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Abstract

The articulated body models used to represent human

motion typically have many degrees of freedom, usually ex-

pressed as joint angles that are highly correlated. The true

range of motion can therefore be represented by latent vari-

ables that span a low-dimensional space.

This has often been used to make motion tracking ea-

sier. However, learning the latent space in a problem-

independent way makes it non trivial to initialize the track-

ing process by picking appropriate initial values for the la-

tent variables, and thus for the pose. In this paper, we show

that by directly using observable quantities as our latent

variables, we eliminate this problem and achieve full au-

tomation given only modest amounts of training data.

More specifically, we exploit the fact that the trajectory

of a person’s feet or hands strongly constrains body pose in

motions such as skating, skiing, or golfing. These trajecto-

ries are easy to compute and to parameterize using a few

variables. We treat these as our latent variables and learn

a mapping between them and sequences of body poses. In

this manner, by simply tracking the feet or the hands, we

can reliably guess initial poses over whole sequences and,

then, refine them.

1. Introduction

A common theme in many recent approaches to cap-

turing human motion from video is to represent the set of

likely poses as a low-dimensional manifold parameterized

by a few latent variables. The mapping between the latent

space and the pose space correlates the motions of indivi-

dual body parts. This strongly constrains the fitting of a

complete body model to image data, thus making the prob-

lem more tractable.

The mapping can be either linear [15, 11, 21] or non-

linear [4, 16, 20] but is usually learned in a problem-
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Figure 1. Our observable subspaces allow us to recover different

3D motions, such as roller skating (a), golfing (b) and skiing (c),

even under adverse conditions. Note for example that (c) is a win-

dow of the 720×576 image shown in (d), which makes the subject

quite small.

independent way, which makes it difficult to recover motion

without manually initializing the latent variables and the

pose. Recent approaches have endeavored to address this is-

sue by learning a shared low-dimensional latent space both

for pose and image data [10]. Though this improves track-

ing performance, learning the manifold requires a complex

training procedure that needs large amounts of data, and

yields a latent space that has no intuitive meaning.

In this paper, we introduce a direct way to derive a map-

ping between easily observable image quantities, which will

serve as our latent variables, and pose sequences. This

yields full automation given only modest amounts of train-

ing data. The idea is very general and we demonstrate it

in the cases of skating, skiing, and golfing, as shown in Fi-

gure 1.
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Specifically, the ground trajectory of a person’s feet

strongly constrains body pose for motions such as skating

and skiing. Similarly, the hand trajectory in the swing plane

provides pose constraints for the golf swing motion. These

2D trajectories are usually easy to compute from the images

and can be parameterized as piecewise polynomials that are

characterized by their curvatures. To capture the correlation

between trajectory and motion, we learn a Gaussian Process

mapping [12] from consecutive curvatures along the trajec-

tories to 3D pose sequences that represent the motions. At

run-time, we track people’s feet or hands, fit splines to the

resulting trajectories, and use this mapping to initialize the

poses in a frame sequence. These poses can then be refined

by minimizing an image-based criterion. In practice, be-

cause a sequence of 3D poses is too high-dimensional for

direct fitting to image data, we first reduce its dimension-

ality by learning a linear subspace model [21]. A motion

can then be expressed as an average motion plus a weighted

sum of modes, and the mapping is learned from the trajec-

tory curvatures to these weights. To demonstrate the ef-

fectiveness of this approach, we show that we can use our

mapping to recover from single videos not only skating and

golfing motions, which is what it was trained for, but also

skiing motions, which are related to but different from skat-

ing ones.

2. Related Work

Even after many years of effort, recovering 3D human

motion from image sequences reliably remains an open

problem. Among the sources of difficulties are joint reflec-

tion ambiguities, occlusions, cluttered backgrounds, non-

rigidity of tissue and clothing, complex and rapid motions,

and poor image resolution. The problem is particularly pro-

nounced when using a single video to recover the 3D mo-

tion. In this case, incorporating motion models into the al-

gorithms has consistently been shown to be effective [9].

Such models can be physics-based [3, 23] or learned from

training data [15, 11, 1, 21, 17, 13, 2].

The physics-based approach is attractive for motions

such as walking or running for which appropriate models

have been developed. For others, assuming that motion-

capture data can be obtained, the learning-based approaches

are much easier to deploy. They all rely on the fact that the

space of poses for a particular activity can be modeled as a

low-dimensional manifold, embedded in the much higher-

dimensional space of all possible poses of an articulated

human body model. As a result, recovering sequences

of body poses can be achieved by optimizing over the

low-dimensional manifold rather than the high-dimensional

pose space.

To this end, the manifold is usually parameterized by a

few latent variables and the mapping between them and the

poses, or pose sequences, can be either linear [15, 11, 21]

or not [4, 16, 20]. For example, in [20], a Gaussian Process

Latent VariableModel (GPLVM) [8] was used to learn a dif-

ferentiable manifold from modest amounts of training data,

which allowed motion recovery by continuous optimization

of an image-based objective function. There has been at-

tempts at constraining the topology of the latent space to

assume known configurations, such as circles, or to respect

the distances in the high-dimensional space between neigh-

boring examples [19]. However, such techniques still re-

quire learning a latent space, which remains a complex op-

timization problem, whereas we propose to directly make

use of observable quantities as a latent space.

Another issue with this kind of approach is that the latent

variables have no physical meaning and are hard to initialize

from image data. In GPLVM approaches such as [20], the

process is initiated by finding a training example that best

fits the data and using the corresponding latent variable for

initialization purposes. This implies a search that our tech-

nique avoids. This difficulty was addressed in [10, 14, 6] by

learning a common low-dimensional latent space both for

pose and image data. However, because learning the joint

latent space is more involved than learning individual latent

spaces, standard techniques require more training data than

is normally available. As a result, the authors of [10] had

to develop a more sophisticated algorithm able to use not

only examples for which the correspondence between pose

and image data is known, but also examples for which it is

not. Unfortunately, learning a GPLVM is computationally

expensive and sensitive to initialization of the latent vari-

ables. Furthermore, it yields a complex objective function

with many local minima, which is not always ideal for in-

ference purposes.

Here, by contrast, we rely on ordinary Gaussian Pro-

cesses (GP) [12] to establish a direct mapping between

low-dimensional observable image data and the high di-

mensional pose space. Since fewer parameters need to be

learned, training is more straightforward and requires far

less data. Initialization is similarly easy since the image

data directly give us a mapping to a pose sequence, which

we then simply need to refine.

GPs were also used in [18] to map silhouettes directly to

3D poses. However, because both spaces are highly non-

linear, this required using not a single GP but a mixture

of them and a very sophisticated learning procedure, which

was only demonstrated on clean silhouette data. In our case,

the mapping is straightforward and we can rely on a stan-

dard implementation of the training procedure.

3. Framework

Our goal is to relate 3D motions to image trajectories of

the hands or feet so that we can predict the former from the

latter. Here, we propose to learn a Gaussian Process map-

ping [12] from the space of image trajectories to that of hu-
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man motions represented as sequences of 3D poses, which

can be done with a relatively small training database. Given

this mapping, we can track the hands or feet of subjects in

video sequences, infer plausible motions, and refine them to

obtain accurate 3D pose estimates by minimizing an image-

based objective function. In practice, however, the space of

3D pose sequences is too high-dimensional to be directly

used for optimization purposes. Therefore, to reduce the

dimensionality of our problem and the complexity of opti-

mization, we use a linear subspace motionmodel [21, 15] to

represent 3D pose sequences with a manageable number of

parameters, and learn a mapping from trajectory curvatures

to these parameters.

In this section, we first introduce the motion representa-

tion we use. We then show how a Gaussian Process map-

ping can be learned between such motions and image tra-

jectories from training data, and used to initialize poses in

input video sequences. Finally, to make optimization prac-

tical, we introduce our linear subspace motion model.

3.1. Motion Representation

We rely on a coarse body model in which individual

limbs are modeled as cylinders. Let yt = [ψT
t , g

T
t ]T be

the vector that defines its pose at time t, where ψt is a set

of Nj joint angles and gt a 6D vector that defines the po-

sition and orientation of a reference body joint in a global

reference system.

A motion can be viewed as a time-varying pose. While

pose varies continuously over time, we assume a discrete

representation in which pose is sampled at Nt distinct time

instants. In this way, a motion y is just a sequence of Nt

discrete poses, and can be written as the D = (NjNt +
6Nt)-dimensional vector

y = [ψT
1 , · · · , ψ

T
Nt
, gT

1 , · · · , g
T
Nt

]T . (1)

Naturally, we assume that the temporal sampling rate is suf-

ficiently high to interpolate the continuous pose signal. In

our examples we split activities into short and temporally

smooth motions. Therefore we simply consider poses as

equally-spaced in time between the beginning and the end

of a motion. This avoids the need to explicitly account for

differences in speed between motions.

3.2. Gaussian Processes

Let Y = [y1, · · · ,yN ]T be the N × D matrix of N

training motions from which the mean motion y0 was sub-

tracted, and X = [x1, · · · ,xN ]T theN×dmatrix of corre-

sponding d-dimensional image trajectories parameters. Y

and X are said to be related through a Gaussian Process

mapping [12] if

yi = f(xi) + ǫi , (2)

where ǫi is zero-mean Gaussian noise, with a prior over f

defined as

p(f |X) = N (0,K) , (3)

where f = [f(x1)
T , · · · , f(xN )T ]T , and K is a kernel ma-

trix whose elements are defined by a covariance function, k,

such that Ki,j = k(xi,xj). This matrix entirely defines the

GP, and only depends on hyperparameters Θ. In practice,

we take a covariance function that is the sum of an RBF,

a bias, and a noise term. Learning a GP is then done by

maximizing p(Y |X,Θ) p(Θ) with respect to Θ, where

p(Y |X,Θ) =

1
√

(2π)ND|K|D
exp

(

−
1

2
tr

(

K−1YYT
)

)

, (4)

and p(Θ) is a simple prior on the kernel parameters.

Given an input video sequence from which we can ex-

tract trajectory parameters x′, the function f(x′) follows a
Gaussian distribution p(f(x′)|X,Y,Θ) = N (µ, σ), with

µ(x′) = y0 + YT K−1k(x′) , (5)

σ2(x′) = k(x′,x′) − k(x′)
T

K−1k(x′) , (6)

where k(x′) is the vector with elements k(x′,xj) for latent
positions xj ∈ X. We can therefore simply use the mean

prediction of the model µ(x′) to initialize the motion in the

new sequence, and refine it via optimization of an image-

based objective function, as will be explained in Section 3.4.

3.3. Linear Subspace Motion Model

Since, in practice, optimizing an image-based criterion

with respect to the NjNt + 6Nt parameters of a sequence

of poses is intractable, we first reduce the dimensionality of

this space. To this end, we perform Principal Component

Analysis on the dataset Y to find a low-dimensional basis

with which we can effectively model the motion. In par-

ticular, the model approximates motions in the training set

with a linear combination of the mean motion y0 and a set

of eigen-motions {ỹi}1≤i≤Nm
as

y ≈ y0 +

Nm
∑

i=1

αiỹi . (7)

The scalar coefficients, {αi}, characterize the motion, and

Nm ≤ NjNt + 6Nt controls the fraction of the total vari-

ance of the training data that is captured by the subspace,

measured by

Q(Nm) =

∑Nm

i=1
λi

∑NjNt+6Nt

i=1 λi

, (8)

where λi are the eigenvalues of the data covariance matrix,

ordered such that λi ≥ λi+1. In practice, we choose Nm
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Figure 2. Input silhouettes used to compute our results. The sil-

houettes were extracted using a standard background subtraction

technique on skating and golfing examples, while on skiing an in-

tensity threshold was used.

such thatQ(Nm) > 0.9. Finally, the GP mapping is learned

from the trajectory curvatures to the parameters αi of our

training data rather than to the sequence of poses directly.

Since we ensure that 90% of the training data is modeled

by the linear subspace, this only yields a negligible loss of

accuracy.

3.4. Fitting the Model to Image Data

Given an input video sequence, we can easily obtain the

trajectory parameters x′ as will be described in Section 4.2.

From these, we compute the mean prediction µ(x′) of our
GP model and use it to initialize the eigen-motion coeffi-

cients α′. We then refine α′ by maximizing an image likeli-

hood using a standard particle filtering technique [7]. To

this end, we sample the linear subspace around our ini-

tial solution according to the eigenvalues λi. Note that,

for this purpose, we could equivalently have used the vari-

ance σ2(x′) of Eq. 6. Since the motion in the images is

of arbitrary length, we just warp the one we obtain with the

eigen-motion coefficients to fit the correct number of frames

through a simple spline interpolation of the Nj joint angles

defining a pose.

The image likelihood is computed as a binary AND be-

tween the silhouette obtained by background subtraction

in the input images and the reprojection of our cylinder-

based body model in the computed poses. Our method is

robust to very low-quality silhouettes, as shown in Figure 2.

Because, in our examples, most global motion parameters

g1, . . . , gNt
either can be computed from the feet trajec-

tories or remain constant, the linear subspace decomposi-

tion is only performed on the joint angles. Only two global

orientations need to be estimated from the images, which

we do by considering them as unknowns in the first and last

frames, and linearly interpolating them in between.

4. Experimental Results

To demonstrate the effectiveness of our approach, we ap-

plied it to two very different kinds of motion: Roller skating

and golfing. Furthermore, to show that our models gener-

alize over the training data, we used the skating model to

recover the motion of a skier.

In this section, we first describe our training data, next

we explain how we obtain trajectory curvatures from se-

quences of images and finally we present our tracking re-

sults.

4.1. Obtaining Training Data

To obtain the training sequences of 3D poses, we used

a commercial optical motion capture system that recovers

the positions of reflective markers placed on the joints of a

person using six infrared cameras [22].

In the case of skating, we captured a subject performing

turns with a varying radius. We then split the reconstructed

sequences into small motions representing half a turn each

and time-normalized these subsequences to build vectors of

lengthNjNt by concatenatingNt poses of Nj joint angles.

For each one of these vectors, we computed the trajectory

of the feet on the ground plane to which we fitted a second

order polynomial. This yielded a two-dimensional latent

representation x containing the curvature of the half-turns

and a parameter discriminating between the two halves of a

turn.

In the case of golf, the database contained several golf

swings, each of which was normalized to a standard length

Nt, thus yielding similar training example vectors of length

NjNt. We used the hands’ trajectory to compute our latent

dimensions x. Since the 3D hands’ trajectory cannot easily

be retrieved from single-view sequences, we considered the

trajectory in the image plane. Therefore, for each new se-

quence, we built the set of 2D hand trajectories correspon-

ding to all the motions in our database projected to the same

viewpoint as the sequence, which is straighforward given

the camera calibration. We then fitted piecewise polyno-

mials to the 2D trajectories, which yielded a 3-dimensional

latent representation x.

4.2. Retrieving Trajectory Parameters

For new sequences in which we want to infer the poses,

we first need to recover the trajectory parameters x′. To this

end, we track the feet or the hands of the subject in the video

using a standard image correlation measure.

In the case of skating, this is made more robust by intro-

ducing the knowledge of where the ground plane is. This

yields feet trajectories on a 2D rectified plane, which can

be automatically split into half-turns. We then obtain the

curvatures of the half-turns by fitting a polynomial to the
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(a) (b)

Figure 3. (a) Two consecutive skating motions that correspond to

the test sequence of Figure 5. The blue dots represent the tracked

feet locations on the ground plane and the black line is a second

order polynomial fitted to them. The underlying grid is composed

of 20cm×20cm squares. The first latent parameter is the curvature

of the polynomial, whose sign changes if the subject is turning

left or right. The second one is a binary variable indicating if the

subject is in the first or second half of the turn. (b) Hands’ motion,

corresponding to the second golfing sequence of Figure 8. The

blue dots depict the tracked hand locations, while the 3 lines show

the polynomials fitted to the different phases of the swing, whose

3 curvatures are the latent parameters.

trajectories in the same way as for the training data, as de-

picted in Figure 3(a).

For golf swings, tracking the hands can be made robust

by also tracking the golf club, as proposed in [5]. Since

the trajectory parameters for the training sequences are es-

timated in the image plane using the same camera as in the

test sequence, we can directly fit the piecewise polynomial

to the hand trajectories to obtainx′, as shown in Figure 3(b).

4.3. Motion Recovery

We present our tracking results obtained from real se-

quences in which we initialized the motion with the mean

prediction of the Gaussian Process model given the trajec-

tory parameters computed as mentioned above. We show

results obtained for skating, skiing and golfing.

To obtain a quantitative evaluation of our results, we

filmed some of the motion captured skating sequences. We

then removed one sequence from the training data to adopt

a leave-one-out validation scheme. We applied our algo-

rithm to this sequence, and measured the reconstruction er-

ror as the average of the absolute error over the Nj joint

angles that define a pose. This error is plotted frame-wise

in Figure 4(a), and has an average value of 5.3 degrees over

24 frames, with a standard deviation of 0.8 degrees. This

number of frames corresponds to the time during which the

subject was within the capture volume of the Vicon system.

In Figure 4(b) we plot the errors for different joint angles,

averaged throughout the sequence. We achieve better accu-

racy on the lower part of the body than on the upper part,

because it is much better constrained by the feet trajectory.

We show the retrieved pose, both reprojected in the input

(a)

(b)

Figure 4. (a) Average frame-wise error for the sequence of Fi-

gure 5, in degrees. (b) Mean errors for different joint angles, in

degrees, averaged throughout the sequence. The bars represent the

standard deviations of the errors.

image and seen from a different viewpoint, in Figure 5.

This ground-truth data also helped us in computing how

much accuracy is brought by the refinement step: Without

it, the above mean error would have been 6.4 degrees, with

a standard deviation of 1.1 degree. Moreover we also made

some experiments without using the observable variables to

initialize the PCA motion model, in order to compare our

approach to [21]. In such paper the PCA weights were all

initialized to zero, and doing this on our skating sequence

would lead to a mean error of 10.7 degrees with a standard

deviation of 1.8 degrees.

To demonstrate that our approach also works in non

studio-like environments, we filmed the outdoor sequence

of Figure 6 in which the skater is not the one we cap-

tured to train the GP. The viewpoint is also very different

to show that our approach, being fully 3D, is totally view-

independent. Note that the reprojections of our skeleton

model correspond well to the underlying images.

Finally, since the skiing motion is very similar to the

skating one, we applied our GP trained for skating on the

skiing sequence of Figure 7 in which a subject is slaloming

between gates. Of course modeling the ground plane on a

ski slope is not straightforward. We therefore selected a part

of the slalom track that could be roughly approximated by

a plane. We then used the GPS coordinates of the gates to

warp the 2D trajectory to an orthogonally rectified one, in

which we could compute the latent parameters. To this end

it would have been enough to have a 3D reference on the

ground plane. The results we have obtained are encourag-

ing, but can only be evaluated qualitatively. Nevertheless,
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Figure 5. Roller skating in a studio setup. First row: We reprojected the recovered body poses in the input images. Second row: Zoomed

version of the first row. Third row: To highlight the 3D nature of the results, we display the 3D skeleton seen from a different viewpoint.

they highlight our method’s ability to generalize over the

learned motion.

In the case of golf, we show the results obtained when

tracking two different subjects, whose motion was not cap-

tured to build our database, performing a swing. These re-

sults are depicted by Figure 8, both overlaid on the input

images and seen from a different viewpoint.

5. Conclusions

We have proposed a general technique that uses easily

retrievable image measurements as latent variables from

which we can recover 3D human body motion via a Gaus-

sian Process mapping. By contrast with state-of-the-art ap-

proaches that consider the latent variables as unknowns,

learning our mapping involves very few parameters and is

therefore much easier to do. It allows us to recover 3D

motion from monocular video sequences without having to

manually intialize either the poses or the latent variables.

We have demonstrated our approach on challenging ac-

tivities such as roller skating, skiing, and golfing. A po-

tential extension of this approach would be to look into

more complex activities for which some of the latent vari-

ables are indeed observable and others not. In such cases,

such as when the person’s individual style truly matters, we

will look at hybrid approaches where we will establish a

first mapping using the approach presented here and then

learn a second mapping modeling deviations from what the

first predicts. Because the first mapping will have captured

much of the complexity, it is hoped that the second will be

easy to learn, even in these difficult cases.
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