
A Family of Contextual Measures of Similarity between Distributions

with Application to Image Retrieval

Florent Perronnin, Yan Liu∗and Jean-Michel Renders

Textual and Visual Pattern Analysis (TVPA)

Xerox Research Centre Europe (XRCE), France

{Florent.Perronnin, Yan.Liu, Jean-Michel.Renders}@xerox.com

Abstract

We introduce a novel family of contextual measures of

similarity between distributions: the similarity between two

distributions q and p is measured in the context of a third

distribution u. In our framework any traditional measure of
similarity / dissimilarity has its contextual counterpart. We

show that for two important families of divergences (Breg-

man and Csiszár), the contextual similarity computation

consists in solving a convex optimization problem. We focus

on the case of multinomials and explain how to compute in

practice the similarity for several well-known measures.

These contextual measures are then applied to the image

retrieval problem. In such a case, the context u is estimated

from the neighbors of a query q. One of the main benefits

of our approach lies in the fact that using different contexts,

and especially contexts at multiple scales (i.e. broad and

narrow contexts), provides different views on the same prob-

lem. Combining the different views can improve retrieval

accuracy. We will show on two very different datasets (one

of photographs, the other of document images) that the pro-

posed measures have a relatively small positive impact on

macro Average Precision (which measures purely ranking)

and a large positive impact on micro Average Precision

(which measures both ranking and consistency of the scores

across multiple queries).

1. Introduction

We are interested in image retrieval, the problem which

consists in searching in a possibly large dataset of images

those templates which are similar to a given query (see e.g.

[17, 10, 11, 7, 11, 2, 12, 6] for recent works on the topic).

When humans have to judge the similarity between two im-

ages, and more generally between two objects, they always

do so in a given context, i.e. they do not only consider the
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two objects to be compared. For instance, while the images

of a Maine coon and an American bobtail (two breeds of

cats) might be considered similar in the general context of

animals, or even in the more focused context of mammals,

they can be considered dissimilar in the narrow context of

cats. In this simple example, the different contexts corre-

spond to the different scales at which one can consider the

problem. We note that different contexts can also corre-

spond to different taxonomies: one can compare two paint-

ings in the context of scenery paintings (semantic context)

or in the context of impressionist paintings (artistic con-

text). Different contexts might provide different views on

the same problem and different cues may be taken into ac-

count to judge the similarity in the different contexts.

There is a significant body of work on contextual (also

often referred to as perceptual) measures. In the following,

we only consider the case where the measure is learned in

an unsupervised manner. Our goal is not to provide a full

review of the literature on the topic but to give an idea of

the variety of approaches which have been proposed.

Several methods consist in modifying not the measure it-

self but the space in which the measure is computed. This

includes Isomap [18], Local Linear Embedding (LLE) [14]

or Laplacian Eigenmaps [1]. In [7], Jégou et al. propose a

contextual measure of distance between points which con-

sists in symmetrizing the K-NN relationship. The initial dis-

tance is contextualized by adding a multiplicative penalty

term which can be computed iteratively. In effect, it down-

weights those images which are located in a dense region of

the image space. In [20], Zhao et al. propose a contextual

distance between data points which is defined as the differ-

ence of their contributions to the integrity of the structure of

the contextual set (defined as the neighboring points).

Closest to our work are those measures typically used in

the field of information retrieval. In text retrieval, where a

document can be represented as a bag-of-words [16], i.e.

a histogram of word counts, the term-frequency inverse-

document-frequency (TF-IDF) weights the contribution of

the different words according to their frequency in a context
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[15]. The same framework was subsequently applied to im-

age retrieval where images can be described as histograms

of visual word counts [17, 10, 7, 11, 2, 12, 6]. The TF-IDF

scheme is particularly well-suited to the text retrieval prob-

lem where documents are represented as sparse multinomi-

als. However, it cannot be extended in a straightforward

manner to dense multinomials or to other distributions than

multinomials.

In [13], Ponte and Croft proposed the so-called language

modeling (LM) approach to information retrieval. If p, q
and u are respectively a template, a query and a context

multinomial of dimensionD, one can measure the dissimi-

larity of q and p in the context of u as the Kullback-Leibler

(KL) divergence between q and a smoothed version of p:

D
∑

i=1

qi log

(

qi
ωpi + (1 − ω)ui

)

. (1)

Smoothing has two benefits over a standard KL divergence

between q and p. First, it avoids log(0) effects in the case

of sparse vectors. Second, by rewriting equation (1) as:

−
D

∑

i=1

qi log

(

1 +
ω

1 − ω

pi

ui

)

+ C (2)

whereC is independent of p, we can see that it downweights
the influence of frequent words (indices i with large values

ui) as is the case of TF-IDF. A major issue is the sensitivity

to the choice of ω (see e.g. [19] for a study of the impact of

ω as well as different smoothing schemes).

In this article, we introduce a novel family of contextual

measures of similarity between distributions. In section 2

we give the definition of our contextualmeasure and discuss

its properties. In our framework any traditional measure of

similarity / dissimilarity has its contextual counterpart. We

show that when the measure to be contextualized belongs to

one of two important families of divergences (Bregman and

Csiszár), the contextual similarity computation consists in

solving a convex optimization problem. In section 3 we fo-

cus on the case of multinomials and show how to compute in

practice the contextual similarity for traditional measures.

In section 4 we explain how to speed-up retrieval in the case

where the optimization scheme is a costly one. In section

5 we apply the contextual measure to the problem of im-

age retrieval and introduce a multi-scale retrieval algorithm.

We finally provide in section 6 results on two very different

datasets: one of photographs, the other of document images.

We will show that the proposed contextual measures have

a relatively small positive impact on macro Average Preci-

sion (macro-AP)which measures purely ranking and a large

positive impact on the micro Average Precision (micro-AP)

which measures both ranking and consistency of the scores

across multiple queries.

2. Contextual Similarity

We first introduce a broad definition of contextual sim-

ilarities which is valid for discrete or continuous distribu-

tions, parametric or non-parametric distributions, etc.

2.1. Definition

Let p and q be two distributions to be compared and let

u be the distribution that models the context. Let f be a

“traditional” (i.e. non-contextual) measure of similarity be-

tween distributions. We introduce the following function:

φf (ω; q, p, u) = f (q, ωp+ (1 − ω)u) . (3)

As we are dealing with distributions, φf is defined over

the interval 0 ≤ ω ≤ 1. We note that in the case where

f(q, p) = Eq[log p], where Eq denotes the expectation un-

der q, φf (ω; q, p, u) is the distance used in the LM approach

to retrieval [13] (c.f. the introduction).

We define the contextual similarity csf as:

csf (q, p|u) = arg max
0≤ω≤1

φf (ω; q, p, u). (4)

csf is ill-defined for p = u and we choose the convention

csf = 1/2 in such a case.

The intuition behind this measure of similarity is the fol-

lowing one. By maximizing φf (ω; q, p, u) over ω, we es-

timate the mixture of p and u that best approximates q.
The weight ω which maximizes φf (ω; q, p, u) reflects how
much p contributes to the approximation, i.e. whether q is
best modeled by the broad domain information contained in

u of the specialized information contained in p. Our sim-

ilarity is fundamentally different from the traditional LM

approach. Especially, there is no parameter tuning required.

By definition csf is guaranteed to have values in the in-

terval [0, 1]. We note that q = p ⇒ csf (ω; q, p, u) = 1 but

that the converse does not hold. φf and thus csf are asym-

metric in p and q even if f is symmetric, i.e. csf (q, p|u) 6=
csf (p, q|u) in general. There exist various ways to sym-

metrize the contextual similarity if needed. One way is

to combine csf (p, q|u) and csf (q, p|u) using for instance

a sum or product rule. Another way is to symmetrize φf ,

e.g. as follows:

φf (ω; q, p, u) = f (q, ωp+ (1 − ω)u)

+ f (p, ωq + (1 − ω)u) . (5)

In our experiments, we always made us of the symmetric

contextual measure.

2.2. Choice of the function f

We have not yet defined a similarity measure but a family

of similarity measures parametrized by the particular choice
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of the function f . csf can thus be understood as a contex-

tualized version of f . f can be virtually any measure of

similarity between distributions. Obviously, f can be a dis-

similarity instead of a similarity: this just requires changing

the max by a min in (4).

Interestingly, not all measures f are good candidates for

contextualization. A simple counter-example is the Ex-

pected Likelihood (EL) kernel [5]: EL(q, p) = Eq[p] =
Ep[q] (in the case of multinomial distributions, this is sim-

ply the dot-product). Except in the case where Eq[p− u] =
0, is is easy to show that csEL gives binary values (0/1).

It is advantageous to choose φ to be concave (resp. con-

vex) in ω if f is a similarity (resp. dissimilarity) as one is

thus guaranteed to have a unique optimum which simplifies

the optimization process. In the following, we consider the

case of discrete finite distributions (such as multinomials).

We show that when f belongs to one of two important fam-

ilies of divergences, φf is convex in ω.
Bregman divergences. The Bregman divergence be-

tween two distributions x and y (x and y belong to the space
of probabilities Ω) for a convex function h : Ω → R is de-

fined as:

Bh(x, y) = h(x) − h(y) − 〈∇h(y), (x − y)〉 (6)

where∇h denotes the gradient vector of h and 〈., .〉 the dot
product. Intuitively, Bh(x, y) can be understood as the dif-

ference between the value of h at point x and the value of

the first-order Taylor expansion of h around y evaluated at

x. Special cases of Bregman divergences include the Eu-

clidean distance, the Mahalanobis distance, the Kullback-

Leibler divergence or the Itakura-Saito divergence.

If φ(ω; q, p, u) = Bh (ωp+ (1 − ω)u, q), then

φ(ω; q, p, u) is convex in ω. To prove this assertion, it is

sufficient to show that the second order derivative is posi-

tive. We have:

∂2

∂ω2
Bh (ωp+ (1 − ω)u, q)

= (p− u)T∇2h (ωp+ (1 − ω)u) (p− u)

(7)

where∇2h denotes the Hessian matrix of h and T the trans-

position. As h is convex, this quantity is positive by defini-

tion and thus φ is convex in ω.
We note however that if φ(ω; q, p, u) =

Bh (q, ωp+ (1 − ω)u), we cannot conclude on the

convexity of φ (the second order derivative with respect to

ω includes third order derivatives of h).
Csiszár divergences. The Csiszár divergence between

two discrete distributions x and y for a convex function h :
R → R is given by:

fh(x, y) =
∑

i

xih

(

yi

xi

)

. (8)

Special cases of Csiszár divergences include the Manhat-

tan distance, the Kullback-Leibler divergence, the Hellinger

distance or the Rényi divergence.

If φ(ω; q, p, u) = fh (q, ωp+ (1 − ω)u), then

φ(ω; q, p, u) is convex in ω. One more time, it is suf-

ficient to show that the second order derivative is positive.

We have:

∂2

∂ω2
fh (q, ωp+ (1 − ω)u)

=
∑

i

(pi − ui)
2

qi
h′′

(

ωpi + (1 − ω)ui

qi

) (9)

where h′′ is the second order derivative of h. As h is convex,
h′′ ≥ 0 and the previous quantity is positive.

Similarly, if φ(ω; q, p, u) = fh (ωp+ (1 − ω)u, q), φ is

convex in ω as:

∂2

∂ω2
fh (ωp+ (1 − ω)u, q)

=
∑

i

q2i (pi − ui)
2

(ωpi + (1 − ω)ui)3
h′′

(

qi
ωpi + (1 − ω)ui

) (10)

is a positive quantity. These results can be easily extended

to the case of continuous distributions (replacing the sum

by an integral).

3. Multinomial Distributions

We now assume that p, q and u are multinomials of

dimensionality D. We will consider typical measures be-

tween multinomials and show how to compute their contex-

tual counterparts in practice.

3.1. Euclidean distance (L2)

Taking the derivative of φL2 and equating it to zero triv-

ially leads to the following closed-form formula:

ω =

∑D

i=1(pi − ui)(qi − ui)
∑D

i=1(pi − ui)2
. (11)

As we have to enforce the constraint 0 ≤ ω ≤ 1, if the value
computed with (11) is lower than 0 (resp. greater than 1),

it is forced to 0 (resp. 1). This measure of similarity has a

simple geometric interpretation: csL2 is proportional to the

projection of the vector (q − u) on (p− u).

3.2. Manhattan distance (L1)

By definition we have:

φL1(ω; q, p, u) =
∑

i:pi−ui 6=0

|pi − ui|
∣

∣

∣

∣

ω − qi − ui

pi − ui

∣

∣

∣

∣

(12)

This function is convex and piecewise linear. Thus, its

minimum is necessarily reached at one of the values (qi −
ui)/(pi − ui). The minimization of φL1 is a weighted me-

dian problem which can be solved in O(D).
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3.3. Kullback Leibler (KL)

By definition we have:

φKL(ω; q, p, u) =

D
∑

i=1

qi log

(

qi
ωpi + (1 − ω)ui

)

. (13)

This objective function is similar to that of Probabilistic La-

tent Semantic Analysis (PLSA) [4] and can thus be opti-

mized iteratively using the expectation maximization algo-

rithm. At iteration (k + 1), we have:
E-step:

γ
(k+1)
i =

ω(k)pi

ω(k)pi + (1 − ω(k))ui

. (14)

M-step:

ω(k+1) =

D
∑

i=1

qiγ
(k+1)
i . (15)

We note however that EM is slow to converge. Hence,

faster optimization techniques such as gradient-descent type

algorithms can be considered.

3.4. Other Measures

The Hellinger (HE) distance is defined as:

D
∑

i=1

(
√
pi −

√
qi)

2
, (16)

and the χ2 (X2) as:

1

2

D
∑

i=1

(pi − qi)
2

pi + qi
. (17)

These measures of similarity lead to convex objective func-

tions φ. However, there is no closed form formula for csHE

and csX2. Therefore, we have to resort to gradient-based

methods for the optimization.

4. Speeding-up Retrieval

For certain measures f , such as the KL divergence, the

Hellinger distance or the χ2, computing csf requires an it-

erative optimization scheme. This might be too computa-

tionally intensive for large-scale retrieval. In the case of

retrieval problems, we may not be interested in the exact

value of the similarity. We may just want to know whether

the similarity exceeds a threshold θ.
We introduce:

ψf (θ; q, p, u) =
∂

∂ω

∣

∣

∣

∣

ω=θ

φf (ω; q, p, u). (18)

The gradient function ψf (θ; q, p, u) is in itself a fam-

ily of contextual measures of similarity which is doubly

parametrized by the function f and the parameter θ. The

main advantage of ψf (θ; q, p, u) over csf (q, p|u) is that the
former one is faster to estimate. For instance, in the case

where f is the KL divergence we get:

ψKL(θ; q, p, u) =
D

∑

i=1

qi
pi − ui

θpi + (1 − θ)ui

. (19)

If the values
(pi−ui)

θpi+(1−θ)ui

can be pre-computed, this quan-

tity is very efficient to evaluate (dot product). In the case

of other measures f , simple closed-form gradient formulae

can also be derived. However, in preliminary experiments

(not reported in this paper), gradient measures generally led

to a lower retrieval accuracy compared the contextual mea-

sure csf . They also require the tuning of the parameter θ
(as is the case of the LM approach to retrieval).

ψf (θ; q, p, u) may be used as a complement to

csf (q, p|u) to speed-up retrieval. If φ if differentiable at the

point ω = θ and if φ is concave in ω, we have the following
equivalence:

arg max
ω

φf (ω; q, p, u) ≥ θ ⇔ ψf (θ; q, p, u) ≥ 0. (20)

For a given query q, if one wants to retrieve and rank all

the templates p whose similarity csf (q, p|u) is above θ then
one can use a two-step approach:

1. Compute the cheap gradient similarities ψf (θ; q, p, u)
for all templates p.

2. Compute the more costly similarities csf (q, p|u) for

all templates p such that ψf (θ; q, p, u) ≥ 0.

The second step is not required if we choose θ = 0
(resp. θ = 1) and we have ψf (0; q, p, u) ≤ 0 (resp.

ψf (1; q, p, u) ≥ 0) as in such a case we are guaranteed to

have csf (q, p|u) = 0 (resp. csf (q, p|u) = 1). This can

provide very substantial savings (c.f. next section).

5. Retrieval with Multiple Contexts

We assume that the objects to be retrieved can be mod-

eled by distributions. We have a query q and a set of N
templates: {pi, i = 1...N}. Our goal is to score and rank

all templates. The main issue is the choice of the context

model u. As the templates themselves provide a context for

the query, u may be estimated using all pi’s. However, this

may lead to poor results in the case depicted on Figure 1.

We consider a toy example with 3 classes (each class is rep-

resented by an ellipse in the space of distributions) where

the distance between classes 1 and 2 is significantly smaller

than the distance between classes 1 and 3 and 2 and 3. For

instance, classes 1, 2 and 3 may correspond to cat, dog and
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Figure 1. Typical case where a single context estimated on the

whole dataset is insufficient for retrieval.

cow images respectively. Ideally, we would like to have the

similarity between q and r to be higher than the similarity

between q and p for all q and r in class 1 and all p in class

2. As the context u is at a significant distance from class

1 and class 2, we might have csf (q, r|u) ≈ csf (q, p|u) In
our animal example, this means that cats and dogs are very

similar in the context of cats, dogs and cows.

We can however improve retrieval by using different

contexts for different queries. As the choice of the best con-

text for a given query might be a difficult one, we propose

to use multiple contexts per query (i.e. contexts at multi-

ple scales) and average the similarities across contexts. We

will show experimentally in the next section that averaging

across multiple scales makes sense because of the comple-

mentary information contained in each scale. Broad con-

texts typically lead to coarse measures of similarity (low

precision at low recall but relatively good precision at high

recall) while narrow contexts lead to fine measures (high

precision at low recall but low precision at high recall).

We thus propose the following algorithm. Given a query

q, for scales k = 1...K:

1. Compute the similarity f(q, pi) to all templates pi and

keep Nk-closest, where Nk increases with k. Let Lk

be the list of their indices.

2. Estimate the context uk as the centroid of the Nk tem-

plates. If f is a similarity measure, it is computed as:

uk = arg max
u

∑

i∈Lk

f(u, pi). (21)

The previous optimization has to be done under the

constraint that uk is a multinomial. In the case of L2

or KL, uk is simply the average.

3. For all templates compute:

ωi,k = csf (q, pi|uk) (22)
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Figure 2. Average percentage of templates which have a non-zero

similarity to a given query as a function of the short-list size as

estimated on the Holiday dataset [6]. Notice the near-perfect linear

dependency.

The multi-scale similarity for template pi is the average of

the ωi,k’s for the different k’s. We experimented with two

simple averaging schemes. The first one is a the arithmetic

mean. The second one is a weighted mean where the weight

at a given scale is proportional to 1/Nk. This gives more

weight to fine measures than coarse ones. In our experi-

ments, we chose the sequence ofNk’s to increase (approxi-

mately) exponentially, e.g. 10, 25, 50, 100, etc.

The cost of computing csf (q, pi|uk) at step 3 of the algo-
rithmmight be greatly reduced by using the trick introduced

in the previous section. Indeed, the more focused the con-

text, i.e. the smaller the numberNk, the smaller the number

of templates with non-zero values csf(q, pi|uk). We show

on Figure 2 on the Holiday dataset how this number evolves

withNk (c.f. section 6.2 for more details on the experimen-

tal setup). For instance, for Nk = 10 on the average on the

order of 0.1% of the templates have a non-zero similarity to

the query (which corresponds on this dataset to less than 2

templates). We found-out experimentally that the probabil-

ity for a template pi to have a non-zero value csf (q, pi|uk)
if pi is not in the short-list Lk was close to zero. There-

fore, we further speed-up the retrieval of the algorithm by

modifying step 3 as follows:

ωi,k =

{

csf (q, pi|uk) if i ∈ Lk

0 if i /∈ Lk
(23)

with no significant difference in performance.

We note that our multi-scale retrieval algorithm has a fla-

vor of pseudo-relevance feedback (PRF) as we use images

which are similar to a query for re-scoring (see e.g. [2] for

an example of PRF as applied to image retrieval). How-

ever, the proposed approach is significantly different for the
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two following reasons. First, we do not use the similar im-

ages to re-estimate the querymodel but to estimate a context

model. Second, PRF typically uses only few images (hope-

fully only relevant ones) to update the query while we use

a larger set of images, most of which might be irrelevant.

We will show in section 6.2 that our multi-scale retrieval

can significantly improve accuracy on a dataset where PRF

would be useless.

6. Experimental Validation

We first discuss measures of retrieval accuracy. We then

report results on two very different datasets: the first one of

photographs, the second one of document images.

6.1. Measures of retrieval accuracy

Image retrieval – and more generally information re-

trieval – has traditionally been considered as a pure ranking

problem. The assumption is that the system does not know

the intent of the user and therefore that it should return all

templates (or at least a large subset of them) in descending

rank order and let the user choose the relevant ones. For

instance, if a user queries a database with a cat image, does

this mean that he / she is interested in retrieving all sorts

of cats or only cats of the same breed? However, there ex-

ist applications where the intent of the user may be known.

For instance, one can be interested in retrieving images of

the same object [10], of the same architectural landmark

[11] or of the same scene [6]. In such a case, the ability to

retrieve only relevant images could be of high value to the

user.

Therefore, we use two measures of retrieval accuracy:

• Macro Average Precision (macro-AP) consists in com-

puting the AP for each query separately and then aver-

aging these values. Macro-AP only measures ranking

performance.

• Micro Average Precision (micro-AP) consists in com-

puting the AP for all queries simultaneously. Micro-

AP measures both ranking performance as well as

the ability to set a common threshold across different

queries.

6.2. Holiday dataset

The Holiday dataset [6] contains 1,491 images of per-

sonal holiday photos. There are 500 image groups, each

of which represents a distinct scene. The first image of

each group is the query and the correct retrieval results

are the other images of the group. This dataset is perfect

to show that our multi-scale retrieval algorithm is different

from PRF. Indeed, it contains on the average two relevant

images per query and more than half of the queries have a

L2 L1 KL HE X2

micro Base 18.5 16.7 14.5 16.3 16.8

Ctxt 37.9 47.0 45.1 47.0 46.3

macro Base 45.7 55.0 57.9 55.3 55.8

Ctxt 51.9 60.0 59.1 60.4 60.4

Table 1. Results on the holiday dataset in terms of micro- and

macro-AP (in %). “Base” = baseline measures. “Ctxt” = proposed

measure of contextual similarity.

single relevant image. PRF would thus be useless on such a

dataset.

To encode images, we adopt the bag-of-visual-words

(BOV) framework [17, 3]. Low-level features [9] are ex-

tracted on dense grids at multiple scales. Offline, we learn

a visual vocabulary containing approximately 4,000 visual

words through clustering of a large set of low-level features.

Following [6], the visual vocabulary is learned on a sep-

arate dataset (in our case, a set of images coming from a

photofinishing workflow). Each image is then encoded as

a histogram of the number of occurrences of each visual

word, i.e. a multinomial distribution.

Baseline. We first report the results of baseline measures

in Table 1. As the KL divergence is not defined in the case

of sparse multinomials, the baseline KL results reported are

that of the LM approach of [13] which measures the KL

between the query and a smoothed version of the template

(c.f. introduction). The multinomial u in equation (1) was

estimated through averaging of all the BOV histograms in

the dataset. We first determined in a set of preliminary ex-

periments the optimal smoothing factor ω. This means that

the value ω was tuned to optimize the retrieval accuracy on

this dataset, which gives an unfair advantage to the LM ap-

proach with respect to other baseline measures or our ap-

proach. In the following experiments it is set to ω = 0.1.
Although our goal is not on comparison with [6] (espe-

cially [6] only reports macro-AP and not micro-AP), we can

see that our best baseline is on par with their baseline BOV

in term of macro-AP (54.9% with a 200K words visual vo-

cabulary).

We note that results in terms of micro-AP are signifi-

cantly lower than that of macro-AP. This shows that with

simple measures of similarity, using the same decision

threshold across different queries leads to poor results, even

when the different queries correspond to the same task.

Contextual KL. We now focus on the proposed contex-

tual KL similarity (c.f. section 3.3). We first consider a

single scale, i.e. we do not perform the averaging operation

over multiple scales. We report results in Figure 3 as a func-

tion of the short-list size Nk used to estimate the context

(c.f. section 5). Varying the short-list size has a significant

impact both on the micro-AP and macro-AP. Note that we

did similar experiments with the LM approach to retrieval
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Figure 3. Results (in terms of micro-AP and macro-AP) of the

proposed contextual KL for various short-list sizes (single scale).
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Figure 4. Precision / Recall curves for the contextual KL for vari-

ous short list-sizes.

but that varying the short-list size had virtually no impact

on the micro-AP or macro-AP.

We show on Figure 4 the Precision / Recall curves for the

contextual KL for various short-list sizes. Narrow contexts

(Nk = 10) lead to a high precision at low recall but low pre-

cision at higher recalls. The opposite effect can be observed

for broad contexts (Nk = 250). This clearly shows that

different contexts can contain complementary information.

We will show that it is beneficial to combine them as this

(i) avoids the difficult choice of choosing a priori the best

context and (ii) this can lead to a higher retrieval accuracy

than each context considered separately.

We now report results when averaging up to a certain

scale on Figure 5. We can see that both averaging schemes

give similar performance for the macro-AP but that the

weighted average is more robust for micro-AP. The best re-

sults are 45.1% (micro-AP) and 59.1% (macro-AP).
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Figure 5. Comparison (in terms of micro-AP and macro-AP) of the

unweighted and weighted averages when averaging up to a certain

scale for the contextual KL divergence. For instance the results for

a short-list size of 50 correspond to the averaging of Nk = 10, 25

and 50.

Other measures of similarity. We now consider other

measures of similarity to show that our good results are not

limited to the KL divergence. In table 1, we report results

with our best system, i.e. computing the contextual simi-

larity at multiple scales and then computing the weighted

average. All contextual measures improve over their non-

contextual counterpart in terms of macro-AP (from 1.2%

absolute for the KL up to 6.2% for the L2). However, the

improvement in terms of micro-AP is much more dramatic

(on the order of 30% absolute).

6.3. Document dataset

We now report experimental results on an internal dataset

of document images. This dataset contains 1,400 black and

white (i.e. binary) images. There are 14 classes (100 images

per class). This dataset contains both highly structured doc-

uments (e.g. forms) and loosely structured documents (e.g.

handwritten letters).

We experimented with two image representations. The

first one is the BOV as was the case for the holiday dataset.

The second one is based on run-length (RL) histograms [8].

In a nutshell, here is the principle of RL histograms. A run

is a sequence of pixels with the same value. The length

of a run is the number of pixels such a sequence contains.

The RL histogram is a histogram of the lengths of the runs

for black pixels and white pixels in 4 directions (horizontal,

vertical, diagonal and anti-diagonal). Although the BOV

representation led to slightly better results than the RL on

this dataset, we prefer RL as it does not require any train-

ing phase. Also, providing results on another representation

will show that our good results are not limited to the BOV. A

difference between RL and BOV histograms is that the lat-
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L2 L1 KL HE X2

micro Base 50.1 59.7 56.5 55.3 57.3

Ctxt 65.8 72.5 70.0 70.7 70.1

macro Base 61.5 67.7 65.4 64.6 66.1

Ctxt 67.1 72.8 70.1 70.9 70.2

Table 2. Results on the document dataset in terms of micro- and

macro-AP (in %) “Base” = baseline measures. “Ctxt” = proposed

measure of contextual similarity.

ter one is very sparse while the former one is almost dense.

We applied the proposed algorithm with the same set-

tings as in the case of the holiday dataset. Results are shown

in Table 2 for baseline measures as well as the proposed

contextual measures. One more time, as the KL is not de-

fined when some of the multinomial values are zero, we re-

port results for the smoothed version of the KL. Again, the

ω value for the smooth KL was tuned on this dataset. The

absolute increase in accuracy for the proposed approach

ranges from 4.1% (X2) to 6.3% (HE) for the macro-AP and

from 12.8% (L1,X2) to 15.7% (L2) for the micro-AP.

7. Conclusion

In this article, we presented a novel family of contex-

tual measures of similarity between distributions. We ex-

plained that in our framework any measure of similarity or

dissimilarity had its contextual counterpart. We showed that

for two important families of divergences (Bregman and

Csiszár) the contextual similarity computation is a convex

optimization problem. We focused on the case of multino-

mials and explained how to compute in practice the similar-

ity for several well-known measures.

This framework was applied to the image retrieval prob-

lem. In such a case, the context is estimated from the neigh-

bors of a query. We explained that using multiple contexts

(i.e. different sizes of neighborhoods) was beneficial as dif-

ferent contexts contain complementary information. Exper-

iments carried out on two very different datasets (the first

one of photographs, the second one of document images)

showed small consistent improvements in terms of macro-

AP (which measures purely ranking) and large improve-

ments in term of micro-AP (which measures both ranking

and stability of the scores across multiple queries).

In the future, we intend to focus on the application of

this framework to clustering. Indeed, clustering consists in

grouping “similar” images where the notion of similarity

depends on the other images contained in the dataset. For

instance, while it might make sense to group images of dif-

ferent breeds of cats in a general dataset of animal images,

it might not in a dataset of cat images. Hence, we believe

that clustering is a problem that could benefit greatly from

the proposed family of measures.
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