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Abstract

Class learning, both supervised and unsupervised, re-
quires feature selection, which includes two main compo-
nents. The first is the selection of a discriminative subset of
features from a larger pool. The second is the selection of
detection parameters for each feature to optimize classifi-
cation performance. In this paper we present a method for
the discovery of multiple classification features, their de-
tection parameters and their consistent configurations, in
the fully unsupervised setting. This is achieved by a global
optimization of joint consistency between the features as
a function of the detection parameters, without assuming
any prior parametric model. We demonstrate how the pro-
posed framework can be applied for learning different types
of feature parameters, such as detection thresholds and ge-
ometric relations, resulting in the unsupervised discovery
of informative configurations of objects parts. We test our
approach on a wide range of classes and show good re-
sults. We also demonstrate how the approach can be used
to unsupervisedly separate and learn visually similar sub-
classes of a single category, such as facial views or hand
poses. We use the approach to compare various criteria for
feature consistency, including Mutual Information, Suspi-
cious Coincidence, L2 and Jaccard index. Finally, we com-
pare our approach to a parametric consistency optimization
technique such as pLSA and show significantly better per-
formance.

1. Introduction

In this paper we consider the problem of unsupervised
selection of multiple classification features together with
the optimization of their detection parameters and discovery
of consistent feature configurations. The input is a mixed set
of unlabeled images S, only a small subset of which (20%
or lower) contains instances of an unknown class category
(which may be uncropped, unaligned and of small size rel-
ative to the background), and a large pool of candidate fea-
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Figure 1. An example of the application of our method to cougar
class from Caltech-101.

tures F (is of size 1000-3000 in our experiments), which
is measured on each image. The feature pool may also be
generated directly from all the images in the unsupervised
training set (e.g. by applying the method of [9]). As in
many classification schemes, each feature Fi ∈ F is asso-
ciated with some parameters θi that need to be set. When θi
are fixed, the feature Fi (I; θi) is a function mapping image
I to some discrete (usually binary) value. For example, the
parameter θi may be the similarity threshold and the feature
Fi be a binary function with Fi = 1 iff the maximal sim-
ilarity between all descriptors extracted from image I and
a descriptor associated with Fi exceeds θi. Another exam-
ple is that the feature is a pair (Fi, Fj) (where Fi and Fj are
”maximal similarity + threshold” features from the previous
example) and θi is an expected spatial offset between the de-
tected locations of the two members of the pair. The com-
bined feature is detected only if the observed offset is close
to θi. Finally, θi may be the linear coefficients for combin-
ing similarity measures of several different types of descrip-
tors for a given image patch associated with Fi. Such de-
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scriptor combinations were successfully used in [21]. The
main goal of the algorithm is to identify a subset of the can-
didate features that are most discriminative for detecting the
category instances together with optimizing parameters of
each feature to find their most discriminative values. This
is challenging since the image class labels are unknown and
cannot be used to identify useful features. Another goal is
to use the discovered subset of optimized features to detect
and localize a reliable subset of class instances present in
the unsupervised training set. The detected class examples
can then be used for the subsequent category learning (e.g.
as done in [14, 10]). Figure 1 illustrates the input, the vari-
ous outputs and the intermediate stages of our method.

The problem of unsupervised learning of an unknown
category has recently attracted substantial attention [2, 4, 5,
6, 7, 8, 10, 20, 15, 12, 13, 14, 19, 17, 18, 23]. The unsu-
pervised approaches may be further subdivided into weakly
supervised - ones that assume that all training images con-
tain uncropped and unaligned instances of the learned ob-
ject category [6, 15, 18, 23], and fully unsupervised - ones
for which the category instances may appear only in a small
portion of the training images [8, 20, 7, 5, 19, 4, 17, 12, 2,
13, 14, 10]. The approach proposed in this paper belongs
to the latter, fully unsupervised, category. The general idea
in all of these approaches is to compensate for the lack of
supervision by searching for consistency between the mea-
sured features, assuming that this consistency arises primar-
ily from the presence of a class instance in the image. The
approaches may be further categorized in terms of how they
search for this inter-feature consistency. Some approaches
assume a prior parametric model for the features and their
detection parameters, and the consistency is detected via un-
supervised training of the parameters of this model. The
models used by these approaches include the constellation
model [6] used by [6, 7], pLSA used by [20, 5, 19, 12, 14],
Spatial-LTM [4], ISM [11] used by [8], Semantic-Shift [13],
TSI-pLSA [5] and UCA [10]. Other approaches are non-
parametric in a sense that no prior model is assumed for the
inter-feature consistency and the consistency is detected by
some form of a bottom-up agglomerative process. This pro-
cess builds upon local, usually pairwise (for a given level of
agglomeration), consistency relations between the features.
Examples of the latter approaches are efficient mining used
by [17, 18], joining frequent feature triplets with high sus-
picious coincidence measure by [23] and combining similar
image segments by [2]. Our approach belongs to the latter
non-parametric type. However, it does not perform an it-
erative agglomeration based on the local consistency of the
features. Instead, a global optimization is performed, op-
timizing the consistency between all the potential features
as a function of the feature parameters. The output of the
global optimization is a consistent setting of feature param-
eters, maximizing the sum of pairwise consistency values
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Figure 2. Examples of part configurations learned by UFO for var-
ious object classes. Each configuration displays a set of patch
features automatically selected and arranged by the algorithm for
each category.

between the relevant features. Clustering the resulting con-
sistency graph between the features gives rise to consistent
feature clusters, which are discriminative for the unknown
learned category (or several categories in case of a multi-
class), as demonstrated in our experiments.

An important consideration is that if we want to compute
consistency of feature F1 with two different features F2 and
F3, then the parameter (e.g. threshold) of F1 that attains
maximal consistency with F2 may be different from the one
needed for maximal consistency with F3. Consequently, in
order to have maximal joint consistency of many features,
the parameter optimization needs to be global. An agglom-
erative process that optimizes consistency only locally by
merging a few (usually 2 or 3) features at a time, may arrive
at lower consistency at the higher levels of agglomeration
or become inconsistent in the setting of parameters.

As in previous approaches, the proposed framework
can be used with different types of consistency measures.
Therefore, in our experiments we used the proposed method
to compare different consistency measures, such as Suspi-
cious Coincidence (SC), Mutual Information (MI), Jaccard
Index (JI) and L2 distance. Surprisingly, the standard SC
consistency measure attained lower results in our compari-
son, significantly inferior to MI and JI measures. In addi-
tion, we compare our approach to pLSA - probably the most
widely used parametric learning method based on consis-
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tency, and show significantly better performance.
Unsupervised learning can be particularly useful in the

weakly supervised setting, when all the images contain in-
stances of a given class, but it is beneficial to divide the
class into a set of visual sub-classes (such as different ob-
ject views or different poses), to obtain better recognition
of each sub-class individually, instead of recognizing a mix-
ture of sub-classes by a single model. In the experiments be-
low, we demonstrate how the proposed method can be used
to obtain unsupervised separation between visually similar
sub-classes, such as separating face views and separating
hand poses.

Finally, we exploit the fact that the proposed framework
may be used with any types of features and their parameters,
and demonstrate how our approach can be used in a pipeline
that starts from a generic set of quantized image patch de-
scriptors and a set of unlabeled images, and finally arrives
at discovering spatial configurations of object parts, which
are both discriminative and visually plausible (see Figure
2). Within this pipeline, the method is applied twice: first
for learning detection thresholds, and second for learning
spatial offset parameters of feature pairs, finally leading to
the discovery of full 2D consistent feature configurations.

The rest of the paper is organized as follows, section 2
describes the proposed approach, section 3 summarizes the
experimental results, and section 4 provides summary and
discussion.

2. Method

In this section we describe the Unsupervised Feature Op-
timization (UFO) algorithm (section 2.1), discuss and an-
alyze the pair-wise consistency measures that can be effi-
ciently used within the algorithm (section 2.2), and show
how the UFO algorithm can be applied to select appearance
and geometric features, including their respective detection
parameters, in order to discover objects and consistent geo-
metric configurations of their parts (section 2.3).

The UFO algorithm receives as input a set of unlabeled
images and a feature pool from which it performs the selec-
tion. However, in practical applications, such as described
in section 2.3, it is possible to work with either an external
feature pool provided by the user, or with a feature pool in-
ternally generated by the system from all the unsupervised
training images (e.g. by applying the method by [9]). A
schematic diagram describing the proposed method is given
in figure 3 and explained further in section 2.3.

2.1. UFO algorithm

Input: A set of images S = {In}
N
n=1 and a (large) pool of

features together with their respective detection parameters
F0 = {〈Fi, θi〉}

M
i=1, such that each feature is a function:

〈Fi, θi〉 : S → V, here V is a discrete set of possible

feature values (we use binary values in our experiments),
and each θi takes a value from a discrete set of possible
values that may be specific to each feature θi ∈ Wi. For
simplicity, we will use the notation Fi (θi) to indicate a row
vector of N values from V , the n-s entry of which will be
〈Fi, θi〉 measured on image In. We will also refer to the
feature itself as Fi.
Output: K disjoint subsets of features ∪

1≤k≤K
F̂k = F0,

and the respective optimal parameter settings for each fea-

ture:
{
θ̂i

}M

i=1
. The goal is that one or several of these sub-

sets will be associated with the classes present in the images
of set S.
The flow of the algorithm:
1. Compute maximal consistency for each pair of features
Fi and Fj : Cij = max

θi,θj
Cons [Fi (θi) ;Fj (θj)], where the

consistency measure, Cons, is a function measuring pair-
wise consistency between two vectors from V N : Cons :
V N × V N → R. The consistency measures that we have
compared within our algorithm, as well as methods to effi-
ciently compute Cons [Fi (θi) ;Fj (θj)] for all i and j and
all values of θi and θj , are described in section 2.2.

2. Transform the resultingM ×M matrix C = {Cij}
M
i,j=1

into a graph adjacency matrix A. This is obtained by setting
all except the largest L entries of C to zero and the largest L
entries to one (C andA are symmetric, we refer to L entries
above the diagonal and keep their L respective reflections
as well). The resulting graph has M nodes, one node for
each feature, and L edges. Throughout all our experiments
we used L = 10, 000. In principle a large value for L is
preferred, the only reason to limit its value is to lower the
running time of the graphical model based optimization that
will be described next. For each edge described by non-
zero entry Aij we compute a potential function: wij :Wi×
Wj → R such that: wij (θi, θj) = Cons [Fi (θi) ;Fj (θj)] .
The potentials are then used to define an energy function E
being the sum of the pairwise consistency measures:

E (θ1, . . . , θM ) =
∑

i,j:Aij=1

wij (θi, θj) (1)

Energy functionE is a sparse approximation of the full pair-
wise consistency measure between all the features.
3. Apply a Loopy-Belief-Propagation (LBP) algorithm to
compute (approximate) the maximal assignment to E:

{
θ̂i

}M

i=1
≈
LBP
argmaxE (θ1, . . . , θM ) (2)

4. Finally, compute: Ĉij = Cons
[
Fi

(
θ̂i

)
;Fj

(
θ̂j

)]
and

cluster the resultingM ×M affinity matrix

Ĉ =
{
Ĉij

}M

i,j=1
into K clusters (we use K = 7 in all our

experiments). In our implementation of the UFO algorithm,
we use spectral clustering [22] for the last step.
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Figure 3. A schematic diagram showing the flow of the method.
Details are explained in section 2.3. The UFO algorithm, ex-
plained in section 2.1, is applied twice, first for the non-geometric
”maximum-similarity” features, and second for the geometric
”spatial-pair” features constructed using the results of the first
UFO application. The dashed boxes describe input, output and in-
termediate results. The solid boxes describe assisting algorithms
explained in the section 2.3. Entry and optional exit points of the
flow are indicated by green and red arrows respectively.

Intuition - Class and feature consistency: As will be
demonstrated in the results section 3, the feature clusters
obtained by the method are closely associated with the un-
known classes. The intuition behind the UFO algorithm is
that the main source of consistency between the features
is their association with specific classes. For features with
high enough consistency with the same class (or sub-class),
there will also be high consistency between the features
themselves. This is intuitive, but also follows from the
lower bounds on feature-to-feature consistency derived an-
alytically for all the consistency measures in the next sec-
tion 2.2. The bounds become tighter as the consistency
between the features and the class (for the optimal set-
ting of detection parameters) increases. Therefore, keeping
graph edges with high consistency Cij has a high likelihood
to form edges between features consistent with the same

class. Moreover, choosing detection parameters
{
θ̂i

}M

i=1
that maximize consistency between the features, will also
contribute to increasing the feature-to-class consistency.

The following section describes several natural con-
sistency measures that can be efficiently used within the
proposed UFO algorithm, and provides lower bounds for
feature-to-feature consistency in terms of the respective
feature-to-class consistency for each of the measures.

2.2. Consistency measures and efficient implemen-
tation

In our experiments with the UFO algorithm we tested
and compared four consistency measures (denoted Cons
in the description of the algorithm), namely: Jaccard In-

dex (JI), Mutual Information (MI), Suspicious Coincidence
(SC) and Euclidian Distance (L2). As explained in sec-
tion 2.3, in our experiments we focused on binary fea-
tures and their parameters. In order to implement the
UFO algorithm efficiently, we need to efficiently estimate
Cons [Fi (θi) ;Fj (θj)] for all i and j and all values of θi
and θj . Fortunately, in the binary feature case, the sufficient
statistics for computing Cons [Fi (θi) ;Fj (θj)] for all the
listed measures are only five numbers: the number of im-
ages for which both Fi (θi) and Fj (θj) are equal to one (the
inner product Fi (θi) ∙ Fj (θj)), the number of images for
which they are both zero F̄i (θi)∙F̄j (θj), the F̄i (θi)∙Fj (θj)
(needed for MI), and the numbers of ones in Fi (θi) and
Fj (θj) respectively (|Fi (θi)|1 and |Fj (θj)|1). W.l.o.g., as-
sume that the sets of possible values for the detection pa-
rameters: Wi are of the same cardinality |Wi| = T for all
i. Then the complexity of the full computation of all the re-
quired sufficient statistics is 2 ∙T 2, and in case of MI 3 ∙T 2,
times the complexity of binary matrix multiplication.

In the following text we describe all the tested consis-
tency measures and for each of them provide a lower bound
on feature-to-feature consistency Cons [Fi (θi) ;Fj (θj)]
(we will write Cons [Fi;Fj ] for brevity) in terms of re-
spective feature-to-class consistencies: Cons [Fi;C] and
Cons [Fj ;C]. The bounds are monotonically increasing in
both Cons [Fi;C] and Cons [Fj ;C], and become tighter
as the feature-to-class consistencies approach their max-
imum. A notable observation regarding these bounds is
that they hold for any class labeling C. Therefore, even
though two features might have low consistency with the
entire class (e.g. faces), they might be very consistent with
the same sub-class (e.g. profile faces) and thus have high
lower bound on their feature-to-feature consistency (using
this sub-class labeling as C). Supporting this claim, we
have successfully applied our method for unsupervised sep-
aration of visually similar sub-classes of a larger class, such
as separating face views and separating hand poses (see sec-
tion 3 for more details).
Jaccard Index (JI): The JI measures the amount of con-
sistency between two sets by computing the ratio between
their intersection and their union. The JI between two bi-
nary vectors X and Y is defined as:

JI (X,Y ) =
X ∙ Y

X + Y −X ∙ Y
(3)

where X ∙ Y is the dot product. This is exactly the classi-
cal JI for sets of indices of ones in the two vectors. In our
experiments we use the following symmetric variant of JI:

ĴI (X,Y ) = 0.5 ∙
[
JI (X,Y ) + JI

(
X̄, Ȳ

)]
(4)

where X̄ = 1−X . This variant is used in order to prevent
an artificial tendency for larger consistency due to greater
number of ones in the binary vectors.
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Claim 2.1

JI [Fi;Fj ] ≥
JI [Fi;C] + JI [Fj ;C]− 1

1/JI [Fi;C] + 1/JI [Fj ;C]− 1
(5)

similar result holds for ĴI [Fi;Fj ].

The proofs of this and following claims are given in the
supplementary material. This shows that ĴI [Fi;Fj ] is in-
creasing in both the JIs: JI [Fi;C] and JI [Fj ;C], and the
bound (5) becomes tight when the JIs attain their maximal
values of 1.
Mutual Information (MI): The MI measures the decrease
in the entropy of one random variable conditioned on an-
other random variable. For two binary vectors X and Y :

MI [X;Y ] = H (X) +H (Y )−H (X,Y ) (6)

where H is the Shannon’s entropy of a random variable.

Claim 2.2 Assuming that Fi and Fj are conditionally inde-
pendent given class C, then:

MI [Fi;Fj ] ≥MI [Fi;C] +MI [Fj ;C]−H (C) (7)

Because the maximal value that MI [Fi;Fj ] can attain is:
min [H(Fi),H(Fj)], maximizing MI [Fi;Fj ] will tend to
prefer Fi and Fj that are correlated and non-sparse in terms
of both zeros and ones (with higher entropy). Unlike MI,
JI can have high values for correlated features that appear
very infrequently (these features will have low MI scores,
because of their low entropy).
Suspicious Coincidence (SC): The SC measures the ratio
between the probability of two events happening simulta-
neously and an estimate of this probability assuming the
two events are independent. For binary vectors X and Y
of length N :

SC [X;Y ] =
N ∙ (X ∙ Y )
|X|1 ∙ |Y |1

(8)

Claim 2.3 Assume the events Fi = 1 and Fj = 1 are con-
ditionally independent given the event C = 1, then:

SC [Fi;Fj ] ≥ SC [Fi;C] ∙ SC [Fj ;C] ∙ |C|1/N (9)

The SC is a commonly used consistency measure, e.g. in
[23] it was used for weakly supervised learning of object
contours. A drawback of the SC is that taken by itself it
may prefer very infrequent events. The reason is that if X
has few ones in it, then SC [X;X] = 1/|X|1 is very large.
Therefore, SC is usually used in conjunction with a thresh-
old on minimal frequency of the events (i.e. demanding
that |X|1 is large enough). However, this is problematic
in our fully unsupervised setup, since the class instances
themselves are infrequent (there may be 20% or less class
instances in a set). This inherent drawback of the SC is sup-
ported by our experiments (section 3), where SC performs

significantly worse then MI or JI.
Euclidian Distance (L2): The bounds for L2 are provided
by the triangular inequality. A drawback of L2 is that it
is dominated by the larger of X ∙ Y and X̄ ∙ Ȳ (X and Y
defined as above), and hence may disregard the lack of con-
sistency between either zeros or ones in the vectors X and
Y , depending which (zeros or ones) are less frequent.

2.3. Implementation Details

The flow of the proposed method is schematically shown
in figure 3. In this section we describe the auxiliary steps of
the method in more detail. All the constant numbers appear-
ing in the description are fixed parameters of the method
and are used throughout the experiments.
Initial feature pool: we apply the method of [9] on the en-
tire image set S (both class and non-class, since labeling is
unknown) to build an initial feature pool F0 ofM0 = 1000
quantized SIFT descriptors of 40 × 40 image patches. For
every image in the set S, we compute the similarity of each
feature from the pool at all locations on a dense grid. For
each feature Fi ∈ F0 and image In ∈ S, the five highest
similarity local maxima locations are retained. Denote their
respective similarity scores by 0 ≤ αki,n ≤ 1 (in decreasing
order for each feature) and image locations by Lki,n ∈ R

2,
where k ∈ {1, . . . , 5}.
Unsupervised optimization of threshold parameters: we
apply the UFO algorithm (section 2.1) to learn individual
optimal threshold parameters θthri for each Fi ∈ F0 . We
use only the maximal similarity scores α1i,n in this opti-
mization. For each of the optimized threshold parameters
θthri we set a range of 20 candidate valuesW thri , by taking
20 values with equal spacing in the index from the sorted
list sort

(
α1i,1, α

1
i,2, . . . , α

1
i,N

)
. This ensures that each fea-

ture has an adequate set of candidate values for its thresh-
old for any density of its continuous similarity values. As
explained in section 2.1, following threshold setting, the
UFO also produces clusters of features, which are tested
for their classification performance in the results section 3.
Building spatial-pairs feature pool: an additional output of
the UFO (section 2.1) is the feature-to-feature consistency

matrix Ĉ =
{
Ĉij

}M0

i,j=1
computed for the chosen optimal

threshold parameters. We next build spatial-pair features
from M1 = 3000 pairs of F0 features that have maximal
pair-wise consistency (i.e. maximal entries in the matrix Ĉ).
The spatial-pair features are pairs of F0 features that have
a Gaussian model for the spatial offset between their de-
tected locations. For each spatial-pair feature in the result-
ing feature pool, denoted F1, we train a separate Gaussian
Mixture Model (GMM) producing five competing Gaussian
spatial offset models. The GMM for a spatial-pair feature
(Fi, Fj) ∈ F1 is trained on a set Oi,j of offsets between Fi
and Fj in all their detected locations (from all the images)
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that passed the optimal thresholds (computed by UFO) θ̂thri
and θ̂thrj respectively: Oi,j =

{
Lk1i,n − L

k2
j,n | 1 ≤ n ≤ N,

1 ≤ k1, k2 ≤ 5, α
k1
i,n > θ̂

thr
i , α

k2
j,n > θ̂

thr
j

}
. Denote the

Gaussian components of the learned mixture: Gki,j =
N
(
μki,j ,Σ

k
i,j

)
, where k ∈ {1, . . . , 5}. The detection pa-

rameter for the spatial-pair feature (Fi, Fj) ∈ F1 is θoffsi,j ∈
{1, . . . , 5}, and the pair-feature is considered detected in
image In ∈ S with θoffsi,j = k, iff there exists an offset
in Oi,j that originates from image In and for that offset
the Gki,j component has maximum likelihood among all the
GMM components.
Unsupervised optimization of offset parameters: we apply
the UFO algorithm again, this time for choosing the correct
Gaussian offset model among the five individual candidates
for each spatial-pair feature. The outputs of the algorithm

are the optimal offset models Ĝi,j = N
(
μ̂i,j , Σ̂i,j

)
for

the spatial-pair features (Fi, Fj) ∈ F1, clusters of these
features, and pair-wise consistency measured between each
two spatial-pair features.
Building consistent configurations of object parts: The
next goal is to derive for each cluster of the spatial-pair
features (computed by the UFO) 2-D feature configurations
that will be as consistent as possible with the pair-wise off-
sets found in the previous step. Example configurations are
shown in figure 2. They are usually visually plausible in the
sense that they correspond to a repeating part configuration
in the object. Since each feature in a configuration is asso-
ciated with some object part, we call them ”part configura-
tions”. Let {(Fi1 , Fj1) , . . . , (FiL , FjL)} ⊂ F1 be a cluster

of spatial-pair features, and let
{
Ĝi1,j1 , . . . , ĜiL,jL

}
their

respective optimal offset models selected by the UFO. First,
we solve a 2D placement problem, where we define un-
knowns (xi, yi) for each feature Fi belonging to at least one
of the pairs in the cluster, and solve the following system of
linear equations, two equations for each pair in the cluster:

xil − xjl = μ̂il,jl (1) , yil − yjl = μ̂il,jl (2) (10)

where the μ̂il,jl (1) and μ̂il,jl (2) are the x and y compo-
nents of the mean. This linear system is solved by weighted
least squares with outlier rejection. The two equations of
each pair are weighted by the amount of uncertainty of the
respective optimal offset model, measured by the area of the

covariance:
∣
∣
∣Σ̂il,jl

∣
∣
∣. We also add two auxiliary equations

xi1 = 0 and yi1 = 0 with large weight, as the system (10)
is independent of the choice of the origin. The outlier rejec-
tion is implemented by removing pairs of equations corre-
sponding to maximal error, until the bound of at most one
pixel error is reached. The part configurations are obtained
as connected components (CC) of a graph whose nodes are
the features belonging to at least one of the spatial-pairs
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Figure 4. (a) Summary of the comparison of UFO and baseline
methods (pLSA, spectral) on the entire Caltech-101 dataset. For
each method the bar-plots show a cumulative histogram of detec-
tion probability PD at the point PFA = 0 (no False Alarms) on
the ROC. For example, bars placed between 0.2 and 0.3 count the
number of classes for which the tested methods achieved at least
20% detection with no false alarms; the pLSA achieved this for
42 of the 101 classes, compared with 78 classes for UFO with
MI consistency measure. We also analyzed the 27 classes with
PD < 20% for the JI consistency measure (the rightmost dark-red
bar). Only 13 classes produced < 5 class examples as top scoring
ones (getting 5 top examples at random in our 20% class setup has
probability < 0.0003); (b) Mean PD for PFA = 0 on all Caltech-
101 classes for each method; (c) Comparison on UIUC cars and
horses datasets.

from the cluster and whose edges are the pairs themselves.
The resulting configurations may then by used as ’hyper-
features’ for either detecting the learned objects in new im-
ages (e.g. using the ISM voting scheme proposed by [11])
or as input to subsequent invocations of the UFO in order to
build even more complex features.

3. Experimental Results

To test the proposed approach we applied it on a wide
range of classes from several datasets, including the en-
tire Caltech-101, UIUC cars [1], horses [3], hand poses
[16], a dataset of similar face views, and a dataset obtained
from querying Google’s image search. For every class from
the Caltech-101, UIUC cars, and horses datasets, the ex-
perimental protocol was to take all the class images mixed
with random selection of four times more background im-
ages from the Caltech backgrounds set. Thus in every un-
supervised set there were only 20% class images. Figure
4(a,b) summarizes the comparison of the UFO algorithm
with baseline approaches on the entire Caltech-101 dataset.
The comparison of the different consistency measures dis-
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Figure 5. Summary of the multi-sub-class unsupervised separation
experiment. The proposed method was applied for unsupervised
multi-class separation of face views and hand poses datasets. The
pLSA and spectral clustering baseline approaches performed sig-
nificantly worse with at least 20% difference in mean accuracy.
The images show examples of part configurations obtained for
each sub-class.

cussed in section 2.2 is also included in the figure 4(a,b).
The baseline methods are pLSA with 7 topics, and spectral
clustering (to 7 clusters) of the normalized cross correla-
tion of feature responses without parameter optimization.
In all the experiments UFO also computed 7 clusters. To
make a fair comparison, the UFO was applied with the se-
lection of threshold parameters but not geometry, since both
baseline approaches do not use geometry. Each of the com-
pared approaches generates feature clusters (pLSA topics
are soft feature clusters). The test for a good unsupervised
feature cluster is the extent to which it corresponds to the
unknown class. The score we have chosen to compare the
different approaches, is the detection probability PD at the
point PFA = 0 (no False Alarms) on the ROC. The rea-
son is that applications that will use the proposed approach
(or a baseline) for unsupervised extraction of class exam-
ples, will take top scoring examples and any errors in them
will hinder subsequent performance. We also got very sim-
ilar results in terms of the relative differences between the
methods for the point of 80% precision. For each method
and each class, the cluster with highest PD for PFA = 0
was taken into the comparison. The ROC for each pLSA
topic was generated according to the topic probability in
each image. For both the UFO and the spectral approach,
the ROC for each cluster was generated by simply summing
up the response vectors of features belonging to the cluster.
For UFO, the response vectors were thresholded using the
computed optimal detection thresholds (one for each fea-
ture) prior to the summation.

On figure 4c we show the results of the same comparison
on the UIUC cars and the horses datasets. Only the 170
uncropped and unaligned test images from the UIUC cars
dataset (mixed with random background images) were used
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Figure 6. (a) Comparison of unsupervisedly learned parameters
(using MI consistency measure) with optimal parameters obtained
in supervised setting with respect to MI. The mean histogram
was computed for 50 most informative features in 78 Caltech-101
classes for which the UFO succeeded (PD > 20% for PFA = 0).
The rightmost bin corresponds to perfect match. The density re-
mains almost unchanged when the histogram is computed for ei-
ther 2, 10, and 100 most informative features; (b) Evaluation of
car localization using the part configurations learned on UIUC cars
dataset. The histogram shows the error distribution of a detected
reference point with respect to manually marked ground truth.

in the experiment. Figure 6b illustrates the performance of
car localization using the part configurations learned on the
UIUC cars dataset. The part configurations were combined
using ISM [11] and voted for a single reference point.

In addition, we have compared the percent of features
originating in class images in the feature set returned by
the UFO with the percent of such features in codebooks re-
turned by the standard unsupervised feature selection and
quantization methods, namely k-means and [9], that are
extensively used in many current image classification ap-
proaches. The comparison showed that on our mix of
20% class 80% background images, the standard methods
produce codebooks containing on average 22 ± 8% class
features, while the UFO produces a set of features with
68±15% class features (statistics computed on all Caltech-
101 classes). Moreover, as can be seen in figure 2, the fea-
tures selected by the UFO mostly come from the class ob-
ject region of the class images, while it is likely that it is
not so for the standard algorithms (mostly the class objects
occupy less then 50% of the class images).

On two datasets, the hands (382 images, 6 poses, pro-
posed by [16]) and the faces (156 images, 5 views), the pro-
posed method was applied in an unsupervised multi-class
manner in order to simultaneously separate and learn all the
sub-classes. From the hand poses dataset only the test im-
ages were used. The resulting confusion matrices and the
computed part configurations for the relevant clusters are
shown in figure 5, showing perfect separation for face views
and high performance for hand poses.

Figure 6a shows comparison of the parameters learned in
the fully unsupervised setting by UFO with MI consistency
measure, with ground truth most informative (maximal MI)
parameters obtained with supervision. The comparison is
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Figure 7. Summary of the experiment on 200 first images returned
by ”jaguar” Google’s image search query. 30 of them contained
(jaguar) animals the rest (jaguar) cars and noise. All processing
was done in grayscale. All images were normalized to same ver-
tical size. The green and the red boxes display first 20 images of
two of the clusters returned by the UFO. The cluster associated
with animals (green box), had 67% recall with 95% precision, and
83% recall with 72% precision in animal jaguar detection.

performed on the 78 Caltech-101 classes for which the UFO
(with MI) exceeded 20% detection with no false alarms.
Surprisingly, the unsupervised method learns globally op-
timal parameters for more then 40%, and near optimal pa-
rameters (MI ratio of ≥ 0.8) for about 80%, of the most
discriminative features. Finally, figure 7 summarizes the re-
sults of an experiment of unsupervised clustering of images
obtained from a query ”jaguar” to Google’s image search.

4. Discussion

The main novelty of the proposed approach is the
discovery of multiple classification features and their
detection parameters in the fully unsupervised setting by a
global optimization of their joint consistency as a function
of the detection parameters. The method can be applied to
both unsupervised and (weakly) supervised learning tasks,
as a method for reducing the dimensionality of the feature
space by selecting and optimizing most discriminative
features. It also proved useful as a method for unsupervised
sub-class discovery. Automatic separation into meaningful
sub-classes is an important tool for boosting object recog-
nition performance, as it allows to model each sub-class
individually. Future work includes extending the proposed
method for optimizing descriptor combination parameters,
testing additional consistency measures, and extending
to the temporal domain for unsupervised discovery of
consistent motion patterns, that could be applied to both
action recognition and motion based object recognition.
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