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Abstract

In this paper, we present a kernel-based approach to the
clustering of diffusion tensors and fiber tracts. We pro-
pose to use a Mercer kernel over the tensor space where
both spatial and diffusion information are taken into ac-
count. This kernel highlights implicitly the connectivity
along fiber tracts. Tensor segmentation is performed us-
ing kernel-PCA compounded with a landmark-Isomap em-
bedding and k-means clustering. Based on a soft fiber rep-
resentation, we extend the tensor kernel to deal with fiber
tracts using the multi-instance kernel that reflects not only
interactions between points along fiber tracts, but also the
interactions between diffusion tensors. This unsupervised
method is further extended by way of an atlas-based reg-
istration of diffusion-free images, followed by a classifica-
tion of fibers based on nonlinear kernel Support Vector Ma-
chines (SVMs). Promising experimental results of tensor
and fiber classification of the human skeletal muscle over a
significant set of healthy and diseased subjects demonstrate
the potential of our approach.

1. Introduction

Diffusion Tensor Imaging (DTI) is a modality that has
been used mainly in the study of the connectivity in the hu-
man brain [2]. Diffusion tensors correspond to a field of
3 × 3 symmetric positive definite matrices that model the
uncertainty information (covariance) of the displacements
of water protons in the tissues.

The existing diffusion tensor clustering algorithms can
be subdivided into three groups. The first class uses a vari-
ational approach along with an adequate distance over the

manifold of tensors. For instance in [13], a 3D surface is
evolved using a level set representation to segment a region
of interest where the distributions of the tensors in each re-
gion are modeled as Gaussian. In [28], the Mumford-Shah
functional is minimized using a distance between tensors
derived from the Burg divergence. Similarly in [12], several
similarity measures are investigated and guide the evolution
of coupled level sets. A level set technique is also used in
[16] to extract the cingulum based on the Finsler metric.

The second class of methods uses common clustering
algorithms. In [1], the authors propose to use the Log-
Euclidean metric to obtain a kernel density estimate of the
probability distribution of tensors and include it in a fuzzy
k-means framework where the spatial interactions are han-
dled using local Gaussian kernels with a fixed bandwidth.
In [5], mean-shift clustering is applied for the segmentation
of the thalamus using Gaussian kernels both in the tensor
and in the position space.

The third class of methods consists of graph theoretical
approaches and manifold learning techniques. In [29], a
graph-cut approach is used with seed-point initialization.
Spectral clustering is performed in [30] through the eige-
nanalysis of an affinity matrix between tensors based on a
selected similarity measure. In [9], Locally Linear Embed-
ding (LLE) is considered with different choices of tensor
metrics and spatial connectivity is ensured by considering
isotropic neighborhoods.

Similar concepts were investigated for fiber cluster-
ing. For instance, a Gaussian model of the fibers and a
normalized-cut approach based on the Euclidean distance
between the obtained moments is presented in [3]. In [19],
spectral clustering along with the Hausdorff distance be-
tween fibers is considered. In [25], another manifold learn-
ing technique is proposed based on a graph-based distance
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that captures local and global dissimilarities between fibers
and uses LLE for clustering of the tracts. Curve modeling
has attracted attention and was handled in [14] by defining
a spatial similarity measure between curves and using the
Expectation-Maximization algorithm for clustering. More
recently, fibers were represented in [22] using their differ-
ential geometry and frame transportation and a consistency
measure was used for clustering. Of particular interest in
the field are the supervised methods that try to achieve a
segmentation consistent with a predefined atlas. Registra-
tion of B0 images and a hierarchical classification of fibers
are performed in [15] using the B-spline representation of
fibers. The method proposed in [19] is further extended in
[20] by means of a Nystrom approximation of the out-of-
sample extension of the spectral embedding.

In the existing work, fiber clustering methods discard the
tensor information and rely on the obtained tracts, creat-
ing an artificial gap between tensor and fiber clustering. In
this paper we introduce a kernel that unifies these two view-
points, and handles tensor and fiber clustering in a concise
probabilistic framework. The method we propose works on
tensors and is easily extended to segment fibers while taking
into account the tensor field. The kernel quantifies not only
the dissimilarity between tensors, but also their mutual spa-
tial relationship. It exploits connectivity along fiber tracts
implicitly, i.e. in the feature space provided by the kernel
embedding, tensors which are aligned are closer than ten-
sors which do not lie on the same fiber tract. It is extended
to deal with fiber tracts by way of the summation kernel,
which takes into account both the interactions between the
points (as spatial positions) and the information provided by
the whole tensor field. We also give an interpretation of the
fiber kernel as a comparison between soft representations
of the fiber tracts and show that it provides a natural gen-
eralization for Gaussian kernel correlation. To overcome
the limitation inherent to unsupervised clustering where the
clusters may not correspond to prior knowledge (atlas), we
show how the algorithm can include expert knowledge by
using atlas-based registration and kernel SVM classifica-
tion.

The remainder of this paper is organized as follows: in
section 2, we introduce the kernel over the tensor space. Us-
ing the summation kernel concept, this kernel is extended to
deal with fiber tracts in section 3, where we also propose a
supervised version of the algorithm based on kernel SVMs.
Section 4 is dedicated to the experimental results using im-
ages of the human skeletal muscle and we discuss the per-
spectives of this work in section 5.

2. Kernel-based Clustering of Tensors

Diffusion tensors measure the motion distribution of wa-
ter molecules. More explicitly, they refer to the covariance
of a Gaussian probability over the displacements r of the

water protons given a diffusion (mixing) time t:

p(r|t,D) =
1√

det(D)(4πt)3
exp(−rtD−1r

4t
) (1)

Given a diffusion tensor D localized at voxel x, we can ob-
tain the probability of the position y of the water molecule
previously localized at x in a straightforward way:

p(y|x, t,D) =
1√

det(D)(4πt)3
exp(− (y − x)tD−1(y − x)

4t
)

(2)
Therefore, a natural way to define a kernel over the tensor
space where position is taken into account is to consider the
expected likelihood kernel [11]. Let us consider two tensors
D1 and D2 localized at x1 and x2 respectively, and a dif-
fusion time t. The expected likelihood kernel kt(τ1, τ2) be-
tween the pairs τ1 = (D1,x1) and τ2 = (D2,x2) is defined
as the expectation of Gaussian probability p2(y|x1, t,D1)
under the probability law of p1(y|x2, t,D2) and is given by
the following expression:

kt(τ1, τ2) = Ep2(y|x2,t,D2)(p1(y|x1, t,D1)) (3)

=

∫
p1(y|x1, t,D1)p2(y|x2, t,D2)dy(4)

Note that the diffusion time t is a natural scale parameter
for this kernel and that it is computationally tractable, scale
dependent and handles spatial information. Indeed, based
on the derivation in [11] and using the expression provided
in 2, we obtain the following diffusion kernel:

kt(τ1, τ2) =
1√

(4πt)3
k1(D1,D2)k2(τ1, τ2) (5)

where

k1(D1,D2) =
1√

det(D1 + D2)

k2(τ1, τ2) = exp(− 1

4t
(xt

1D
−1
1 x1 + xt

2D
−1
2 x2)) ×

exp(
1

4t
(D−1

1 x1+D−1
2 x2)

t(D−1
1 +D−1

2 )−1(D−1
1 x1+D−1

2 x2))

(6)

2.1. Properties of the Tensor Kernel

The kernel is based on an L2 inner product defined on
the Hilbert space of square-integrable functions, to which
Gaussian probability densities belong. Therefore the kernel
verifies the Mercer conditions, i.e. it is positive definite. We
now provide an analysis of this kernel:

• The first term k1(D1,D2) may be rewritten as fol-

2169



lows:

k1(D1,D2) =
1√

det((Id + D1D
−1
2 )D2)

(7)

=
1√

det(D2)

1√∏3
i=1(1 + λi)

(8)

where Id is the 3×3 identity matrix and λi are the gen-
eralized eigenvalues of the pair of matrices (D1,D2).
This is reminiscent of the geodesic distance on the
manifold of 3 × 3 symmetric positive definite matri-

ces d =
√∑3

i=1(log(λi))2 [21] which is also based
on the generalized eigenvalues. The distance (respec-
tively the kernel) is increasing (respectively decreas-
ing) with increasing generalized eigenvalues, which is
a reasonable behavior (recall that the kernel reflects
similarity). The symmetry is ensured in the geodesic
distance by the squared logarithm function. The lat-
ter is invariant with respect to the inverse transforma-
tion λi �→ 1

λi

1, while it can be seen that the factor
1√

det(D2)
has a similar role since it preserves the sym-

metry. Note that the original expression is clearly sym-
metric. We can conclude that the term k1 encodes sim-
ilarity between tensors.

• Two special cases of the second factor k2 are interest-
ing:

1. When D1 = D2 = D

k2(τ1, τ2) = exp(− 1

8t
(x1−x2)

tD−1(x1−x2))

(9)
As expected, when the tensors are equal, what
appears is the Mahalanobis distance between po-
sitions x1 and x2 with respect to D. In particular
when the tensor D is isotropic, i.e. D = μId,
k2(τ1, τ2) = exp(− 1

8μt
||x1 − x2)||2), which is

plainly a Gaussian kernel between the points x1

and x2.

2. When x1 = x2 = x, k2(τ1, τ2) = 1, which
means that the kernel kt reduces to k1. Again
this was expected since the kernel will rely only
on tensor similarity if there is no difference in
spatial positions.

• The first special case shows that connectivity between
tensors which are aligned on the same fiber tract is
enhanced. Let us consider the tensor configuration in

[Fig.1 (a)] where all tensors are equal to D = μ(
→
e1

→
e1

t

1Recall that the generalized eigenvalues of the pair (D2,D1) are the
inverse of those of the pair (D1,D2)

(a) (b) (c)
Figure 1. (a) A configuration where the tensor kernel implicitly
puts more weight on the connection between D1 and D2 than be-
tween D1 and D3, reflecting their alignment. An axial slice of
a T1-weighted image showing: (b) a manual segmentation of dif-
ferent muscle groups in the calf (c) the calf of a diseased patient
where the zone in hypertension is fat that replaced the muscle.

+
→
e2

→
e2

t
)+ν

→
e3

→
e3

t
, where (

→
ei)i=1...3 are the canonical

basis of R
3 and ν > μ are the eigenvalues of D. The

tensors have therefore a principal direction of diffusion
along

→
e3. The tensors are all equal, D1 is equidistant

spatially from D2 and D3, yet the second term k2 al-
lows to affect more affinity between tensors 1 and 2
than between tensors 1 and 3. Indeed, we can compute
the kernel values to obtain

k2(τ1, τ2) = e−
d2

8νt , k2(τ1, τ3) = e−
d2

8μt (10)

where d = ||x1 − x2|| = ||x1 − x3||. Since ν > μ,
we can see that the similarity between the tensors 1
and 2 is more important than the similarity between
the tensors 1 and 3, so the kernel captures locally the
fiber structure.

In the next subsection, we discuss how to embed the ten-
sors in a Euclidean space based on the kernel information
as a preliminary step to clustering.

2.2. Embedding of the Tensors through Kernel
PCA and Landmark Isomap

Let us consider the N pairs τi = (Di,xi)i=1...N repre-
senting a tensor field. We construct theN×N kernel matrix
K of entries Kij = kt(τi, τj) for a fixed diffusion time t

and normalize it to obtain K̃ such that K̃ij =
Kij√
KiiKjj

.

These pairs are then embedded in a k-dimensional Eu-
clidean space using an eigenvalue decomposition of K̃ =
USUt where U is an orthogonal N × k matrix and S is a
k × k diagonal matrix. The coordinates of the embedded
tensors are given by the N × k matrix X = U

√
S where√

S is obtained by setting the diagonal elements of S to their
square roots [23]. Each row m of X holds the coordinates
in the feature space of the m-th pair.

Given the k-dimensional representation X of the tensor
field, one has to propagate the local interaction between the
tensors and take into account the distance along diffusive
pathways, i.e. simulate the water flow along these trajec-
tories. This is done using the Isomap algorithm, which is a
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manifold learning technique based on two steps [24]: it con-
sists first in approximating the geodesic distances between
every two points of the dataset using the Dijkstra algorithm
and then perform Multidimensional Scaling (MDS) to ob-
tain the new embedding, i.e. a configuration of points that
respects approximately the distance matrix computed in the
previous step. Since the kernel enhances fiber connectiv-
ity, we expect the new configuration to reflect the diffusion
flow in the tissues. Note that in practice we use a faster
version of this algorithm called landmark-Isomap [4] that
reduces the computational time of the first step by comput-
ing the distance of the points to a reduced set of landmarks
chosen randomly in the dataset. The clustering is done af-
terward using a plain k-means algorithm. Note that the nor-
malized kernel k̃t implies a Euclidean distance (L2 norm)

given by d(τ1, τ2) =

√
2 − 2k̃t(τ1, τ2). We could have

used this distance from the outset in the Isomap algorithm,
however we opt for a preliminary kernel PCA projection
since it amounts to denoising in the feature space and keep-
ing the relevant information present in a few components.

In the following section, we extend in a tractable way
the proposed kernel defined over the tensor field to the fiber
domain.

3. Extending the Kernel to the Fiber Domain

The fiber trajectories are obtained through the integration
of the vector field of principal directions of diffusion. Based
on the continuous tensor field approximation (by means of
interpolation), we represent each fiber tract as a sequence
of tensors localized in spatial positions, i.e. is a set of pairs
τi = (Di,xi)i=1...n where n is the number of points lying
on the fiber. Note that the tractography already requires ten-
sor interpolation and that the interpolated tensors are there-
fore kept for kernel computation. So it is natural to extend
the tensor kernel using a kernel over sets. We simply use
the summation kernel [10] to obtain the following Mercer
kernel Kt between two fibers F1 and F2:

Kt(F1,F2) =
1

n1

1

n2

∑
τi∈F1

τj∈F2

kt(τi, τj) (11)

where n1 (resp. n2) is the number of points of the fiber F1

(resp. F2). This kernel sums the interactions between ten-
sors belonging to the fiber tracts. It captures the diffusion
and spatial links between diffusive pathways. It is impor-
tant to notice that while all the interactions are summed, the
diffusion time t acts as a scale parameter. Therefore for
a suitable choice of t, a tensor interacts only with tensors
lying in a local neighborhood and far-away tensors have a
negligible impact on the summation. The segmentation of
the fiber tracts is achieved using kernel PCA and k-means
clustering.

3.1. A Physical Interpretation of the Fiber Kernel

One can see that the summation kernel is simply the ex-
pected likelihood kernel between distributions providing a
soft representation for fibers. More explicitly, we consider
a dynamical system where a particle can be initially at a po-
sition xi on the fiber tract and moves to a position y with
the following probability

p(y|t, (Di)i=1...n) =

n∑
i=1

p(xi)p(y|xi, t,Di) (12)

With a uniform prior distribution on xi,
p(y|t, (Di)i=1...n) = 1

n

∑n

i=1 p(y|xi, t,Di). By bilinear-
ity of the expected likelihood kernel, it is straightforward
to see that the summation kernel is the expected likelihood
kernel of the distributions given in (12). If the initial
positions xi were independent observations (which is not
the case because they are the result of the tractography),
this would have amounted exactly to an adaptive kernel
density estimation of the position of the water molecules
along the fiber tracts. In that case, the point-dependent
Gaussian kernels of the density estimation would use
the diffusion tensors as covariance matrices to model
the uncertainty. However the distributions in (12) still
provide a soft (”blurry”) representation of the fibers and
measure the compactness (concentration) of the spatial
configuration of the fiber tract according to the diffusion
information. More explicitly, instead of considering the
fiber as a discrete sum of Dirac distributions localized at its
points, i.e. 1

n

∑n

i=1 δxi
, we associate to it its representation

via the mapping φ to the Reproducing Kernel Hilbert Space
(RKHS) provided by the kernel kt , i.e. 1

n

∑n

i=1 φ(Di,xi).
The unsupervised clustering does not take prior clinical

knowledge into account. However, the kernel introduced in
(11) accommodates a supervised scheme. In the following,
we propose a classification strategy that aims at learning a
set of atlas fibers in a discriminative way.

3.2. Supervised Kernel SVM Learning of Atlas
Fibers

When considering the special case where the tensor field
is constant and isotropic, i.e. all tensors are equal to D =
μId, we obtain the Gaussian kernel correlation KGt [26]:

KGt(F1,F2) ∝ 1

n1

1

n2

∑
xi∈F1

xj∈F2

exp(−||xi − xj)||2
8μt

) (13)

Therefore, we can see that the kernel Kt deals with a
generic tensor field and provides a generalization of the
Gaussian kernel correlation. A by-product of this reasoning
is that Gaussian kernel correlation is a kernel on fibers that
considers only point positions. One could have seen from

2171



the outset that it is a Mercer kernel since it is a summation
of Mercer (Gaussian) kernels. This is particularly useful to
learn spatial interactions between fibers.

Indeed, given an atlas of fibers segmented by an expert
in R regions, we can learn their spatial arrangement using
the Gaussian kernel correlation in (13). It can be used as
an input in a kernel SVM classifier [27] to learn the train-
ing fibers of the atlas. The kernel SVMs provide support
vectors (fibers), which are the fibers that define the decision
boundaries. Note that the SVMs are used in a one-against-
one fashion in order to deal with multiple regions. A point
of interest here is that from the initial set of training fibers,
we have only to keep a sparse subset of support fibers that
will guide the classification process.

Given a new set of fibers that we wish to segment in a
manner consistent with the already-defined atlas, we start
by finding a spatial transformation that maps the diffusion-
free (B0) image of the testing dataset to the corresponding
one in the training atlas, as in [15]. This transformation is
subsequently used to register the testing set of fibers to the
space of the support fibers obtained from the atlas. We are
therefore able to compute the scores of the R(R−1)

2 pairwise
SVM classifiers on the testing dataset and use a simple vot-
ing procedure to classify the fibers.

4. Experiments: The Human Skeletal Muscle

The human skeletal muscles and more specifically the
lower leg are of particular interest because they present an
ordered structure of elongated myofibers where some mus-
cle groups differ only subtly in their direction. In order to
study the effect of neuromuscular diseases (myopathies) on
water diffusion in the muscles, segmentation in regions con-
sistent with anatomical knowledge is a crucial preliminary
step before a localized quantitative study of diffusion prop-
erties in the fiber bundles for healthy and diseased tissues.
Diffusion-based studies of the human skeletal muscle [7] fo-
cused on studying variation across subjects of scalar infor-
mation like diffusivity (trace), fractional anisotropy, penna-
tion angles (the orientation of muscular fibers with respect
to tendons), etc.

Twenty-five subjects (twenty healthy patients and five
patients affected by myopathies) underwent a diffusion ten-
sor imaging of the calf muscle using a 1.5 T MRI scanner2.
The size of the obtained volumes is 64 × 64 × 20 voxels
with a voxel resolution of 3.125 mm× 3.125 mm× 7 mm.
We acquired simultaneously high resolution T1-weighted
images that were segmented manually by an expert into 7
muscle groups to provide the ground truth and fiber trajec-
tories were reconstructed using [6]. To give an idea about

2The following parameters were used : repetition time (TR)= 3600ms,
echo time(TE) = 70 ms, slice thickness = 7 mm and b value of
700 s.mm−2 with 12 gradient directions and 13 repetitions.

(a) (b) (c)

Figure 2. (a) Synthetic noisy field of principal directions of diffu-
sion. (b) Result of spectral clustering. (c) Result of our method

the muscle architecture in the calf, we present in [Fig.1
(b)] a manual segmentation overlaid on an axial slice of a
high-resolution T1-weighted image. The following muscle
groups are considered: the soleus (SOL), lateral gastroc-
nemius (LG), medial gastrocnemius (MG), posterior tib-
ialis (PT), anterior tibialis (AT), extensor digitorum longus
(EDL), and the peroneus longus (PL).

In the following , we present the obtained experimental
results on a synthetic dataset and for tensor classification
and both supervised and unsupervised fiber bundling of the
lower leg muscles.

4.1. Tensor Clustering

4.1.1 Preliminary Experiments

We first generated a 20 × 40 lattice of synthetic tensors
composed of two close fiber bundles. The first bundle has
a vertical principal direction, the second starts with a ver-
tical direction then deviates with a 45◦ angle [Fig.2 (a)].
We added a Gaussian noise of standard deviation 10◦ to
these directions. The eigenvalues of the tensors were set to
{2 10−3, 1.5 10−3, 10−3}. We tested the following values
of diffusion time t: {104, 105}. We compare the behavior
of the kernel PCA + Isomap embedding with spectral clus-
tering using the metric d(D1,D2) = arccos(<

→
e1,

→
e2>)

where
→
e1 (resp.

→
e2) is the principal direction of diffusion

of D1 (resp. D2), as in [30]. Following [30], the scale pa-
rameter in the affinity matrix is set as the sample variance of
d between neighboring tensors. The clustering is obtained
using k-means with 50 restarts in the spectral embedding
space. [Fig.2 (c)] shows the segmentation result obtained by
our approach (stable across the tested set of diffusion times)
and [Fig.2 (b)] shows its counterparts for spectral clustering.
We can notice that unlike spectral clustering, the proposed
algorithm finds a clustering solution which is more compat-
ible with the tensor arrangement. This is due to the fact that
it captures both tensor similarity and spatial connectivity.

To further assess qualitatively the method, we used the
proposed kernel PCA + Isomap embedding to see if it is
faithful to the known structure of the muscles. Of particular
interest is the soleus which is a major part of the calf. It has
a bipennate structure where oblique fibers converge towards
a central aponeurosis [Fig.3 (c)]. In [Fig.3 (a), (b)], we show
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Figure 3. (a), (b) Two views of a three-dimensional embedding
of the tensors of the soleus muscle, k-means clustering shows its
bipennate structure. (c) Anatomy of the soleus [17].

the (here three-dimensional) proposed embedding for the
soleus muscle of one subject for t = 2 105. The obtained
points reveal the structure of the muscle, which means that
the embedding is faithful to the diffusion flow in the tissues
as the points are aligned along the diffusive pathways.

4.1.2 Classification of the Muscle Groups

For each subject, a region of interest (ROI) was manually
delineated and we tested the performance of the tensor clus-
tering algorithm both for healthy and diseased subjects. In
regions affected by myopathies, the tensors have a relatively
small volume since fat replaces the fibers (as can be seen in
[Fig.1 (c)]) and were eliminated through simple threshold-
ing over the determinant. In all the experiments, we set the
diffusion time t to t = 2105 and we used a ten-dimensional
embedding. For a quantitative evaluation of the method, we
follow the validation protocol proposed in [30]: for all the
25 subjects, the manually delineated ROI was segmented
at two different levels (in 7 and 10 classes). The resulting
clusters are then classified according to the labels given by
the expert. As in [30], several clusters are allowed to have
the same label. We also test the algorithm on a section near
the knee which is characterized by a higher amount of noise
and artifact obtained automatically by a threshold (set to
20) on the diffusion-free images. We report in [Fig.5] the
boxplots of the dice volume overlap with the expert labels
for the 25 patients and its counterpart for the spectral clus-
tering as described in the previous subsection. We can see
that our algorithm performs slightly better for the case of
the manually-delineated ROI, however for the noisy auto-
matic ROI, spectral clustering is misled by isolated points
(see [Fig.4 (c)]), whereas the performance of our algorithm
is not significantly worsened. Note also that the threshold-
ing over the determinant removes some of the tensors orig-
inating from the artifact. From a qualitative point of view,
one can see in [Fig.4 (a), (b)] that the algorithm was able
to segment correctly fine structures like AT and PL and the
segmentation result is rather smooth.

(a) (b) (c) (d)

Figure 4. Axial slices of the segmentation of the tensors for (a) a
healthy subject in 10 classes, manual ROI (b) a diseased subject in
7 classes where the MG is partially affected, manual ROI (c) noisy
automatic ROI of a section near the knee using spectral clustering
(d) noisy automatic ROI using our method
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(a) (b)

Figure 5. Boxplot of the dice overlap coefficients for the 25 sub-
jects for tensor clustering in 7 and 10 classes for (a) manual ROI
and (b) automatic noisy ROI. SC7 (resp. SC10) refers to spectral
clustering in 7 (resp. 10) classes and KC7 (resp. KC10) refers to
kernel clustering in 7 (resp. 10) classes.

4.2. Fiber Clustering

4.2.1 Unsupervised Fiber Clustering

To test the unsupervised kernel-PCA clustering algorithm,
we only kept the fibers which have a majority of points ly-
ing in the manually delineated ROI. The number of fibers
in the different datasets ranged approximately from 1000
to 2500, which makes the computation and eigenanalysis
of the kernel matrix achievable in a rather reasonable time.
The diffusion time t was set to t = 2104 and we used a ten-
dimensional embedding for kernel-PCA. [Fig.6] shows the
clustering results in 10 (resp. 7) classes for the fiber tracts
of a healthy (resp. diseased) subject. The fibers in [Fig.6
(a)] correspond to the tensors segmented in [Fig.4 (a)]. It is
interesting to notice that despite the fact that the tractogra-
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(a) (b)

Figure 6. Axial, coronal and sagittal views of fiber segmentation
for (a) a healthy subject in 10 classes, (b) a diseased subject in 7
classes.
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Figure 7. Boxplot of the dice overlap coefficients for the 25 sub-
jects for (a) unsupervised fiber clustering in 7 and 10 classes, (b)
supervised fiber clustering using affine and deformable registra-
tion.

phy algorithm was unable to recover fiber tracts in the dis-
eased regions due to the presence of degenerate tensors, the
clustering algorithm could still segment the fiber tracts of
the healthy region in anatomically relevant subgroups. For
quantitative assessment, we report in [Fig.7 (a)] the box-
plot of the dice overlap measures of the fiber segmentation
with the expert labeling for the 25 subjects for 7 and 10
classes. Overall, the algorithm performs well in separating
the regions of the calf muscle with a mean dice coefficient
of 79.5% (respectively 80.93%) and a standard deviation of
5.04% (respectively 5.14%) for 7 (respectively 10) classes.

4.2.2 Supervised Fiber Clustering

A manually segmented volume was used as an atlas. At-
las fibers were assigned to a class based on a simple voting
procedure: each fiber is classified according to the majority
vote class of the voxels it crosses. We experimented both
with affine [6] and deformable [8] registration to map the

(a) (b)

Figure 8. Axial, coronal and sagittal views for (a) supervised clas-
sification in 7 classes (b) the ground truth segmentation.

B0 images of the testing case to the B0 images of the atlas.
We use kernel SVM classification to learn the fibers of the
atlas as explained in section 3.2, using 21 one-against-one
pairwise classifiers. The scale parameter in the Gaussian
correlation kernel was set to σ = 2

√
μt = 10. We report

in [Fig.7 (b)] the boxplot of the dice overlap coefficients
both for deformable and affine registration. We can note
that we obtain significantly better results with deformable
registration, which was expected given the relatively high
inter-patient variability and that muscles are soft tissues, so
the anatomy and shape are likely to vary significantly across
patients. In [Fig.8 (a)], we show an example of supervised
segmentation compared with the ground truth in [Fig.8 (b)].
We can observe that as opposed to the unsupervised setting
([Fig.6 (a)]), the MG is not oversegmented.

5. Conclusion

In this paper, we proposed a kernel-based method for
clustering of both tensors and fibers in diffusion tensor
images. It exploits the physical interpretation behind the
modality and offers a unified approach towards tensor and
fiber grouping. The kernel defined over the tensor space en-
compasses both localization and diffusion information and
naturally reflects tensor alignment along fiber tracts. We
showed its flexibility by extending it to deal with fibers and
gave the physical intuition behind its mathematical defini-
tion as a kernel over sets of tensors. We also showed how to
include expert knowledge by means of kernel SVMs.

Future research will focus on the use of the defined ker-
nels for deformable registration of diffusion tensors and will
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explore the possible extensions of the clustering framework
without resorting to manifold embeddings [18]. The mo-
tivation of the work is to use DTI in order to detect and
monitor the progression of skeletal muscle diseases like my-
opathies.
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