatures emerge
and the final estimate is biased. In other words, the magni-
tude of the bias depends on the true parameter values we
want to estimate, e.g., the shape of ellipses and the layout
of stereo cameras. Even when it is confirmed that the ML
estimate is unbiased for a particular configuration, it does
not necessarily mean that the estimate is always guaranteed
to be similarly unbiased for other configurations.

The problem of ellipse fitting is considered as an exam-
ple.

Example 2. For an ellipse (x − x0)2/a2 + (y − y0)2/b2 = 1,
estimate the parameter θ = [a, b, x0, y0] from x1, . . . , xn.

Using a formula given in [3], the curvature κ at a point
(x, y) on the ellipse is given as follows:

κ =
a2b2(b2x2 + a2y2)
(b4x2 + a4y2)3/2 . (11)

In this case, κ = tr(D). As described earlier, if tr(D) is
large, the estimate will be more biased. If the major and
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Figure 5. Results of ellipse fitting. (a) A Gaussian distribution with
σ = 0.2 is assumed for the observation errors. (b) Estimated el-
lipses (thin lines) and the true ellipse (thick line) around the largest
curvature. It is seen that the estimated ellipses are significantly bi-
ased. (c) Those around the smallest curvature.
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Figure 6. Histograms of estimation errors for the axis parameters
a and b. Left: â − a. Right: b̂ − b.

minor axes of the ellipse are similar in length (i.e., a ∼ b),
the resulting bias will be similar to the case of circle fit-
ting. Thus, we considered an ellipse with a = 5 and b = 1;
it is assumed to be centered at the origin (x0, y0) = (0, 0).
Then, we computed the ML estimates of these parameters
from noisy observations. Fig.5 shows the result. The data
points (observations) are synthesized by choosing 300 el-
lipse points and adding Gaussian noises with σ = 0.2 to
the x and y coordinates of each point. Fig.5(a) shows an
example set of these points. The estimates are obtained by
using the Levenberg-Marquardt algorithm. Figs.5(b) and
(c) show magnified plots of the estimated ellipses for 30 tri-
als; (b) shows a portion having the largest curvature and (c),
a portion having the smallest curvature. The estimated el-
lipses are indicated by thin lines and the true ellipse, by a
thick line. It is clearly observed that for the portion hav-
ing a large curvature, the estimated ellipses (thin lines) sig-
nificantly deviate from the true ellipse (thick lines) toward
the outer side. On the other hand, for the portion having a
small curvature, the estimated ellipses appear to have much
smaller biases. These observations are supported by the his-
tograms of the estimates of a and b shown in Fig.6.

5. Correcting biases

In this section, we consider numerical methods for deal-
ing with biases.
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5.1. A method for bias correction
In statistics, two standard methods are used for correct-

ing the bias of ML estimates. The first method is to an-
alytically derive the bias and remove it from the ML esti-
mate. (The method described in [4] may belong to this cate-
gory.) The second is to use resampling-based methods such
as bootstrap and jackknife. However, these methods are dif-
ficult or impossible to adopt for computer vision problems
considered here. In many cases, analytical derivation of the
bias is usually impossible because of its complexity. In fact,
ML estimates themselves are usually obtained by only nu-
merical computation, where the negative log-likelihood is
numerically minimized, except for very simple problems
such as Example 1. The resampling-based method also can-
not be used, since it can only cope with a bias emerging due
to a small number of observations; it reduces the bias by
increasing the effective sample size by resampling the ob-
served data. In our case, each datum xi is observed only
once and it cannot be resampled.

Thus, a different method is required. Considering the
fact that ML estimates are obtained only by numerical min-
imization, the only promising strategy would be to 1) some-
how modify the cost to be minimized so as to remove the
bias and 2) obtain a bias-corrected estimate by numerically
minimizing the modified cost.

As shown in Eq.(10), the ML estimate is obtained by
minimizing the sum of squares of the signed distances for
all observations. Then, as described in the last section,
the bias of ML estimates emerges because the signed dis-
tance d has an asymmetric distribution N(σ2tr(D), σ2(I −
σ2tr(D2))2). Therefore, we propose the use of the normal-
ized signed distance e defined below instead of d:

e ≡ d − σ2tr(D)
σ(I − σ2tr(D2))

. (12)

Since e approximately follows N(0, 1), the minimization of
the sum of squares of the e values is expected to yield a
bias-corrected estimate. This requires true values of σ2 and
D, which are unknown. We compute their estimates and use
them in the minimization.

Specifically, the algorithm is as follows. We assume here
that the geometric constraint is given in the explicit form
ηi = g(ξi, θ). Moreover, we assume that the unit normal
vector to the hypersurface and the curvature matrix can be
calculated at each point η = g(ξ, θ) as n = n(ξ, θ) and
D = D(ξ, θ), respectively. The main body of the algorithm
consists of two steps, the computation of the latent variables
and that of the interest parameter, which are performed al-
ternatively.

0. Initialize θ̂. For example, θ̂ ← θ̂ML.

1. Using θ̂, calculate ξ̂i (i = 1, . . . , n) by the following
minimization:

ξ̂i ← argmin
ξ
|xi − g(ξ, θ̂)|2. (13)

Moreover, calculate the estimate σ̂2 of the noise vari-
ance σ2 using the residual squared differences.
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Figure 7. Results of ellipse fitting by the proposed method.
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Figure 8. Histograms of errors of the bias-corrected estimates for
the axis parameters a and b. Left: â − a. Right: b̂ − b.

2. Using ξ̂i, calculate θ̂ (i = 1, . . . , n) by the following
minimization:

θ̂ = argmin
θ

n∑
i=1

|ei|2, (14)

where, for i = 1, . . . , n,

ei =
1

σ̂(I − σ̂2tr(D2
i ))

(
xi − g(ξ̂i, θ) + σ̂

2tr(Di)ni

)
,

(15)
where Di = D(ξ̂i, θ) and ni = n(ξ̂i, θ).

3. Go to Step 1 until convergence.

5.2. Experimental results: ellipse fitting
We applied the above algorithm to Example 2, i.e., el-

lipse fitting. An identical set of data and parameters were
used. The results are shown in Figs.7 and 8. A comparison
of these figures with Fig.5 and 6 reveals that the bias in the
major axis direction mostly disappears; this shows the ef-
fectiveness of the proposed method. However, from Fig.8,
it appears that a small bias remains in the estimates of a.
This may be due to the inaccuracy of the values of D and
n used in the algorithm, for which we use the values at the
estimate η̂i ≡ g(ξ̂i, θ) of ηi(= g(ξi, θ)).

5.3. Curvature of the epipolar geometry
For some problems, it is possible that the bias of ML

estimates is always negligible in practice. If so, it is obvi-
ously unnecessary to apply the above algorithm. However,
the necessity of bias correction is usually unknown in ad-
vance. Thus, it is desirable to be able to judge in advance
whether or not the bias will be nonnegligibly large.

This is made possible by comparing the order of the cor-
rection term in Eq.(15) with other terms. The correction
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term is based on the mean of the signed distance d, which is
given by σ2tr(D) = (k−1)/2σ2κ, where k is the dimension-
ality of the observation vectors and κ is the mean curvature
of the hypersurface. The magnitude of the term σ2tr(D) is
compared with the distance |xi − g(ξ̂, θ))|. In an average
sense, the distance has the order of the noise standard devi-
ation σ. Thus, the criterion for the above judgment is given
by whether the ratio of σ2tr(D) and σ, i.e., σtr(D), has the
order of 1; if it is much smaller than 1, the ordinary ML
estimate is considered to be sufficiently accurate. This pro-
cedure is also practical in that this ratio can be computed as
long as the mean curvature κ can be calculated.

We apply this method to estimating a fundamental ma-
trix.

Example 3. Let (u1, v1) and (u2, v2) be the image coordi-
nates of a 3D point for the left and right cameras, respec-
tively. An observation is given as x̃ = [u1, v1, u2, v2]. Defin-
ing the homogeneous vectors x1 = [u1, v1, 1]⊤ and x2 =
[u2, v2, 1]⊤, the epipolar constraint is given as f (x̃; F) =
x⊤1 Fx2 = 0. The objective is to estimate F.

Using a formula given in [3], the mean curvature κ of the
hypersurface implicitly given by f = 0 can be calculated,
from which we have

tr(D)(= 3κ/2) =
x⊤1 FUF⊤UFx2

{(UF⊤x1)2 + (UFx2)2}3/2
, (16)

where U = diag[1, 1, 0]. Then, our concern is how large
tr(D) will be and furthermore whether it has a large value
for a particular local part of the hypersurface.

First, several properties of the above quantity tr(D) can
be analytically derived. One property is that when its de-
nominator approaches 0, it has a large value. The denomi-
nator vanishes if and only if x1 and x2 are both on epipoles.
This corresponds to a degenerate case where the 3D coor-
dinates of the point cannot be uniquely determined. Since
tr(D) has a large value around the point, it may be neces-
sary to further investigate this case. Another property is
that tr(D) can be 0 for some configurations. For example,
when two cameras have parallel optical axes and for both
cameras, the skew is 0 and the aspect ratio is 1, the numer-
ator of Eq.(16) vanishes. In this case, the ML estimate F̂ is
considered to be highly accurate.

For other general cases, it is possible to evaluate tr(D)
only numerically. Fig.9 shows one such example. Assum-
ing the image size to be 640 × 480 pixels, we generate im-
ages for multiple camera layouts. For every layout, we have
confirmed that the value of tr(D) calculated at each observa-
tion x̃ was less than 10−3. The histogram of Fig.9 shows the
distribution of tr(D) for the layout shown on the left. As-
suming the noise strength to be σ = 1 pixel, the criterion of
bias correction, i.e., σtr(D), has an absolute value smaller
than 10−3. Thus, in this case, we can assume that the bias is
negligible and the standard ML estimate is very accurate.

6. Summary
In this paper, we have discussed the bias of ML estimates

for computer vision problems involving the estimation of
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Figure 9. Left: An example of examined layouts. Right: His-
togram of curvatures at each pair of corresponding points.

geometric parameters. One characteristic of these problems
is that there is the same number of latent variables as the
number of observations. It is usually necessary to eliminate
these latent variables when estimating the interest parame-
ters, which contributes to the emergence of a bias. In rela-
tion to this, we show that for a class of problems in which
the geometric constraint gives a hypersurface in the obser-
vation space, the magnitude of the bias depends on the mean
curvature of the hypersurface. Based on this analysis, for
the same class of problems, we present a method for com-
puting a bias-corrected estimate. The estimate is computed
by minimizing a cost function that is obtained by modifying
the negative log-likelihood so as to reduce the bias. Using
the problem of ellipse fitting and the estimation of a funda-
mental matrix as examples, we have demonstrated the ef-
fectiveness of the proposed approach.
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