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Abstract

Stereo matching commonly requires rectified images that

are computed from calibrated cameras. Since all under-

lying parametric camera models are only approximations,

calibration and rectification will never be perfect. Addi-

tionally, it is very hard to keep the calibration perfectly sta-

ble in application scenarios with large temperature changes

and vibrations. We show that even small calibration er-

rors of a quarter of a pixel are severely amplified on cer-

tain structures. We discuss a robotics and a driver assis-

tance example where sub-pixel calibration errors cause se-

vere problems. We propose a filter solution based on signal

theory that removes critical structures and makes stereo al-

gorithms less sensitive to calibration errors. Our approach

does not aim to correct decalibration, but rather to avoid

amplifications and mismatches. Experiments on ten stereo

pairs with ground truth and simulated decalibrations as

well as images from robotics and driver assistance scenar-

ios demonstrate the success and limitations of our solution

that can be combined with any stereo method.

1. Introduction

Stereo matching commonly requires rectified images

that are computed from calibrated cameras. Parametric

camera models that are used for calibration are only ap-

proximations of physical cameras, especially the lens dis-

tortion model. Nevertheless, many methods permit cali-

bration down to sub-pixel accuracy [15, 17], e.g. 0.1 to

0.2 pixel. This is the mean accuracy. Calibration errors

can be higher at some parts of the image.

It is typically assumed that these small errors do not

cause problems for stereo matching, although it is under-

stood that 3D reconstructions will be slightly biased then.

Furthermore, it is assumed that camera calibration is valid

as long as the cameras are not physically changed, i.e. lens

or cameras re-mounted.

We show theoretically and practically that even cameras

that are calibrated to sub-pixel accuracy can cause large

matching errors, depending on the scene. We give the ex-

ample of a service robotics scene with round objects, e.g.

glasses, where calibration errors of just 0.25 pixel cause ar-

tificial disparity discontinuities of ±2 pixel.

Another application is stereo vision from a car for driver

assistance tasks. The cameras are mounted behind the wind-

screen, near the rearview mirror, and are affected by large

temperature changes and vibration, which causes calibra-

tion parameters to drift over time.

It may be argued that this problem could be avoided by

mechanical solutions. However, such solutions make the

whole system much larger and more expensive. Both is very

critical for the main stream use of such a system. Another

solution would be online self calibration. However, for our

application, self calibration must be performed fully auto-

matic, very robustly and must not lead to temporary un-

availability of the system. Dang et al. [4] determined for

self calibration an average deviation from the epipolar ge-

ometry to be less than 0.2 pixel. However, at outer image

parts, deviations of up to 0.6 pixel were measured.

Since calibration errors always exist and cause problems,

we are aiming to make binocular stereo matching less sus-

ceptible to decalibrations. Our solution is based on signal

theory and effectively filters critical structures. It is worth

noting that we do not aim to correct decalibration itself.

Wrong calibration will still affect reconstruction. We just

aim to avoid the amplifying effect that decalibration has on

stereo matching.

2. Related Work

We do not know any paper that explicitely considers cal-

ibration errors for stereo matching. Typically, cameras are

either pre-calibrated using well known methods [17, 15]

or self calibrated during operation [4]. Planar rectification

transforms the images such that epipolar lines become par-

allel and coincide with image rows.

There are many stereo images with ground truth [7, 10,

11]. Evaluations on these image sets include comparing

different stereo methods [10, 12], different ways of color

matching [3] and matching costs on images with radiomet-
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ric differences [7, 8]. This paper uses ten of these images

with ground truth and performs an evaluation that concen-

trates on the aspect of decalibration.

3. Calibration Error Insensitive Matching

We consider images from a nearly calibrated stereo cam-

era after planar rectification. The epipolar lines are assumed

to coincide with image rows.

3.1. Problem Description

Decalibration means that the camera model does not ac-

curately describe the projection of the real camera. In fact,

all (parametric) models can only be approximations of the

reality, even with optimally chosen parameters. Thus, a cal-

ibration error is always present. We consider the ordinary

pinhole camera model with intrinsic parameters like focal

length, aspect, skew, principal point and two parameters for

radial lens distortion. The extrinsic model describes the 3D

transformation between the cameras.

Due to our experience, intrinsic camera calibration is sta-

ble under most conditions, provided lenses are internally

fixed (e.g. no zoom lenses, no mechanical movement) and

they are properly mounted. Extrinsic parameters change

more easily due to temperature and vibration. Among ex-

trinsic parameters, rotations are the most critical. Transla-

tion is much more stable and can to some extent also be

explained by rotations.

Regardless of the kind of decalibration, it leads after rec-

tification to epipolar lines that are not any more aligned to

image rows. Fig. 1(a) shows the effect of vertically shifted

epipolar lines. Even small decalibrations can lead to high

disparity errors or even to completely wrong matches on

critical structures. Consider the slanted line in the lower

part of the figure: The disparity error ed can be computed

from the epipolar error ee by ed = ee · tan(90◦− δ) with δ

being the angle between horizontal (epipolar) line and the

considered line.

Thus, most problematic are nearly horizontal structures,

which amplify decalibration errors dramatically. In con-

trast, vertical structures are matched correctly and the cal-

ibration error only propagates into small reconstruction er-

rors. In man made environments, most structures are either

horizontal or vertical. Thus, using the stereo camera in a

way that epipolar lines are diagonal would reduce the prob-

lem. Unfortunately, also lines on the ground that go to in-

finity (e.g. lane markings for driver assistance) appear diag-

onal in the images. Therefore, this is not an option for our

applications. Alternatively, using a third camera in an L-

shape configuration and seeking consistency of both match-

ing directions would solve the problem, but makes the sys-

tem more expensive and puts a higher burden on processing.

Strong decalibration artifacts are mostly seen in dense

Decalibrated
right image

correct

match that
cannot
be found

Left image

found (wrong) match

(a) Amplification at vertically

shifted epipolar lines

(b) 2D frequency spectrum with

unreliable frequencies marked

Figure 1. Description of Problem.

stereo algorithms as sparse stereo implementations usually

apply an interest operator to determine stereo only at points

with sufficient vertical structure [5]. Dense local stereo

methods obtain wrong disparities at horizontal structures.

Global stereo methods often even propagate the wrong dis-

parity of horizontal structures into untextured regions. This

can lead to phantom objects in the context of an application

(see Fig. 10r).

In terms of signal theory, we consider a 2D spectrum of

frequencies. The point (0,0) of the frequency spectrum cor-

responds to a constant offset (i.e. brightness) change. This

is commonly avoided for compensating some radiometric

differences. Avoiding ( fx, fy) with f 2
x + f 2

y < f 2
v , i.e. low

frequencies as shown in Fig. 1(b), regardless of direction,

removes a dependency on the vignetting effect. Finally,

avoiding horizontal frequencies beyond fh reduces match-

ing problems caused by small decalibrations. In contrast,

medium frequencies between fv and fh may be valuable for

stereo matching.

3.2. Solution Strategy

According to this analysis, one solution is to use a Sobel

filter for computing the gradient in x direction (i.e. vertical

structure) only. Thus, we perform a convolution with the

kernel,

Sx =
1

4





−1 0 1

−2 0 2

−1 0 1



 . (1)

This eliminates a constant offset due to differentiation as

well as all horizontal structures, i.e. vertical frequencies.

We will call it XSobel. The effect of the Sobel filter on the

spectrum of the image is a high pass filter that suppresses

the low frequencies around the fy axis. Hence all negative

effects described above are (almost) erased at the small ex-

pense of some information loss around the fy axis between

fv and fh.

Our second solution is a modification of background

subtraction [1] using a bilateral filter [14], which has been
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shown to perform very well for matching images with ra-

diometric differences [8]. A bilateral filter removes all high

frequencies, without blurring intensity edges above a cer-

tain radiometric threshold. It uses a spatial distance σs and

a radiometric distance σr as parameters. Subtracting the

original image by the bilaterally filtered image inverses the

outcome and removes all low frequencies (i.e. offset change

and vignetting) and is referred to as background subtraction

[1]. Our modification consists in applying the bilateral filter

only horizontally as,

I f (x,y) = I(x,y)−
∑x′∈Nx

I(x,y)eser

∑x′∈Nx
eser

, (2)

s = −
(x′− x)2

2σ2
s

,r = −
(I(x′,y)− I(x,y))2

2σ2
r

.

This effectively removes all horizontal structures as well.

We will call it HBilSub. Interesting about this filter is, that

it is actually much faster to compute than the original bi-

lateral background subtraction. The outcome of both filters

are shown in Fig. 2. The effect on the spectrum of the im-

age is similar to that of the Sobel filter. Filtered images can

be matched simply with the absolute difference.

Figure 2. Original image, XSobel and HBilSub filtered with in-

creased contrast for visualization.

4. Results

We use a standard correlation stereo method as well as

semi-global matching (SGM) [6] for evaluating the pro-

posed methods. The correlation method uses a 9× 9 win-

dow, selects the disparity by winner takes all and applies

a left/right consistency check. SGM performs pixel-wise

matching and approximates the minimization of a global

energy by combining pathwise optimizations from all di-

rections through the image. No post filtering is used for

both methods. The gaps of consistency checking are closed

using pathwise interpolation [6] for both methods.

The XSobel and HBilSub filters, are tested in conjunc-

tion with the sum of absolute differences (SAD) for corre-

lation and the pixel-wise, sampling insensitive absolute dif-

ference (BT) [2] for SGM. We compare their performance

to SAD and BT without filtering. Furthermore, we imple-

mented the BilSub [1], Census [16], using a 9 × 7 win-

dow, and Hierarchical Mutual Information [6] as these costs

showed the best performance on images with radiometric

differences [8], which plays also a role in our applications.

4.1. Synthetic Decalibration

The smoothness parameters of SGM were optimized

for each matching cost individually using the unchanged

Tsukuba, Venus, Teddy and Cones images (Fig. 3) [10, 11].

After this optimization, the parameters were fixed. We con-

verted all color images into intensity images for matching.

The error is measured as the mean percentage of erroneous

pixels in unoccluded areas over all images. A pixel is erro-

neous, if its disparity deviates by more than one pixel from

the ground truth.

The first experiment considers a vertical translation of

up to ±1 pixel of the right images. Resampling is done

by bilinear interpolation as used in efficient rectification

schemes. As shown in Fig. 4, the error increases very

quickly with matching costs that are not prepared for de-

calibration, like SAD/BT, BilSub, HMI and Census. The

order of curves is the same as in the study about matching

costs for images on radiometric differences [8]. The HBil-

Sub cost performs better than BilSub, as expected. How-

ever, XSobel in combination with SAD/BT performs much

better for high decalibrations. Surprisingly, the HBilSub

result is outperformed by Census at all levels of decalibra-

tion and regardless of the stereo method. Also, Census re-

sults in lower errors than XSobel, if decalibration is below

±0.5 pixels. This is due to the fact that the Census im-

plementation uses a much larger window. Large windows

increase the stability in general. We found that this is also

true for tackling calibration errors. However, larger win-

dows cause blurred depth discontinuities when used with

parametric matching costs. This results in higher errors. In

contrast, Census as non-parametric cost greatly reduces the

blurring problem and benefits from its large window in the

presence of calibration errors.

The good performance of XSobel and Census inspired

us to combine both. As expected, this yields better re-

sults than XSobel with SAD/BT matching, although Cen-

sus alone performs still a little bit better for small decali-

brations. This is an indication that the vertical frequencies

between fv and fh that the XSobel filter removes are actu-

ally useful for the Census matching method.

The same experiment has been performed with the im-

ages Art, Books, Dolls, Laundry, Moebius and Reindeer

(Fig. 5) [7]. The smoothness parameters of SGM have not

been adapted to the new image sets. Since the focal lengths

of these images are known, we rotated the right cameras

around all three angles. Fig. 6(a) and 6(b) show rotations

around the x-axis of the camera coordinate system. This has

the same effect as the vertical translation of the last exper-

iment. A rotation of ±0.046◦ results in ±1 pixel transla-

tions. Although the errors are generally higher on the more

demanding images, all curves have the same shape as in the

first experiment. An interesting observation of Fig. 6(a) and

6(b) is that the lowest error of all costs is not exactly at zero
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Figure 3. The left images of the Tsukuba, Venus, Teddy, and Cones stereo pairs.
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Figure 4. Mean errors over the Tsukuba, Venus, Teddy, Cones stereo image set. The right images are vertically shifted.

Figure 5. The Art, Books, Dolls, Laundry, Moebius, and Reindeer stereo pairs.
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(a) Correlation, pitch rotation
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(b) SGM, pitch rotation

Figure 6. Mean errors of the Art, Books, Dolls, Laundry, Moebius, Reindeer stereo image set. The right images are rotated as described.

rotation. This indicates that even these carefully calibrated

images are not free of calibration errors.

We performed the same experiments with rotating

around the y and z-axis, but do not show the figures due

to space limitations. A small rotation around the y-axis

keeps the epipolar lines within the image rows. The de-

calibration error is directly added to the disparities without

affecting matching itself. Therefore, all costs degrade in

the same way. Census has always the lowest and XSobel-

Census always the second lowest error. This rotation is in
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practice less critical as it leads only to small reconstruction

errors. Rotations around the z-axis affect the outer areas

of the image more than the inner areas. In our experiments,

the rotation must be about 10 times higher to cause the same

amount of error than in the case of the x rotation.

All experiments were repeated using Graph Cuts [13].

The shapes of the curves as well as their relative order are

very similar to that of the other stereo methods. Figures are

not shown due to space limitations.

In Fig. 7 we show the increment of errors for all images

individually using the SGM stereo method. The increment

is computed as the error at a rotation of 0.025◦ (i.e. about

half a pixel) around x, divided by the error without any rota-

tion. Although the error increase depends on the individual

image, the increase of the best costs, e.g. XSobelCensus, is

almost consistently the lowest, which shows that our results

are almost independent of the scene content.

 1

 1.5

 2

 2.5

 3

 3.5

 4

ReindeerMoebiusLaundryDollsBooksArt

In
c
re

a
s
e

 o
f 

e
rr

o
r

Data sets

BT
HMI

Census
SobelBT

XSobelBT
XSobelCensus

BilSubBT
HBilSubBT

Figure 7. Increase of error of individual stereo images using the

SGM stereo method, computed as error at pitch rotation of 0.025◦

(i.e. about half a pixel), divided by the error without any rotation.

4.2. Stereo Vision for Service Robotics

We studied the effects of our findings for a service

robotics scenario in which a humanoid robot is required to

detect and classify glasses and bottles using stereo vision

[9]. The robot and a typical scenario is shown in Fig. 8.

This is a very difficult problem for stereo vision due to the

lack of texture and presence of transparency and reflections.

Therefore, for glasses, only the upper circular boundary is

used for detection and classification.

We tried SGM as well as correlation. SGM produces less

blurred object boundaries, but this is not important for the

detection and classification of the circular boundary. There-

fore, we use the much faster correlation method in this ap-

plication. Some filters are used additionally to the left/right

consistency check for removing outliers on the desk, etc.

Furthermore, no interpolation was used. The left part of

Fig. 9 shows the disparity images of Fig. 8(b) using dif-

(a) Service robot (b) Left image of scenario

Figure 8. A service robot and a typical scene.

ferent matching costs. White means invalid disparities, i.e.

filtered out. The magnified upper part of the left glass is

always shown on the right of the full disparity images. Cen-

sus and XSobelCensus appear to have the best performance,

i.e. they cause the smallest gaps on the glass. Both, BilSub

and HBilSub perform surprisingly poor.

The right part of Fig. 9 shows results of the same meth-

ods, but with the right stereo images vertically shifted by

about 0.25 pixel. In terms of gaps, Census and XSobel-

Census still work best, but all results contain severe ampli-

fications of the decalibration errors. The magnified parts

of the disparity images are scaled from their contrast such

that the range of white to black corresponds to a disparity

range of ±2 pixel around the true disparity. Thus, decali-

bration of just a quarter of a pixel causes a disparity error

of about ±2 pixels. Even worse, decalibration causes arti-

ficial depth discontinuities that let the circular boundary of

the glass appear like a double helix. This kind of error has

a very negative influence on the detection and classification

of glasses. Using SGM instead of correlation leads to the

same phenomenon.

The reason for the failures of our proposed filters is actu-

ally simple. Our filters try to suppress horizontal structures

in the hope that there is some vertical structure that does

not lead to amplifications. However, this extreme applica-

tion does not have any vertical structure at the upper parts

of the glass.

We conclude that the only solution to use binocular

stereo in this application is to establish and maintain a very

precise calibration, e.g. less than 0.1 pixel calibration error.

Another solution would involve using a third camera in an

L-shape configuration for trinocular stereo matching.

4.3. Stereo Vision for Driver Assistance

Another application of our proposed filter solution is in

a driver assistance scenario. The stereo camera system is

mounted behind the wind screen, next to the rear mirror and

must robustly operate under very different temperatures and

in the presence of vibrations. We found it virtually impos-

sible to keep the calibration stable under these conditions.
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(a) Census, ty = 0 (b) Census, ty = 0.25

(c) SobelSAD, ty = 0 (d) SobelSAD, ty = 0.25

(e) XSobelSAD, ty = 0 (f) XSobelSAD, ty = 0.25

(g) XSobelCensus, ty = 0 (h) XSobelCensus, ty = 0.25

(i) BilSubSAD, ty = 0 (j) BilSubSAD, ty = 0.25

(k) HBilSubSAD, ty = 0 (l) HBilSubSAD, ty = 0.25

Figure 9. Results of the service robot scenario with good calibration (first column) and vertical decalibration by 1
4 th pixel (third column).

The second and fourth column show the magnified upper part of the left glass with increased contrast, i.e. ±2 pixel around the true disparity.

We use the SGM method for processing. The cameras

capture intensity images in 12 bits per pixel. The high ra-

diometric depth is used to find enough matches on the oth-

erwise rather textureless street, which is an important issue

in this application. Due to the bigger radiometric range, we

had to adapt the smoothness parameters.

The top of Fig. 10 shows three typical scenes. The cam-

era is slightly decalibrated. It is important to note that this
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(a) Left image, scene 1 (b) Left image, scene 2 (c) Left image, scene 3

(d) Census (e) Census (f) Census

(g) SobelBT (h) SobelBT (i) SobelBT

(j) XSobelBT (k) XSobelBT (l) XSobelBT

(m) XSobelCensus (n) XSobelCensus (o) XSobelCensus

(p) BilSubBT (q) BilSubBT (r) BilSubBT

(s) HBilSubBT (t) HBilSubBT (u) HBilSubBT

Figure 10. Three different scenes with slight calibration errors. White means invalid. SGM was used as stereo method.
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decalibration is not artificially imposed. The calibration

was performed 2 months before the scene was taken and

a slight rotational decalibration occurred. Furthermore, due

to missing calibration points in the upper third of the im-

age, the intrinsic parameters were slightly wrong estimated

which increased the deviation from epipolar geometry to

about 0.5 pixel in the upper image part. Fig. 10 shows

disparity images of SGM using the left/right consistency

check, but without any other post-processing or interpola-

tion. White means invalidated by the consistency check.

Since the images contain some radiometric differences as

well, we only show results of matching costs that can han-

dle radiometric differences, i.e. no BT.

It can be clearly seen that SobelBT and BilSubBT have

severe problems on the nearly horizontal structure, due to

inherent decalibration errors. As shown in previous sec-

tions, Census works pretty well. XSobelBT, XSobelCen-

sus as well as HBilSubBT all deliver good results and it is

not easy to decide from these examples, which one is best.

However, XSobelCensus appears to have the lowest number

of invalid pixels that are shown in white.

5. Conclusions

We have explained that calibration can never be perfect,

because the parametric camera model is only an approxi-

mation of a physical camera. Additionally, there are ap-

plications, where calibration cannot be kept stable due to

large temperature drifts or vibrations. Calibration errors

may only be a fraction of one pixel, but we have shown that

errors are extremely amplified on nearly horizontal struc-

tures. Thus, considering calibration errors is very important

for certain applications.

We have proposed to filter out critical image frequencies

using either the Sobel filter in x direction only (XSobel) or

a horizontal bilateral background subtraction filter (HBil-

Sub). Both filters remove horizontal structures. This is

not intended to reduce decalibration errors, but for avoiding

the amplifying and destructive effect that it has on match-

ing. The proposed solutions were used with correlation and

SGM and compared to common matching costs on images

with simulated and real decalibrations.

We found that although HBilSub shows an advantage

over BilSub, it is completely outperformed by Census,

which has not been designed for compensating decalibra-

tions. In contrast, the XSobel filter resulted in much less

errors at decalibrations of more than 0.5 pixels. According

to our results, we suggest matching XSobel filtered images

with Census as this appeared to be most advantageous.

The limitations of our approach have become visible in

one application. Filtering out horizontal structures will only

be beneficial, if there is some vertical structure that can be

used for matching. Nevertheless, our results in a driver as-

sistance scenario are very encouraging.
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