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Abstract

The IMage Euclidean Distance (IMED) is a class of im-
age metrics, in which the spatial relationship between pix-
els is taken into consideration. It was shown that calculat-
ing the IMED of two images is equivalent to performing a
linear transformation called Standardizing Transform (ST)
and then followed by the traditional Euclidean distance.
However, while the IMED is invariant to image shift, the ST
is not a Shift-Invariant (SI) filter. This left as an open prob-
lem whether IMED is equivalent to SI transformation plus
traditional Euclidean distance. In this paper, we give a pos-
itive answer to this open problem. Specifically, for a wider
class of metrics, including IMED, we construct closed-form
SI transforms. Based on the SI metric-transform connec-
tion, we next develop an image metric learning algorithm
by learning a metric filter in the transform domain. This is
different from all previous metric approaches. Experimental
results on benchmark datasets demonstrate that the learned
image metric has promising performances.

1. Introduction

Determining a distance measure over the images is a fun-
damental problem in computer vision and pattern recogni-
tion. The distance metric can be either learned from train-
ing data, or designed according to prior knowledge. The
former, namely the problem of metric learning, has gained
great interest in recent years [14, 26, 1, 5, 3, 4, 24, 7, 12,
23, 25]; and the latter, which we refer to as the problem of
metric design, is often more difficult [10, 8, 19, 13, 21] be-
cause the “prior” knowledge are usually hard to obtain and
express.

The IMage Euclidean Distances (IMED) [21] is a class
of image metrics, which tries to deal with the problem that
the relative pixel locations are not considered in the tradi-
tional Euclidean distance. The traditional Euclidean dis-

tance sometimes yields counter intuitive result that a per-
ceptually large distortion produces a distance smaller than
that produced by a small deformation. IMED, by merg-
ing the special information of the pixels, largely solves this
problem. The key advantage of IMED is that it can be
embedded in most classification techniques such as SVM,
LDA, and PCA. Experiments and applications demon-
strated significant performance improvement in many real
world problems [21, 2, 17, 18, 20, 22, 6, 27].

Embedding IMED into SVM, LDA etc. can be done by
involving a linear transformation on the images. It was
shown that calculating the IMED of two images is equiv-
alent to performing a linear transformation called Standard-
izing Transform (ST) and then followed by the traditional
Euclidean distance. Hence, feeding the (ST-)transformed
images to a recognition algorithm automatically embeds
IMED in it. From the transformation point of view, the au-
thors of [21] argued that IMED actually smoothes the im-
ages. This seems established a connection between image
metrics and transformation domain processing.

Another property of IMED is its invariance to image
shift. That is, if one performs the same image shift (trans-
lation etc.) to two images, their IMED remains invariant1.
However, while IMED is a shift invariant metric, the as-
sociated Standardizing Transform (ST) does not have this
property, i.e. ST is not a shift invariant (SI) transformation.
This left an open problem whether IMED is equivalent to a
SI filter plus traditional Euclidean distance.

In this paper, we first give a positive answer to this open
problem. We construct, for every IMED, a closed-form SI
transform. In fact, we establish a relationship between the
shift-invariant metric and the SI transform.

We next consider the metric learning problem. Based
on the metric-transformation connection, we learn an im-
age metric by learning a metric filter in the transform do-
main. This is different from all previous metric learning

1The formal definition of shift-invariance will leave in the next section.
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approaches. Experimental results on benchmark datasets
demonstrate that the learned metric has promising perfor-
mances.

The rest of this paper is organized as follows: Section 2
presents a brief review of IMED and related work. In Sec-
tion 3, for every SI metric, we give a closed-form construc-
tion of SI transform. Based on the results of Section 3, we
develop a metric learning algorithm in Section 4. Section 5
presents experimental results. Finally, a conclusion is given
in Section 6.

2. A Brief Review of IMED and related work

It is convenient to denote an image X of size n1 × n2

as a vector x = vec (X), and the (n2i1 + i2)-th component
of x is the intensity at the (i1, i2) pixel. Here vec (X) is
the vectorization ofX; specifically, vec (X) is the n1n2×1
column vector obtained by stacking the rows of X .

The standard Euclidean distance dE (x,y) is

dE (x,y) =

√√√√n1n2∑
k=1

(xk − yk)2 =
√

(x− y)T (x− y),

which does not take into consideration the spatial rela-
tionships of pixels, probably leading to undesired results
[10, 21]. To solve the problem, Wang et al.[21] proposed
the IMED dG, defined as:

dG (x,y) =

√√√√n1n2∑
i,j=1

gij (xi − yi) (xj − yj)

=
√

(x− y)T G (x− y).

The n1n2 × n1n2 metric matrix G solely determines the
IMED, where the element gij represents how the “seat”2 xi
affects the “seat” xj . Replacing G with the identity ma-
trix, we get the standard Euclidean distance. The main con-
straints for IMED are that the element gij depends only
on the pixel distance between pixels Pi and Pj , that is
gij = f (‖Pi − Pj‖), and that gij monotonically decreases
as ‖Pi−Pj‖ increases. The reader should be aware that the
pixel distance ‖Pi − Pj‖, which is the distance between Pi
and Pj on the image lattice, is different from the image dis-
tance dG measured in the high dimensional image space. A
constraint on f is that it must be a continuous positive defi-
nite function, thereby ensuring that G is positive definite.

Any f with the above properties defines an IMED. A
typical example is that f (·) is the Gaussian function ([21]),

2The word “seat” is used to emphasize that gij depends only on the
position of xi and xj , but is independent on the value of xi and xj .

i.e. the metric coefficients are

gij = f (‖Pi − Pj‖)

=
1

2πσ2
e−
|Pi−Pj |

2

2σ2

=
1

2πσ2
e−

(i1−j1)2+(i2−j2)2

2σ2 , (1)

where Pi = (i1, i2) , Pj = (j1, j2).
As suggested in [21], the calculation of IMED can be

simplified by decomposing G to ATA, leading to

d2
G (x,y) = (x− y)T G (x− y)

= (x− y)T ATA (x− y)

= (u− v)T (u− v) ,

where u = Ax,v = Ay. The Standardizing Transform
(ST) is the special case when AT = A, commonly written
as A = G

1
2 . By the eigen-decomposition of G

1
2 , Wang et

al. showed that ST is actually a transform domain smooth-
ing [21].

A very important property of IMED is that it can be eas-
ily embedded into most image recognition algorithms. That
is, feeding the ST-transformed image u = G

1
2 x to a recog-

nition algorithm automatically embeds IMED in it.
Another image metric, called the Generalized Euclidean

Distance (GED), was proposed for binary images in [10].
IMED and GED are quite similar except the distance mea-
sure between pixels Pi and Pj . Specifically, the metric ma-
trix for GED is defined as a Laplacian function:

gij = e−α·(|i1−j1|+|i2−j2|), (2)

where α is a scale parameter.
As pointed out in [21], shift-invariance (SI) is a neces-

sary property for any intuitively reasonable image metric.
We use the terminology SI metric as in [21], which is con-
sistent with the shift-invariant operator [15] in signal pro-
cessing. Mathematically, for any images X,Y , a distance
measure d (·, ·) is shift invariant if and only if

d (X,Y ) = d (Xτ , Yτ ) ,

where Xτ , Yτ is an image shift of X,Y , respectively.
Another common meaning of shift-invariance requires

that
d (X,Y ) = d (X,Yτ ) ,

as in the case of the tangent distance [19]. Such distance
measures usually cannot meet the requirements of the met-
ric axioms, so they are beyond the scope of this paper.

Note that IMED (and GED) depends only on the rel-
ative position between pixels Pi and Pj , i.e. gij =
g [i1 − j1, i2 − j2], where i = n2i1 + i2, j = n2i1 + i2.
This makes gij invariant to image shift.
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However, while IMED is an SI image metric, the asso-
ciated Standardizing Transform is not an SI transformation.
In fact, SI transformations are not only important in real ap-
plications but also play a central role in image processing.
Since ST is not an SI transform, this left an open problem
whether IMED can be decomposed to SI transformations.
That is, for an IMED metric matrix G, does there exist an
SI transform H such that

G = HTH.

3. The SI Transform of an SI Metric

In this section, we give a positive answer to the open
problem. Actually we solve a more general problem: we
show that any SI image metric can be decomposed to SI
transform plus traditional Euclidean distance.

3.1. Notations

Since the n1n2 × n1n2 metric matrix G is an SI metric,
there exists a function g [i1, i2] , such that

G (i, j) = g [i1 − j1, i2 − j2] ,

where i = i1n2 + i2, j = j1n2 + j2.
The metric G can be either separable or inseparable. G

is said to be separable if there exist g1 [i] , g2 [i] such that

g [i1 − j1, i2 − j2] = g1 [i1 − j1] · g2 [i2 − j2] .

A metric is said to be inseparable if is not separable. Be-
cause

e−
(i1−j1)2+(i2−j2)2

2σ2 = e−
(i1−j1)2

2σ2 · e−
(i2−j2)2

2σ2 ,

and

e−α·(|i1−j1|+|i2−j2|) = e−α·|i1−j1| · e−α·|i2−j2|,

taking g1 [i] = g2 [i] = 1√
2π
e−

i2

2σ2 and g1 [i] = g2 [i] =

e−α·|i|, both IMED and GED are separable SI metrics.
It is known that a separable G is the Kronecker product

(or the tensor product) of G1 and G2 [9]:

G = G1 ⊗G2,

where G1 (i, j) = g1 [i− j] , G2 (i, j) = g2 [i− j].
Below, we start with the case of the separable SI metric

(e.g. the case of IMED and GED) to derive an SI transform.
The inseparable case involves more complicated tensor no-
tions and will be given in Section 3.3.

3.2. The Separable Case

In this subsection we study the case that the metric is
separable. That is

g [i1 − j1, i2 − j2] = g1 [i1 − j1] · g2 [i2 − j2] ,

and
G = G1 ⊗G2,

where G (i, j) = g [i1 − j1, i2 − j2] , i = i1n2 + i2, j =
j1n2 + j2, and Gk (i, j) = gk [i− j] (k = 1, 2). For any SI
metric matrix G satisfying certain condition, we will show
there is an SI linear transformation H , so that G = HTH .

Let ĝk (ω) denote the discrete time Fourier transform
(DTFT) of gk [i]:

ĝk (ω) =
∑
i∈Z

gk [i] e
√
−1iω.

Assuming ĝk (ω) > 0 for all ω, define hk [i] as:

hk [i] = F−1
(√

ĝk (ω)
)
, (3)

Supposing gk [i] is supported on [−mk,mk], a lemma by
Riesz [16] asserts that the support of hk [i] is a subinterval of
[−mk,mk], i.e. hk [i] is at most supported on [−mk,mk].
Let Hk be the (nk + 2mk)× nk matrix defined as:

Hk (i, j) =
{
hk [i− j −m] , if |i− j −m| 6 m,
0, else,

(4)
We present the following theorem.

Theorem 1 Using the notions defined above, the SI metric
G can be decomposed as

G = HTH,

where H is a SI linear transformation given by

H = H1 ⊗H2,

and Hk is given by (4).

Proof We first prove that Gk = HT
k Hk. (3) implies that

ĝk (ω) = |ĥk (ω) |2, thus by Parseval’s formula and the con-
volution theorem [15], we have

Gk (i, j) = gk [i− j]

=
1
2π

∫ π

−π
ĝk (ω) · e

√
−1ω(i−j)dω

=
1
2π

∫ π

−π
|ĥk (ω) |2 · e

√
−1ω(i−j)dω

=
1
2π

〈
ĥk · e−

√
−1ωj , ĥk · e−

√
−1ωi

〉
=

1
2π

〈
ĥk ∗ δj , ĥk ∗ δi

〉
= 〈hk ∗ δj , hk ∗ δi〉 ,
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where δm [i] = δm,i is the Kronecker delta and ∗ denotes
the convolution operation.

The definition (4) of Hk is equivalent to Hkei = hk ∗ δi,
where ei is the i-th standard basis vector ofRnk+2mk . Thus
Gk (i, j) = eTj

(
HT
k Hk

)
ei, or Gk = HT

k Hk.
By the properties of Kronecker product [11], the follow-

ing

G1 ⊗G2 =
(
HT

1 H1

)
⊗
(
HT

2 H2

)
=

(
HT

1 ⊗HT
2

)
(H1 ⊗H2)

= (H1 ⊗H2)
T (H1 ⊗H2)

= HTH

completes the proof. �

By the above theorem, the squared norm of X with re-
spect to an SI metric G is:

vec (X)T G vec (X) = ‖H vec (X) ‖2, (5)

where ‖·‖2 denotes the traditional Euclidean metric. Define
h [i1, i2] = h1 [i1]h2 [i2], it is known that

H1XH
T
2 = h ∗X.

Since (H1 ⊗H2) vec (X) = vec
(
H1XH

T
2

)
, (5) can be

computed by

vec (X)T G vec (X) = ‖H vec (X) ‖2

= ‖ (H1 ⊗H2) vec (X) ‖2

= ‖ vec
(
H1XH

T
2

)
‖2

= ‖h ∗X‖2.

That is, an SI metric is equivalent to the convolution by the
filter h plus traditional Euclidean distance.

The filter h can be directly computed by

h [i1, i2] = F−1
(√

ĝ (ω1, ω2)
)
, (6)

because

ĥ (ω1, ω2) = F (h1 [i1]h2 [i2])

= ĥ1 (ω1) ĥ2 (ω2)

=
√
ĝ1 (ω1) ·

√
ĝ2 (ω2)

=
√
ĝ (ω1, ω2).

By Theorem 1 and Eq. (6), the function g uniquely de-
termine the SI metric matrix G and the SI transform H (or
h). g plays a role to connect the metric and the transform,
and is referred as the metric filter.

Compared to the ST decomposition G
1
2 , H is no longer

a square matrix; actually, H is of size

(n1 + 2m1) (n2 + 2m2)× n1n2.

This is commonly not a problem in practice. In fact, if
nk � mk or h is decreasing rapidly, truncating H to an
n1n2 × n1n2 matrix affects little; even not the case, we
can use circular convolution and discrete Fourier transform
(DFT) to derive an square transform matrix H̃ that exactly
keep the metric G.

The condition ĝ (ω) > 0 is sufficient and necessary for
the existence of the SI transform of G. It can be shown that
IMED satisfies the above condition. Because the exponen-
tials in IMED and GED are rapidly decaying and thus can
be viewed as having a finite support, we have the SI decom-
position for them.

3.3. The Inseparable Case

In this subsection, we study the case that the metric is
inseparable. The results are also generalized for multi-
dimensional inputs, e.g. 3-D object represented by an n1 ×
n2 × n3 “matrix” [20].

It is convenient to use tensor notations to provide a clear
expression of the materials. Tensors can be regarded as a
multi-index generalization of the vector concept. The num-
ber of indices in the representing array is called the rank of a
tensor. Thus, scalars are rank zero tensors, vectors are rank
one tensors, matrices are rank two tensors and a n1×n2×n3

“matrix” is a tensor of rank three. A tensor of type (p, q) has
a rank of p+ q, written as tpq .

The Einstein notation is also used here [11]. According
to this convention, when an index variable appears twice in
a single term, once in an upper (superscript) and once in a
lower (subscript) position, it implies that we are summing
over all of its possible values, e.g. cixi means

∑
cixi.

Defining the (d, 0) input tensor x by

xi = x [i] ,

the (d, d) SI metric tensor g (which is positive and denoted
as g � 0) by

gi
j = g [i− j] ,

where i = (i1, i2, · · · , id), j = (j1, j2, · · · , jd) are conven-
tions for clarity, the norm of xwith respect to g is computed
as

‖x‖g =
√
xjgi

jxi.

We need to find an SI transform to implement the metric g
and the following theorem gives a construction of the trans-
form.

Let ĝ [ω] denote the multivariate DTFT of g [i], where
ω = (ω1, ω2, · · · , ωd). Assuming ĝ [ω] > 0, define h [i]
as:

h [i] = F−1
(√

ĝ (ω)
)
.

Let the SI transform tensor hi
j be

hi
j = h [i− j] ,
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and we give the following theorem.

Theorem 2 Using the above notions, the SI metric tensor
g can be decomposed as

gi
j = h

i

kh
k
j ,

where h is the tensor transpose, i.e.

h
i

j = h
j
i .

Or equivalently,

〈h ∗ δj , h ∗ δi〉 = gi
j

The proof is given in the appendix.
It is useful to give the following corollary of Theorem 2

‖x‖2g = ‖h ∗ x‖2 =
1

(2π)d

∫
Td
ĝ (ω) |x̂ (ω) |2dω, (7)

where T = [−π, π), in which ĝ (ω) is filtering the power
spectrum |x̂ (ω) |2 that can be viewed as the metric density.
In this sense we call g [i] a metric filter, which is the key in
our metric learning algorithm described in the next section.

4. Learning an SI metric
In this section, we consider the metric learning problem.

Based on the metric-transformation connection, we develop
an metric learning method, called the Transform Domain
Metric Learning (TDML), by learning a metric filter in the
transform domain.

In literature, the metric learning problem is usually for-
mulated as optimization problem. In order to learn a metric
G, one has to do optimization with respect to G. For im-
ages of size n1 × n2, G has n2

1 × n2
2 elements, making the

optimization intractable. Another problem is that there are
constraints on G which makes optimization difficult. For
example, in [26], the constraint is G � 0, so it is not easy
to find efficient algorithm to solve problem with such a con-
straint.

In the previous sections, we have constructed an SI trans-
form for any SI metric. Another important fact is that the
function g completely describe any SI metric matrix G (or
metric tensor g). The concept of metric filter (7) plays the
key role in our metric learning method.

We propose a novel metric learning algorithm to learn
an SI metric based on the connection between metric and
filter established in (7). The algorithm is efficient because
the positive semi-definitive constraint

G � 0

reduces to a bound constraint

ĝ (ω) > 0

and the number of parameter is the sampling number on ĝ,
which is usually the same as the size of input data. Another
benefit of our algorithm is that it applies to any dimension-
ality without modifications, thus is unnecessary to stack the
multi-dimensional data to vectors.

Suppose we have some set data {xi}, and are given the
data label {yi}. Let fi be the Fourier transform of xi, we
compute the total “similar” and “dissimilar” power spec-
trum:

pw (ω) =
∑

i,j,yi=yj

|fi (ω)− fj (ω) |2

pb (ω) =
∑

i,j,yi 6=yj

|fi (ω)− fj (ω) |2.

Since
1

(2π)d

∫
Td
|fi (ω)− fj (ω) |2dω

is the squared Euclidean distance between xi and xj , then∫
Td
pw (ω) dω,

∫
Td
pd (ω) dω

are proportional to the average within-class and between-
class Euclidean distances. Similarly, with respect to a met-
ric filter g [i],∫

Td
ĝ (ω) pw (ω) dω,

∫
Td
ĝ (ω) pb (ω) dω

are proportional to the average within-class and between-
class Euclidean distance of the transformed data, respec-
tively.

We use the criterion that the filtered within-class distance∫
Td
ĝ (ω) pw (ω) dω

is minimized, and the filtered between-class distance∫
Td
ĝ (ω) pb (ω) dω

is maximized, simultaneously. This gives the objective
functional

J0 (g) =

∫
Td
ĝ (ω) pw (ω) dω∫

Td
ĝ (ω) pb (ω) dω

, (8)

and the optimization problem3:

min
g

J0 (g) (9)

s.t. ĝ (ω) = χA (ω) ,∫
Td
ĝ (ω) dω = ε · (2π)d ,

3With the constraint ĝ (ω) > 0, the solution of the optimization prob-
lem collapses to a delta function. To ensure ĝ does not collapse, we use the
constraint ĝ (ω) = χA (ω) instead.
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where χA (ω) is the characteristic function of set A ⊂ T d,
i.e.

χA (ω) =
{

1, ω ∈ A
0, else .

The last constraint in (9) is a regularity condition and ε is
a parameter to control the frequency coverage of the metric
filter.

The solution of this optimization problem can be given
in closed-form. Specifically, if the data xi is of size n1 ×
n2 × · · · × nd, we sample n1 × n2 × · · · × nd points of
the continuous spectrum, or equivalently we replace DTFT
with DFT. Then the discrete version of (9) is given as:

min
g

J̃0 (g) (10)

s.t. ĝ [i] = χA [i] ,∑
i

ĝ [i] = ε ·
d∏
k=1

nk

where

J̃0 (g) =
∑

i ĝ [i] pw [i]∑
i ĝ [i] pb [i]

.

Theorem 3 Let η be the ε-quantile of r [i], where

r [i] =
pw [i]
pb [i]

,

the solution ĝ? of the optimization problem (10) is given by

ĝ? [i] =
{

1, if r [i] < η
0, else .

The proof is given in the appendix.
We call our metric learning method the Transform Do-

main Metric Learning (TDML). The criterion that the trans-
formed within-class distance is minimized and the trans-
formed between-class distance is maximized is similar to
that in Xiang et al.’s metric learning method (XNZ for
short) [25]. The main difference is that we are looking for
a shift-invariant metric G, while [25] is not. A positive
side effect of an SI metric is the greatly simplified com-
putational complexity, of both time and space. For exam-
ple, the method in [25] involves the construction and eigen-
decomposition of several matrices of size n1n2 × n1n2,
while TDML needs only matrices of size n1 × n2 and their
FFT, which is apparently more computationally efficient.

5. Experiments and Discussion
In this section, we have conducted two sets of experi-

ments. The experiments are performed on the USPS hand-
written digit database and 3 face datasets (UMIST, Yale
and ORL database). The images in UMIST, Yale and ORL

ED IMED GED XNZ TDML
USPS 94.37 94.97 94.72 94.07 94.72

UMIST
2 60.88 60.90 62.05 60.96 73.92
4 79.68 79.68 80.78 89.34 89.09
6 87.25 87.29 87.95 94.77 94.04

Yale
2 71.41 71.41 71.11 67.73 75.26
3 75.21 75.13 74.92 79.69 79.33
4 75.19 74.71 74.29 79.71 79.57

ORL
2 81.95 81.63 80.88 81.24 84.06
3 89.11 88.75 88.38 90.03 89.30
4 92.71 92.52 92.25 94.12 92.71

Table 1. Comparison of image metrics on various database (%).
Figures in bold face are the best result or comparable according to
a student t-test.

datasets are resized to 84×69, 80×60 and 84×69, respec-
tively4.

In the experiments on the UMIST, Yale and ORL face
databases, we randomly select a fixed number (2, 4, 6 for
UMIST; 2, 3, 4 for Yale and ORL) of images from each
class as the training set, and use the remaining images for
test. We repeat the process 20 times independently and the
average results are calculated. The USPS database has fixed
training and test sets, thus don’t need repeat. The parameter
ε in the metric learning algorithm (see Theorem 3), which
controls the frequency coverage of the metric filter, is set to
0.4 for USPS database, and 0.1 for all other datasets.

The goal of the first set was to compare our TDML with
several other metrics, including the traditional Euclidean
distance (ED), IMED [21], GED [10] and XNZ [25]. The
performances are evaluated in terms of recognition rate us-
ing a nearest neighbor classifier. The recognition results
are shown in Table 1. TDML significantly outperforms ED,
IMED and GED on the three face databases. Compared to
XNZ, TDML runs 5 ∼ 10 times faster and yields a com-
parable performance. A notable fact is that TDML is very
robust against the sample size. In the case of very small
sample size (e.g. 2 training samples), TDML is the definite
winner.

The second set of experiments was to test whether em-
bedding the learned SI metric in an image recognition tech-
nique, e.g. LDA and SVM, can improve that algorithm’s ac-
curacy. Embedding an SI metric in an algorithm is simple:
First, transform all images by the corresponding SI trans-
form and, then, run the algorithm with the transformed im-
ages as inputs. Table 2 give the results of the metric when
embedded to LDA and SVM. TDML usually improves the
algorithm’s accuracy. The results shows that TDML can

4This is for the computational consideration. For instance, the original
image size is 160 × 120 the Yale database. The methods of Xiang’s and
LDA will involve several 19200×19200 matrices, which are too memory
expensive for our workstation with only 2G RAM.
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LDA SVM
ED IMED GED TDML ED IMED GED TDML

USPS 94.07 94.52 94.77 94.42 95.37 95.42 95.17 95.27

UMIST 2 68.96 71.47 73.11 75.44 60.33 62.02 62.45 69.53
4 89.47 90.30 91.36 93.04 88.32 87.62 88.98 91.42
6 94.85 95.03 95.49 97.41 93.72 93.10 92.92 95.62

Yale 2 67.63 68.00 69.56 67.97 68.90 69.12 69.23 72.30
3 80.79 80.75 82.08 83.01 81.33 80.00 80.00 84.83
4 84.33 84.57 84.24 85.17 80.38 81.33 81.14 83.04

ORL 2 79.11 80.30 81.03 78.30 79.25 79.07 79.00 80.38
3 90.07 90.89 91.18 92.02 92.00 91.14 88.79 91.64
4 94.15 94.42 94.77 95.17 94.12 94.27 94.39 95.20

Table 2. Classification performance of the embedded metrics on various database.

greatly improve the performance of LDA and SVM.

6. Conclusion
In this paper, we have shown that every shift-invariant

metric, such as IMED, is equivalent to a shift-invariant
transform plus the plain Euclidean metric. The SI prop-
erty is essential and necessary for images and we argue
that any intuitively reasonable image metric should be shift-
invariant. Based on the equivalency, we propose the met-
ric filter to completely capture the nature of an SI metric.
An efficient metric learning algorithm, called the Trans-
form Domain Metric Learning (TDML), is next developed.
TDML tries to minimize the average within-class distance
and to maximize the average between-class distance, si-
multaneously. This is similar to the XNZ metric learning
method [25] in the flavour of the criterion. Experimental
results show that TDML is 5 ∼ 10 times faster than Xi-
ang’s method and offers a comparable performance. Be-
sides, TDML is more robust in the small sample size case.
A very important ability of TDML, as of IMED and GED,
is that it can be easily embedded into most image recogni-
tion algorithms. That is, by feeding the transformed data
to an image classification technique, the learned metric is
automatically embedded. Experiments on various datasets
demonstrate the effectiveness of our method.
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A. Appendix
A.1. Proof of Theorem 2

h [i] = F−1
(√

ĝ (ω)e
√
−1θ(ω)

)
implies that ĝ (ω) =

|ĥ (ω) |2. By Parseval’s formula and the convolution theo-

rem, it can be shown that

gi
j = g [i− j]

=
1

(2π)d

∫
Td
ĝ (ω) · e

√
−1(i−j)·ωdω

=
1

(2π)d

∫
Td
|ĥ (ω) |2 · e

√
−1(i−j)·ωdω

=
1

(2π)d
〈
ĥ · e−

√
−1j·ω, ĥ · e−

√
−1i·ω

〉
=

1

(2π)d
〈
ĥ ∗ δj , ĥ ∗ δi

〉
= 〈h ∗ δj , h ∗ δi〉 .

where T = (−π, π], (i− j) · ω =
∑
k (ik − jk)ωk and

dω = dω1dω2 · · · dωd.
Because hi

j = h [i− j], gi
j = 〈h ∗ δj , h ∗ δi〉 is equiva-

lent to gi
j = h

i

kh
k
j .

A.2. Proof of Theorem 3

Since η is the ε-quantile of r [i], there exist exactly
r [i1] , · · · , r [iM ] such that r [im] < η, where m =
1, · · · ,M and M = ε ·

∏d
k=1 nk is fixed. The value of

(10) is now

J̃0 =
∑
m pw [im]∑
m pb [im]

.

We prove that replacing any im will enlarge J̃0, using the
following inequality

a

b
<
a+ c

b+ d
<
c

d
, (11)

given that ab <
c
d , and a, b, c, d > 0.

By the inequality, r [im] < η implies that

J̃0 =
∑
m pw [im]∑
m pb [im]

< η. (12)
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Replacing some im with i′, the fact r
[
i′
]
> η leads to

pw
[
i′
]
− 1

Lpw [im]
pb
[
i′
]
− 1

Lpb [im]
> η, (13)

for sufficient large L > 0. Combining (11), (12) and (13),
we immediately have

J̃0 < J̃ ′0.
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