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Abstract

This paper presents a novel self-similarity based ap-
proach for the problem of vanishing point estimation in
man-made scenes. A vanishing point (VP) is the conver-
gence point of a pencil (a concurrent line set), that is a per-
spective projection of a corresponding parallel line set in
the scene. Unlike traditional VP detection that relies on ex-
traction and grouping of individual straight lines, our ap-
proach detects entire pencils based on a property of 1D
affine-similarity between parallel cross-sections of a pen-
cil. Our approach is not limited to real pencils. Under
some conditions (normally met in man-made scenes), our
method can detect pencils made of virtual lines passing
through similar image features, and hence can detect VPs
from repeating patterns that do not contain straight edges.
We demonstrate that detecting entire pencils rather than in-
dividual lines improves the detection robustness in that it
improves VP detection in challenging conditions, such as
very-low resolution or weak edges, and simultaneously re-
duces VP false-detection rate when only a small number of
lines are detectable.

1. Introduction
Under a pinhole camera model, a set of parallel lines in

the 3D scene is projected to a set of concurrent lines which
meet at a single point, known as a vanishing point (VP).
Each VP is associated with a unique 3D orientation, and
hence can provide valuable information on the 3D struc-
ture of the scene. VPs are used for a variety of vision tasks
such as camera calibration, perspective rectification, scene
reconstruction and more [3].

The most commonly used approach for VP-detection
follows the VP definition above and searches for groups
of concurrent straight lines in the image. One typical ap-
proach uses the RANSAC principle: intersecting randomly
selected couples of lines and choosing those that are consis-
tent with a large group of lines [14]. Another line-grouping
approach pioneered by Bernard [1], involves the detection

of meaningful line-segments in the image, mapping lines or
meeting points of line-pairs to an appropriate search space
(Hough transform), finding salient clusters there, and esti-
mating from theses clusters corresponding VP locations.
One challenge of the clustering is the unbounded search
space and various parameterizations were proposed to make
the search space bounded and as uniform as possible (e.g.,
the standard Gaussian sphere representation proposed by
Bernard [1]). A second challenge related to line-based ap-
proaches is the many sources of uncertainty in the estima-
tion process, such as quantization of the search space [2],
edge-detection and line-detection errors [8], and VP candi-
date confidence [4],[14].

A fundamental drawback of line-grouping based meth-
ods regardless of their sophistication level is their absolute
dependency on the explicit detection of straight features in
the image. In practice, straight features are hard to detect
in many cases, either due to low image quality (low reso-
lution or blurred), or due to low contrast. In addition, one
often finds in man-made environments planar patterns of re-
peating shapes or objects such as ornamented tiles or wall-
papers, whose VPs cannot be extracted by line-based meth-
ods described above.

The case of approximately ordered patterns with small
element size and spacing is handled well by Shape-from-
Texture (SfT) methods, that estimate surface normals for
smooth surfaces with flat textures (see e.g. [7] and refer-
ences therein). In particular, for a planar texture, SfT meth-
ods can extract the single normal to the plane and hence cor-
responding vanishing points [9]. Unfortunately, SfT meth-
ods are computationally slow, and work well only if the tex-
ture is rich enough. They cannot work on textureless planar
shapes, like traditional line-based methods. Hence neither
of the main VP-detection approaches described so far can
detect alone all VPs in many man-made scenes.

We found two works on VP estimation that are based on
different principles from the main methods discussed above,
and extract perspective information from finding similari-
ties in the image. Schaffalitzky and Zisserman [10] pro-
posed planar grouping of repeating equally spaced similar
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elements (such as bricks, tiles, fences, etc.). Stentiford [12]
proposed a visual-attention measure by matching random
subsets (forks) of neighboring pixels to the scaled down
forks with respect to the candidate pixel as the origin. Al-
though Stentiford didn’t state it explicitly, the VP corre-
sponds to the point around which the image is locally self-
similar under scaling. The main appeal of Stentiford’s ap-
proach is its non-parametric nature and independency of
specific feature detection such as straight lines. On the
other hand, Stentiford’s particular implementation of the
self-similarity principle is limited to essentially central VPs
that lie within the image.

1.1. Contribution and paper overview

This paper described a new self-similarity based ap-
proach for VP estimation, suitable to complex man made
scenes. Our approach combines capabilities from the line-
based, pattern-based and attention based methods reviewed
in the introduction. To the best of our knowledge, our ap-
proach is the first that can extract VPs from both line in-
formation, texture information, and repeating object infor-
mation by a single mechanism, thus forming a new link
with SfT. The main novelty of our approach is the VPs es-
timation by the detection of entire pencils (sets of concur-
rent lines) rather than grouping individual lines. This gives
our approach robustness in challenging conditions such as
very low resolution, blurry or low-contrast edges and lines.
This enables a considerable computation speed-up by se-
vere downscaling of the input image, at the price of minor
accuracy loss.

The paper is organized as follows: In section 2 we
present the underlying principles of our approach. In sec-
tion 3, we develop an algorithm that implements the general
approach from section 2. Section 4 presents experimental
results and a comparison to state-of-the-art line based algo-
rithm [14]. Section 5 concludes the paper.

2. Vanishing point determination from self-
similarity principles

2.1. Motivation

For easy exposition of the principles of our method, we
start with the single central VP case, shown in Figure 1. The
image manifests a global self-similarity property which can
be used to estimate the VP as demonstrated in Figure 1.
Since images exhibiting more that one VP do not posses
such a global self-similarity property, we seek a more lo-
cal self-similarity. We noticed that in Fig. 1c we can obtain
the same VP prediction from matching pairs of parallel 1D
cross-sections (or profiles) of the original and downscaled
image. For example, the intensity profiles in the bottom and
right boundaries of the original image, are approximately
similar, up to downscaling and translation (1D-affine), to

Figure 1. Central vanishing point estimation from global self-
similarity or by corresponding 1D-profile similarity. Scaling down
the original image in (a), gives a downscaled version (b) that is
similar to a part of the original image, up to some global transla-
tion, which can be found by e.g. phase-correlation or Stentiford’s
method. Laying the scaled and translated image (thin green frame)
on the original image (red thick frame) demonstrates this similarity
(c). From the 2D self-similarity transformation the VP estimation
can be estimated e.g. by the meeting of the virtual lines pointing
from the outer to the inner corners (cyan arrows). Alternatively
the VP can be extracted from similarity of image profiles. Pairs
of orange circles connected by a dashed virtual line correspond to
similar features along two parallel profiles, where all the virtual
connecting lines converge at the VP.

the corresponding boundary profiles of the downscaled im-
age (note the matching features in light circles). The ar-
rows connecting the ends of the matching profiles (respec-
tive image corners) point towards, and meet at the VP. In
other words, the VP position can be extracted from 1D-
affine matching between a pair of parallel 1D-profiles. A
complementary view is that the set of virtual straight lines
that connect pairs of matching feature points (light circles)
are concurrent and converge at the VP. Some of these vir-
tual lines actually coincide with true straight edges, while
others may connect feature points not on straight edges. We
can view the process of obtaining a single VP from a global
2D self-similarity as equivalent to clustering large collec-
tion of VP candidates, each obtained from 1D-affine simi-
larity between a pair of parallel 1D image profiles. Follow-
ing this view, we next present the generalized self-similarity
approach for detecting multiple VPs located anywhere in
the image plane.

2.2. Pencil detection from similarity of cross-
sections

Assume the image contains a pencil consisting of K line
segments with finite slopes ak(k = 1..K) that converge at
a common vanishing point VP=(xv, yv), as shown in Fig-
ure 2. A vertical cross-section of the pencil at some hori-
zontal position x crosses the pencil lines at the points with
y-coordinates yk(x) = yv + ak(x − xv). All such cross-
sections are similar up to scaling with respect to the VP. In
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Figure 2. Relations between parallel cross sections of a pencil and
its vanishing point.

particular the relation between two cross sections at x and
xR respectively is

∀k :
yk(xR)− yv
yk(x)− yv

=
xR − xv
x− xv

≡ s[xR,x] (1)

From the general scaling similarity relation of (1), the VP
location can be estimated by expressing (1) as an affine sim-
ilarity relation relative to the origin:

∀k : yk(xR) = s[xR,x]yk(x) + τ[xR,x] (2)
τ[xR,x] = yv(1− s[xR,x]) (3)

If we find the affine transformation parameters (s, τ) be-
tween a matching pair of cross sections at xR, x, we get the
pencil’s vanishing point by

xv = xR +
x− xR

1− s[xR,x]
, yv =

τ[xR,x]

1− s[xR,x]
. (4)

Hence instead of searching for a common meeting point
of many straight line features like in traditional approaches,
we can search the image for pairs of similar parallel cross
sections, and estimate from each such pair a potential van-
ishing point. Such estimates are based on characteristics of
an entire pencil of virtual lines that connect matching fea-
tures, and hence do not rely on straight-feature detection.

2.3. Pencil based accumulator space

In practice each matching pair of cross-sections (x, xR)
produces a VP candidate and the VPs are estimated by can-
didate accumulation and clustering. Since in typical man-
made scenes many VPs lie far away from the image bound-
aries or at infinity, we propose a parametric accumulator
space that is designed to deal with distant VPs. We first
establish from (1) and (3) that the transformation parame-
ters relating a fixed reference cross-section at xR to another
cross section at x is a linear function of x. Hence the rate of
change in the affine matching parameters as ≡ ∂xs, aτ ≡
∂xτ is fixed. We denote the parameter pair as, aτ as the pen-
cil slope coordinates. They have an invertible relation to
the VP coordinates (xv, yv), and can be computed directly

from the transformation parameters of a single cross-section
match:

as(xR) =
1

xR − xv
=
s[xR,x] − 1
x− xR

(5)

aτ (xR) =
−yv

xR − xv
=

τ[xR,x]

x− xR
(6)

Since different matched cross-section pairs may have dif-
ferent reference positions xR, we transform the pencil slope
coordinates to a common reference position xo of our selec-
tion, e.g. the image center. From (6,5) we get the following
transformation rule:

[as(xo), aτ (xo)] =
[as(xR), aτ (xR)]

1 + as(xR)(xo − xR)
(7)

In this parametrization infinite vanishing points are mapped
to [as(xo), aτ (xo)] = (0, tan θv), where θv is the VP direc-
tion. The main limitation of the pencil-slope parametriza-
tion is that VPs at xo are mapped to infinity. This limitation
is resolved by using two reference positions, e.g. at oppo-
site boundaries of the image. Alternatively, like in [11], one
may search for VPs located inside the image in bounded im-
age space (xv, yv), and for VPs located outside the image
in pencil slope space (with xo at the image center).

2.4. Selection of pencil cross-section orientations

The derivation so far can be applied of course to cross-
sections in arbitrary orientations. In general a single cross-
section orientation is insufficient, since it cannot detect pen-
cils which have most lines almost parallel to the cross-
section orientation. Two perpendicular cross-section orien-
tations can jointly detect VPs located at all orientations. The
question is what are the best orientations.

Most man made scenes contain mainly horizontal and
vertical surfaces. In addition, images of man made scenes
are usually taken with the optical axis essentially parallel to
the horizontal support surface (ground,floor). Under these
conditions vertical and horizontal cross-sections are best
suited to detect pencils of real or virtual lines. In addition,
these orientations are most compatible with the image pixel
grid, so that accuracy reduction due to aliasing is avoided.

So far we have presented the general principles of our
scheme, next we present a corresponding algorithm.

3. Algorithm
Our algorithm consists of the following conceptual

stages: first, representation of 1D cross sections that is suit-
able for robust matching; then, affine matching of 1D cross
sections based on similarity between perceptually signifi-
cant points; then, estimating VP candidates from the affine
matching parameters and finally, clustering those candi-
dates, e.g., by mean-shift procedure, to obtain the final VPs.
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Figure 3. Similar features between matching columns.

3.1. Representation of 1D cross sections

Consider for example vertical cross sections. The most
simple representation of 1D cross sections consists of single
columns of the intensity values of the image. However, this
simple representation is sensitive to illumination and noise
and is not restrictive enough to assure perceptually correct
matches. For perceptually correct matches we need to re-
place the image values by a feature map that is insensitive
to slow illumination changes and noise and to include spa-
tial context.

We choose to generate the feature map by a - Laplacian
of Gaussian (LoG) filter with kernel size set to 5 × 5 as a
compromise between locality and performance. For each
image point (c, r) we collect the feature-map values in a
rectangular spatial context into a feature vector Vc,r. The
context width should be larger than 1 in order to have in-
formative matching and avoid a high rate of false match-
ings. Yet it should not be too large as this would increase
the sensitivity to foreshortening effects, or in other words
invalidate the 1D cross-section approximation. The context
height should be larger than the width, again to keep the 1D
approximation valid, but not too large so as to make the con-
text non-local. A context size of 3 × 5 was found to strike
the right balance between all the above trade-offs.

The columns (rows) of the feature vector map can now
be used to represent the parallel sets of 1D cross-sections
discussed in Section 2.

3.2. Matching of 1D cross-sections

From now on we will use the term column (row) match-
ing instead of cross-section matching. Our matching pro-
cedure first creates a map of similarity (denoted as Struc-
tural CORrelation Evidence - SCORE matrix) between
each two columns of the feature-vector map. Then, we esti-
mate the similarity transformation parameters directly from
the SCORE matrix. A candidate VP is estimated directly
from the similarity transformation as described in section 2.

Figure 3 demonstrates the challenge of matching
columns in cluttered scenes. Some of the virtual lines con-
necting matched points between the two columns form a
pencil that flows towards the right VP, while lines con-
necting other matching points do not belong to that pencil.
There are also non-matching feature points.

We can characterize the challenge as the problem of find-

ing a global affine match that is consistent with the ma-
jority of the perceptually significant point-matches, but is
not affected by mis-matches due to occlusions. For that we
introduce a new perceptual matching criterion that favors
visually significant matches (positive evidence), while ef-
fectively ignoring visually insignificant matches (little ev-
idence) and mismatches (negative evidence). We call this
criterion SCORE (Strcutural CORrelation Evidence). The
form of SCORE is related to the SSIM perceptual error-
measure [13]. The SCORE value of pair of feature vectors
v1, v2 is given by:

SCORE(v1, v2) =
〈v1, v2〉

|v1|2 + |v2|2 + T
√
|v1|2 + |v2|2

∣∣∣∣∣
0+
(8)

Note that the SCORE is very small if either |v1| or |v2|
are much smaller than the characteristic activity threshold
T . For two vectors larger than T , SCORE is determined
mainly by the smaller of the two. Hence large SCORE are
only obtained for two large aligned vectors. Large activ-
ity threshold T in equation 8 increases robustness to noise
but also decreases the SCORE grade for weak matching
features.

Assume we try to match the two columns c1, c2, we gen-
erate a SCORE matrix by calculating a SCORE value
between every two point combination:

SCOREc1,c2(i, j) = SCORE(vc1(i), vc2(j))

If column c2 is a perfect affine transformation of the col-
umn c1, then c1(s · i+ τ) = c2(i), where s, τ are the trans-
formation parameters. In the corresponding SCOREc1,c2
matrix, that relation would appear as high intensity areas
(that correspond to strong matching points) spread along a
straight line determined by the transformation parameters.
However in practice, there is a large percentage of outliers
due to accidental matches, occluding features (as shown in
Fig. 3), etc. Therefore, a robust line-fitting procedure is
required. We propose to improve the robustness of fitting
by incorporating a-priory assumptions. Our model prefers
global matches because perspective effects are global in the
image. In other words, we prefer lines that pass through
a set of high SCORE points that are as spatially spread
as possible. Such global matches are also less sensitive
to noise and digitization artifacts in low-resolution images.
Our proposed procedure for global line fit involves solving
the following non-linear maximization problem:

[s, t] = argmax
∑
i

|i− CM | ∗ SCORE(i, s · i+ τ)

where CM =
∑
i i · SCORE(i, s · i + τ) is the center of

mass of the line, SCORE(i, s · i+ τ) is the linear interpo-
lation of the SCORE matrix at the coordinates (i, s · i+ τ)
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(1a) (2a)

(1b) (2b)

(1c) (2c)

(1d) (2d)
Figure 4. (a) Two columns marked on the image: red and blue. (b)
The SCORE matrix between the columns with the robustly fitted
line in red (the line parameters characterizing the 1D-affine match-
ing transformation). (c) Cross sections of the image luminance
along the reference column (blue) and matched column before
(red) and after (magenta) the 1D-affine transformation. The ar-
rows highlight significant correspondences between the reference
and matched column after transformation. (d) The VP candidate
derived from the transformation parameters by Eq. 4 (red dot).

and |i − CM | is a weight term that increases linearly with
the distant of each point from the center of mass. We used
a hierarchical exhaustive search to solve that maximization
problem, but other optimization methods could be applied
as well. Figure 4 demonstrates the estimation of the trans-
formation parameters in a simple scene (on the left) and
cluttered scene (on the right).

3.3. Algorithm summary

Our algorithm consists of the following steps:

1. Compute a scalar feature-map, e.g. 5× 5 LoG.

2. For vertical cross-section matching: Form a feature
vector map, such that the feature-vector at each point
is a collection of feature map values in an elongated
vertical local context of size 3× 5.

3. Select partial set of column pairs in the feature-vector
map, such that the horizontal separation between the
two columns is large enough for a reliable detection of
1D affine similarity, and such that the pairs cover the
entire image in a uniform fashion.

4. For each pair of columns find the 1D affine transforma-
tion (s, τ) that maximizes their matching. This is com-
puted from their mutual Structural CORrelation Evi-
dence (SCORE) matrix, by fitting a line that passes
through a set of high SCORE points that are as spa-
tially spread as possible. Then compute the candidate
VP by converting (s, τ) into pencil-slope coordinates
as defined in Section 2, and accumulate in a candidate
VP store.

5. Apply a similar process to horizontal cross-section
matching, with the necessary adjustments.

6. Cluster all candidate VPs by a mean shift procedure.
The largest clusters are the desired VP estimates.

4. Results
We have evaluated our algorithm relative to a classical

line-based method. Our line-based method implementation
follows [14] as they provided good results for complex man
made world. We used the same line detection tools as [14],
available from a Matlab toolbox by Kovesi [6]: straight seg-
ments are extracted from linked edge lists by a subdivision
scheme, and line segment parameters are obtained by a least
squares fit. The implementation in [14] includes an ini-
tialization stage that provide a set of candidate VPs, and a
refinement stage, which validates candidates and improves
their accuracy. The refinement stage can not find VPs that
were not detected in the initialization stage [5].

Our evaluation set consists of 76 images downloaded
from the internet, where 20 which contain a single hori-
zontal VP, and 56 contain two horizontal VPs, (132 VPs in
total). We have created a GUI for marking manually the
”ground truth” horizontal VPs. While manual marking is
not very accurate, it reflects well the human perspective per-
ception and is not biased towards any one of the two tested
methods. The evaluation was made in several image resolu-
tions, pushing towards very low resolutions to evaluate the
potential of considerable computational speed-up through
severe downscaling of the source image.

Figure 5 demonstrates the differences between the per-
formance of our method and the line-based method by a va-
riety of examples. The advantage of of our method over the
line-based method in low resolution images is demonstrated
in Figures 5(a-d). The height of all these images is 40 pix-
els. Note that humans can perceive the 3D scene geometry
instantly from these low resolution images, despite the very
blurred edges. In all cases (a-d) our algorithm detected VP
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candidates quite close to the location we manually marked,
while the line-based algorithm failed to detect any correct
candidates due to failure to detect lines. A second advan-
tage of our method is demonstrated in Figures 5(e-g) (image
height 70 pixels), showing uncluttered scenes with very few
straight lines converging at the vanishing point. In these
cases, the line-based method does not prefer any line-pair
intersection over the other, hence it creates VP candidates
from arbitrary line pairs. Our model detects groups of lines
that share a common range of columns or rows, and in most
cases these lines are consistent with pencils related to VPs.
Note in particular 5(f) where the right VP is not detected by
the line-based method because the upper and lower edges
of the closet are not associated with the same candidate.
On the down side, the very same argument can cause our
method to fail where the line-based method succeeds: 5(h)
(image column 150 pixels) shows a failure case: there are
almost no vertical cross section of pencils converging at the
right VP, that do not suffer from major interferences (the
lines of the rug that are not directed towards the right VP).
As a result, our method fails to detect this VP, contrary to
the line-based method.

A third advantage of our method is its capability to de-
tect VPs from regular patterns, as shown in Figure 5(i-j),
(image height 90). Particularly note 5(i), where the left VP
is detected based on the regular pattern on the wall (virtual
pencil), while the right VP is detected based on real lines
(real pencil). No prior method can achieve that.

We compared the correctness of the vanishing point can-
didates (largest clusters) derived with out method to the can-
didates derived with the line-based initialization method.
Each VP candidate inside a relatively large window around
a ground truth VP was declared as correct. As it is very
hard to create an exact ground truth of the vanishing points
on real images, we focused on detection rates rather than
on the accuracy. We have conducted the following experi-
ment to test the robustness of our method to low resolution
images. Each image was downscaled to a variety of sizes:
from a 40 to 160 pixels high images. We measured the num-
bers of correctly detected VP candidates by our method and
by the line-based method, presented in Figure 6. Note that
our method significantly outperforms the line-based method
in low resolutions. For instance, for 70 pixels image height,
our method detects 96 our of the 132 VPs and the line-based
method detects only 50. The detection rate of our method
deteriorates with image size increase, probably since the
fixed feature context size is too small for high resolution im-
ages. In contrast, the detection rate of the line-based method
increases with resolution due to better line detection.

5. Conclusion
We presented a self-similarity based approach and a cor-

responding algorithm for vanishing points detection in man-

Figure 6. The detection rates vs. image size. The number of cor-
rect VP candidates with the line-based method (blue), the number
of correct two largest clusters with our method (red), and the num-
ber of correct largest 10 clusters with our method (dashed red).

made scenes. Our method does not rely on detection of ex-
plicit features such as straight lines or texels, and therefore
can extract vanishing points from both lines or patterns per-
spective information. Our method relies on global struc-
tures and trends in the image rather then local details. This
makes our method very robust against loss of image detail,
for instance in low resolution images (much like the human
perception). While the method handles well both indoor
and outdoor man-made scene, more work is needed to ex-
tend it for general natural scenes. Another direction for fu-
ture work is to explore the possibility that the human visual
system uses principles similar to our method for perspective
perception.
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