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Abstract

Depth-map merging approaches have become more and
more popular in multi-view stereo (MVS) because of their
flexibility and superior performance. The quality of depth
map used for merging is vital for accurate 3D reconstruc-
tion. While traditional depth map estimation has been per-
formed in a discrete manner, we suggest the use of a con-
tinuous counterpart. In this paper, we first integrate sil-
houette information and epipolar constraint into the varia-
tional method for continuous depth map estimation. Then,
several depth candidates are generated based on a multiple
starting scales (MSS) framework. From these candidates,
refined depth maps for each view are synthesized according
to path-based NCC (normalized cross correlation) metric.
Finally, the multiview depth maps are merged to produce
3D models. Our algorithm excels at detail capture and
produces one of the most accurate results among the cur-
rent algorithms for sparse MVS datasets according to the
Middlebury benchmark. Additionally, our approach shows
its outstanding robustness and accuracy in free-viewpoint
video scenario.

1. Introduction
Multi-view stereo (MVS) aims to reconstruct watertight

3D model from multiple calibrated photographs of a real-
istic object. Because of many potential applications, i.e.
industrial design, characters modeling for films and elec-
tronic games, demonstration of cultural relics, and commer-
cial advertisement, MVS has drawn more and more atten-
tions in recent years. Although many algorithms have been
developed for this problem, efforts still have to be made to
achieve a 3D modeling with both high efficiency and high
quality.

Following the taxonomy of Seitz et al. [22], MVS al-
gorithms can be generally classified into four categories:
3D volumetric approaches [15, 28, 26, 27], surface evolu-
tion techniques [21, 8, 31], feature extraction and expan-
sion algorithms [29, 9, 11], and depth map based methods
[10, 16, 5, 30]. Among these four classes, depth map based

approaches make up an important part of those top perform-
ers on standard evaluation tests [2]. Generally, such meth-
ods involve two separate stages. First, a depth map is com-
puted for each viewpoint using binocular stereo. Second,
the depth maps are merged to produce a 3D model. This
two-stage strategy offers great flexibility to embed different
techniques into the whole reconstruction pipeline. In these
methods, the estimation of the depth maps is crucial to the
quality of the final reconstructed 3D model. Compared with
traditional binocular stereo problems [7], an accurate pixel-
level processing is required in MVS to recover a continu-
ous and precise model surface. In this situation, discretized
global optimization algorithms such as graph cuts and belief
propagation, which are widely adopted in binocular stereo
problems, will lead to quantization errors during the discre-
tion of depth values as well as huge memory requirement.

To guarantee pixel-level optimization, Goesele [10] uses
window based matching technique to compute color con-
sistency between neighboring views along the epipolar line.
Because only the pixels with high color consistency are
adopted, large part of the object surface will not be re-
constructed when cameras are sparse. Recent depth map
based MVS approaches [19, 16, 5] are also based on win-
dow matching schemes to assign one or multiple depth can-
didates for each pixel. By introducing the outlier removing
techniques, promising depth maps can be obtained with-
out large memory requirement. However, because of the
distorted matching windows caused by slanted projection
of surface patches, these methods and some of the fea-
ture growing approaches [29, 17, 11] either endeavor to
rectify distorted matching windows or search the possible
slanted angles for accuracy matching. Moreover, it is time-
consuming for these methods to achieve sub-pixel matching
precision for a high accurate surface recovery.

In this paper, we propose a variational depth map estima-
tion technique aiming at high quality MVS reconstruction.
Continuous variational approach has the ability to over-
come the above mentioned limitations such as discretiza-
tion errors, memory consumption and distorted matching
windows. Such continuous formulation naturally enables
rotation invariant photo-consistency matching. For MVS
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problems, we find that these properties are especially suit-
able for capturing continuous surface details. In addition,
a multiple starting scales (MSS) technique is proposed to
generate multiple depth map candidates from different start-
ing scales. The presence of multiple candidates can prevent
some occasional over-smoothness and avoid troublesome
local minima in single depth map. Then refined depth map
is synthesized, i.e., multiple depth maps are fused through a
selection and cleaning process. Thanks to the continuity of
the candidate depth maps, the data term can be accurately
measured using patch-based NCC metric [29].

Figure 1 illustrates the whole pipeline of our reconstruc-
tion algorithm. Compared with traditional depth map based
approaches, the most obvious unique of our proposed algo-
rithm lies in the variational depth map estimation and MSS
depth map synthesis technique.
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Figure 1. Reconstruction pipeline of our proposed method.

In particular, our MVS pipeline has the following advan-
tages:
• Combined with visual hull and epipolar constraint,

variational technique can provide continuous surface with
delicate details without the complex pixel by pixel window
matching.
• The fusion of depth maps on each individual view is

based on a MSS technique. Both the high frequency and
low frequency errors are damped through the selection of
multiple starting scale iteration results.
• Continuous depth-map candidate allows accurate NCC

measurement on each pixel to choose the optimal depth.
Such accurate matching circumvents distorted matching
windows due to the slanted surfaces.

In the following, we first review related work in Section
2. We present the variational depth map estimation algo-
rithm and its MSS framework in Section 3. In Section 4, we
describe the whole merging procedures including the fusion
of continuous depth map candidates for individual camera
view and the merging of multi-view depth maps to produce
3D point cloud. Finally, we show the experimental results
in Section 5 and conclude the paper in Section 6.

2. Related Work
The first free viewpoint video studio, Visualized

RealityTM [25], adopts a depth map merging reconstruc-
tion scheme. Model reconstruction did not perform well at
that time because of ambiguous stereo matching and rough
surface fusion. After this work, lots of 3D model recon-
struction algorithms turned to use the discrete global op-
timization techniques [12, 28, 13] to produce 3D surface
models. In recent years, Goesele [10] revisits depth map
based approaches using pixel by pixel window matching
technique to retrieve the high fidelity matching pixels and
merge the resulted depth maps using volumetric meshing al-
gorithms. Bradley [5] improves this works by increasing the
number of matching pixel pairs using scaled window match-
ing technique and depth map filtering technique. Camp-
bell [19] enhances the quality of depth-maps by extracting
multiple depth candidates for each image pixel, and then
impose global optimization algorithm to simultaneously re-
move outliers and achieve depth map smoothness. These
methods are all pixel-level matching technique for discrete
depth map generation. As for works that concentrate on
multi-view depth maps merging, Merrell [16] addresses the
problem of real-time depth map merging via GPU tech-
nique. Zach [30] computes the depth maps to create a 3D
model using total variation regulation and L1 norm to mea-
sure data drift.

Among all the techniques used in MVS, photo con-
sistency measure is crucial to the 3D reconstruction per-
formance. Rectangular window matching in image space
[28, 27, 10] is not accurate due to the camera projection
transformations of the object surface. Patch based match-
ing [29] in scene space is much more reasonable by adding
the surface normal and position information. However, it is
rather time-consuming to traverse all normal and position
situation for each surface patch. Furukawa [29] selectively
optimize the normal and position of patches correspond-
ing to salient image features to save the computation time
while maintaining surface accuracy and completeness by
patch propagation algorithm. This algorithm achieves ex-
tremely high performance on lots of MVS datasets. Scaled
window matching technique proposed by Bradley [5], and
plane fitting optimization suggested by Habbecke [11] are
also schemes that can rectify matching window or distorted
color consistency matching in acceptable time. Our work
proposes a novel matching solution based on continuous
depth map candidates.

In the area of optical flow estimation, variational ap-
proach has demonstrated its strength by presenting good ac-
curacy in developing continuous correspondence between
motion images [4]. The filling-in effect creates dense corre-
spondennce maps with sub-pixel level precision by propa-
gating information over the entire image domain. Based on
these advantages, Slesareva [20] tries to add epipolar con-
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straint to the traditional optical flow scheme for binocular
stereo problems. In his later work [23], this scheme has
been extended to multiple ortho-parallel views aiming for
more accurate depth maps. Variational approach has also
been successfully applied in binocular scene flow scenario,
in which depth and motion are jointly optimized. In MVS
area, Kolev [14] proposed a continuous global optimization
algorithm parallel to discrete volumetric graph cuts [28].
Although it is based on variational technique, its solution
is in the 3D space, while ours is based on the 2D image
space.

3. Continuous Depth Estimation
As mentioned above, the depth estimation is important

to the final performance of MVS system. In this section,
we first describe the variational approach applied for con-
tinuous depth map generation from binocular image pairs.
Then we introduce the MSS technique adopted to generate
the multiple depth map candidates for the final depth map
synthesis. This strategy is inspired by the observation that
the optima of low frequency image components are easier
to find when we rescale the image to a coarse level. In addi-
tion, by offering more depth candidates, this MSS method
can achieve a more robust and accurate depth result.

3.1. Variational depth estimation

Variational approach has made tremendous progress on
optical flow problems[4], which is very similar to stereo
matching. Both of these two problems are dedicated to
find the corresponding pixels among picture frames. Vari-
ational approach shows potential for 3D model reconstruc-
tion. First, watertight objects (e.g. humans and toys) have
surfaces that tend to be continuous and free from abrupt
changes. Second, silhouette information of the object pro-
vides a reduced searching space and a favorable initial value
for variational optimization. Moreover, because intrinsic
parameters and camera poses are known, epipolar line can
reduce the searching space from two dimensions to only one
dimension. This simplification is illustrated in Figure 2.
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Figure 2. Restriction on displacement from 2D to 1D.

Figure 2 shows that according to the epipolar geometry,
we can search for the corresponding point just on the epipo-

lar line, instead of two dimensional searching in optical situ-
ation. Originally, if we want to find the corresponding point
of p1 in the neighboring view, for example, p′1 in the refer-
ence view, we must use displacement in both x and y direc-
tions. At present, we can just search for the corresponding
point on the epipolar line. We first get the so-called “anchor
point” p′ref by drawing a line trough p1 which is perpen-
dicular to the epipolar line. Then, the searching displace-
ment is defined based on w, which is the displacement from
p′ref to p′1. Since the distance between p1 and p′ref is fixed
for each pixel, the original 2D displacement in optical flow
problem can be replaced by d(w). With the introduction
of d(w), the depth maps can be computed by minimizing
the target energy functional which includes both the local
feature matching and the global smoothness terms:

E(w) = ED(w) + αES(w), (1)

where

ED(w) =

∫

Ω

ψD(|Ir(p + d(w))− It(p)|2

+ γ|∇Ir(p + d(w))−∇It(p)|2)dxdy,

(2)

and
ES(w) =

∫

Ω

ψS(|∇w|2)dxdy. (3)

Here, Ir is the reference image and It is the target image.
The data term contains two parts: the first part assumes the
color value consistency in each view and the second part
models the constancy of the spatial image gradient. The in-
troduction of gradient term ∇I makes the approach more
robust to varying illumination. In the meantime, the spatial
gradient can preserve the edges well. Since the data con-
straint is not always accurate, e.g. because of occlusions,
brightness changes or noises, we apply the robust function
ψ proposed in [6]. The smoothness term is computed by
taking the interaction between neighboring pixels into con-
sideration. In this case, it is designed to penalize the total
variation of the flow field.

The problem of finding the functions w that minimize
the target variational energy function can be converted to
the minimization of Euler-Lagrange equation. For simplic-
ity, we use the following abbreviations for derivatives and
differences:

Ix := ∂xIr(p + d(w)),Ixy := ∂xyIr(p + d(w)),

Iy := ∂yIr(p + d(w)),Iyy := ∂yyIr(p + d(w)),

Iz := Ir(p + d(w))− It(p),Ixz := ∂xIr(p + d(w))− ∂xIt(p),

Ixx := ∂xxIr(p + d(w)),Iyz := ∂yIr(p + d(w))− ∂yIt(p).
(4)

Therefore, the Euler-Lagrange equation is expressed as:

ψ
′
D(I

2
z + γ(I

2
xz + I

2
yz))

×((IzIxi + γIxzIxxi + γIyzIxyi) + (IzIyj + γIxzIxyj + γIyzIyyj))

−αdiv(ψ
′
S(|∇w|2)∇w) = 0.

(5)
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Here, (i, j)T is the unit normal vector of direction of epipo-
lar line corresponding to pixel p. The above equation is non-
linear in both data term and smoothness term, and can be
solved by a multi-resolution strategy with two nested fixed
point iterations to remove the nonlinearities in the equa-
tions. A coarse-to-fine strategy with down-sampling factor
η is used. Such solving strategy can be theoretically jus-
tified as an approximation to the continuous energy func-
tional. The initial values w0 of w for each pixel in the tar-
get image should be pre-computed based on the visual hull.
Moreover, the directions of epipolar lines and the anchor
points for all pixels should also be pre-computed and saved
as a direction map and anchor map respectively. During
multi-scale iteration, these maps serve as look-up tables for
the down-sampled pixels to check their epipolar directions
and anchor positions.

In summary, variational technique tends to get stuck into
local optima. However, when it is combined with visual
hull and epipolar constraint, which provide a satisfactory
initial value and a restricted feasible space for optimiza-
tion, the result will have a big chance to achieve a high
quality depth map, although it may not be the global op-
tima. Compared with traditional window based matching
technique, variational formulation naturally enables rota-
tion invariant matching, and such invariance permits match-
ing without consideration of surface perspective distortions.
Therefore, details can be perfectly recovered on distinctive
regions. However, variational formulation cares only inten-
sity and gradient consistency for neighbor pixels while ne-
glecting the region segment based matching characteristic,
which will degrade the matching accuracy.

3.2. Multiple starting scales (MSS) framework

Due to the inherent difficulties such as noise, occlusion
errors, lack of textures, texture repeating and some other un-
certainties, errors may occur during the variational match-
ing computation. Thus, a single coarse-to-fine iteration is
not enough. To improve the accuracy and robustness, we
propose a MSS (Multiple starting scales) framework which
starts the variational depth estimation at various scale lev-
els. This method offers more diverse depth candidates than
a single coarse-to-fine iteration.

We use templeSparseRing and dinoSparseRing to illus-
trate the advantage of MSS. The resolution of these input
images is 640 by 480. Figure 3 shows the depth map re-
constructed under different starting scales. From the left
to the right of each row, the starting iteration level is get-
ting coarser. For example, in the temple sequence (a)∼(d),
we rescale the image using factor η (0< η <1) by 5, 10,
15, 20 times respectively as a starting level. Namely, the
result of Figure 3(a) is obtained through a coarse-to-fine it-
eration from coarse resolution (640·η5, 480·η5) to fine res-
olution (640, 480). We mark the regions which are well

Figure 3. Influence on reconstructed results by different starting
resolution level. All the three examples are fine-to-coarse from the
left to the right. The red rectangles mark the regions which have
been well reconstructed, while the blue circles sign the regions
which fail to recovered. (a)∼(d):Temple view 1; (e)∼(h):Temple
view 2; (i)∼(k):dinosaur example.

reconstructed and not-well reconstructed in Figure 3.
When the depth computation is iterated from fine level,

the surfaces that are approximate to the initial value (visual
hull) will be recovered (see the roof and the pillars of tem-
ple in (a) and (f)) while some large displacements like deep
concaves may not be carved. See the top of the temple in
(e) and the foot of dinosaur in (i). The failure on concaves
verifies the fact that,without iteration from coarse level, it
is difficult to find the long distance correspondences and re-
sults can be easily stuck into local minima.

Conversely, when iterating from coarse level, the salient
shape information like the deep concaves can be perfectly
reconstructed (see the concave wall in (h) and the foot of
dinosaur in (k)). This success is attributed to the contin-
uous property of variational technique as described above.
However, for textureless regions, the results are prone to
be over-smooth or erroneous. (see the roof of the temple
in (d) and the collapsed round table in (k). The reason for
this unpleasant reconstruction lies in the fact that the details
degraded due to the down-sampling strategy.

At last, for some regions with periodic texture such as
the steps in (a)∼(d), different starting levels present various
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reconstruction results.
From these analysis, it is incomplete to fix on a particular

starting level, while the combination of depth map candi-
dates at different starting scales has the potential to achieve
comprehensively satisfactory reconstruction.

4. Merging and Meshing
Our merging can be divided into two stages: depth map

synthesis and multi-view merging. Depth map synthesis is
to generate a high quality depth map for each camera view
based on the MSS depth map candidates, while multi-view
merging aims at producing an as-clean-as-possible point
cloud using the multi-view refined depth maps.

4.1. Depth map synthesis

We use the patch based color consistency metric to re-
trieve a depth value from the multiple candidates for each
pixel. Thanks to the continuous property provided by the
variational depth map, accurate patch based matching for
pixels is possible, as illustrated in figure 4.

Surface Patch

Target view Reference view

Figure 4. Patch-based NCC measurement based on continuous
variational flow and surface patch.

For the measure of pixel photo consistency on a spe-
cific depth map candidate, corresponding 3D point with its
neighbor points can be traced and then clustered to be a sur-
face patch. Photo consistency metric such as normalized
cross correlation (NCC) on the projection regions can then
be ideally computed based on this surface patch. To cir-
cumvent point cluster operation in 3D, NCC matching can
be conveniently defined in image space as:

NCC(pi, s) =

∑N2

j=1(nj − n) · (fs(nj)− fs(n))
√∑N2

j=1(nj − n)2 ·
√∑N2

j=1(fs(nj)− fs(n))2
.

(6)
Here pi is the target pixel in the primary view, s is the index
of candidate depth maps, and nj is local neighborhoods of
size N×N in the target image. fs(nj) is the pixel region
corresponding to nj in the reference images obtained by
the variational flow fs. n and fs(n) represent the intensity
averages over the two regions.

Suppose that the number of depth map candidates is S.
Generally, s∗ that satisfies

s∗ = arg max
s=1,2...S

NCC(pi, s) (7)

will correspond to the accurate depth. To improve accuracy
and reduce the number of outliers in the point cloud corre-
sponding to the final depth map, we remove points that may
be erroneous as follow. If a point whose neighbor number is
small, it may be a disconnected point and should be filtered
out. We use a fixed radius to compute the local neighbor-
hoods for the point cloud. Points with neighbor number
lower than 0.5n should be removed. Here, n is the aver-
age neighbor number of all the points. Moreover, we add
constraint to remove the points whose angles between their
normals and the view-vector (the vector from the point to
the view camera) are larger than 45 degree. This is because
the larger angles means these points may not be accurate
and their counterparts in other cameras are more favorable.
Figure 5(a)illustrates two views of the depth map synthesis
results for the dinoSparseRing data set.

In summary, our depth map synthesis combines both the
advantages of the patch based NCC calculation in PMVS
[29] and the multiple hypothesis optimization (MHO) [19].
PMVS traverses all feasible patch normal and patch posi-
tions for each feature pixel, while continuous depth map
provides natural patches and involves only the choosing of
the best from all available candidates. On the other hand,
compared with MHO, candidates in our method are patches,
which is more accurate for stereo matching than discrete 3D
points used in MHO.

Figure 5. Depth map synthesis result (a) and multi-view depth
map merging result (b) on dinoSparseRing. Results are obtained
by shading the point clouds corresponding to the depth maps.

4.2. Multi-view merging and point cloud meshing

All multi-view depth maps are combined together to get
a huge point cloud with each point containing information
including position, normal direction, detecting camera and
color consistency value. Attributing to the high qualities
of our multi-view depth maps, the merging process can be
time-efficient in our work. We remove outliers by detect-
ing the conflicting point pairs. The following criteria define
two points as conflicting point pair: 1) captured from differ-
ent cameras, 2) project to the same position on a particular
camera view, but their distance is smaller than threshold,
3) to the projected camera view, they have the same sign
of normal direction. Our removing algorithm assumes that
for any pair of points satisfying with the above criteria, the
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point with lower color consistency value in the conflicting
pair should be considered a noise point and will be removed.
Here, the projected camera view is allowed to be a virtual
camera view to increase the conflicting point detecting rate.
Figure 5(b) shows two views of the merged point cloud.

Finally, the merged point cloud is meshed based on the
Poisson surface reconstruction [18] because of its ability to
generate a watertight mesh and its robustness to both noise
and non-uniform sampling rate. To rectify reconstructed
vertices that lie outside the visual hull, we project each of
such vertices back to the visual hull according to their in-
wards normal directions.

5. Results

5.1. Implementation

The variational depth estimation module is implemented
based on Brox’s optic flow method [6]. Table 1 lists the pa-
rameters used in our algorithm. For the two Middlebury
datasets, since the true surfaces are far from their corre-
sponding visual hull, we output 4 kinds of starting scales (s
= 5, 10, 15, 20) for depth map synthesis. As for our captured
datasets, only 3 starting scales (s = 1, 4, 8) are necessary.

Table 1. Summary of the parameters used in the experiments.
Parameters Value

Reduction factor η in variational flow 0.9

Outer fixed point iter. in variational flow 10

Inner fixed point iter. in variational flow 2

SOR iter. in variational flow 5

σ/α/γ in variational flow 1.8/80/100

Stereo window matching size 7× 7

The main computation time is spent on the variational
depth estimation. For low resolution images (e.g. Milddle-
bury datasets with a resolution of 640 × 480), this process
is fast. Our algorithm is further accelerated because fore-
ground extraction makes large areas of background unnec-
essary in the variational iterations. Besides, since pixel cor-
respondences are known before NCC calculation, the com-
plexity of the depth synthesis is also very low. Finally, the
point cloud merging module is time efficient. All these facts
make our algorithm feasible in a satisfactory time.

5.2. Reconstruction results and evaluation

The quantitative results of our algorithm are shown in Ta-
ble 2. At the moment these results are submitted, the accu-
racy and completeness measurements of these two datasets
both rank top 4. Figure 6 shows our final reconstruction re-
sults of these two datasets. Details such as the foot of the
dinosaur and the pillars of the temple have been ideally re-
constructed.

Figure 6. Reconstruction results of dinoSparseRing and tem-
pleSparseRing.

Table 2. Results for Middlebury datasets. Accuracy is measured
in millimeters, completeness as a percentage of the ground true
model, time in minutes. Both the accuracy and completeness of
these two datasets rank top 4 of the Middlebury evaluation.

DinoSparseRing

Acc. Comp.

0.51 98.7

Time.

28

TempleSparseRing

Acc. Comp.

0.65 96.9

Time.

23

Our algorithm is also effective and efficient for free-
viewpoint video (FVV) datasets captured by multi-camera
array. Compared with the static multi-view video datasets,
FVV datasets suffers from the problems such as low reso-
lution, unfavorable color synchronization, image noises and
invisible surface regions. We have setup a multi-camera 3D
studio to capture multi-view videos for human actors. These
multi-view datasets consist of 20 views evenly spaced on a
ring. The spatial resolution of each image is 1024 × 768.
Our datasets are pretty challenging because of the presence
of the above mentioned problems to some extent. These
datasets are available on [1]. Figure 7 illustrates our recon-
struction results on different kinds of dressings and poses.
The red rectangles on the models mark the challenging re-
gions that we have successfully reconstructed. For example,
the hair on the shoulder is still visible in (a), and the wrin-
kle of the back can be seen clearly in (d). Such recovered
details are difficult to handle for graph cuts methods [28]
because of their limited grid resolution and the discrete ap-
proximation of the smoothness term.

Figure 8 additionally emphasizes a comparison with vol-
umetric graph cuts (Figure 8(a)), patch based MVS [29]
([29], Figure 8(b)) and our proposed methods (the first row
of Figure 9) when applied on our captured datasets. The
volumetric graph cuts is implemented based on [27], and
we use the PMVS software [3] to obtain the patch based
MVS results. Here, the reconstruction results by graph cuts
look slightly over-smooth. For example, the space between
the actor’s legs in the first two images can not be carved
out. These artifacts are caused by the discrete approxima-
tion of the smoothness term and the inaccurate square win-
dow matching. PMVS is perfect for the static high quality
MVS datasets, but it relies on the accurate reconstruction of
the feature patches to propagate the surface. For area with-
out enough texture information, such as the black hair and
the thin arms, PMVS cannot detect enough confident fea-
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7. Reconstruction of free-viewpoint video datasets. The grey images are reconstructed models and the color ones are input images.
Red rectangles mark the challenging regions that we have successfully handled.

(a) (b)

Figure 8. Reconstruction result using: (a) Graph cuts method similar to [27], (b) patch based MVS (PMVS) [29].

tures, thus the results may not be robust. In contrast, our
continuous depth map based method can achieve accurate
capture of features, nice reconstruction on smooth regions
and robustness on challenging datasets.

6. Conclusion

In this paper, a novel multi-view stereo algorithm using
an estimation-synthesis-merging framework on continuous
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depth maps is proposed. By introducing variational flow
technique to MVS area and combining it with visual hull
information and epipolar constraint, we are able to capture
3D surface details conveniently, without the need of pixel
by pixel window matching procedure. In addition, contin-
uous depth map enables accurate photo-consistency mea-
surement, and such advantage further promotes the depth
map synthesis strategy to choose the optimal depth value
from the multiple depth candidates. It is the combination
of these advantages that allows robustness and high quality
reconstruction on both static multi-view and motion multi-
camera datasets. The multi-view depth map merging mod-
ule in our algorithm is plain, which leaves space for future
performance improvement.
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