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Abstract

This paper introduces a feature descriptor called Shape

of Gaussian (SOG), which is based on a general feature de-

scriptor design framework called Shape of Signal Probabil-

ity Density Function (SOSPDF). SOSPDF takes the shape

of a signal’s probability density function (pdf) as its fea-

ture. Under such a view, both histogram and region co-

variance often used in computer vision are SOSPDF fea-

tures. Histogram describes SOSPDF by a discrete approx-

imation way. Region covariance describes SOSPDF as an

incomplete parameterized multivariate Gaussian distribu-

tion. Our proposed SOG descriptor is a full parameterized

Gaussian, so it has all the advantages of region covariance

and is more effective. Furthermore, we identify that SOGs

form a Lie group. Based on Lie group theory, we propose

a distance metric for SOG. We test SOG features in track-

ing problem. Experiments show better tracking results com-

pared with region covariance. Moreover, experiment results

indicate that SOG features attempt to harvest more useful

information and are less sensitive against noise.

1. Introduction

Feature descriptor is one of the most important factor for

computer vision. Finding a good solution for most com-

puter vision problems such as object detection and tracking

often means finding an effective description of image sig-

nals.

Histogram is a kind of feature description scheme often

used in computer vision. Different histogram based features

have been utilized to address different problems. For exam-

ple, there are gray scale histograms and color histograms for

tracking[2][1][6], histogram of oriented gradients for ob-

ject detection[3] and histogram of local binary pattern for

texture analysis[7]. Although histograms are successfully
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used in these applications, they have several disadvantages.

Firstly, dimensionality of a histogram increases exponen-

tially with number of its signal channels. For example, to

describe gray scale information of an image, we may just

need a 10 bins histogram, which yields a 10 dimensional

feature vector. However, to describe the image in RGB

color space, we need a 103 = 1000 bins histogram if we

use 10 bins to describe each color channel. Secondly, since

histograms do not lie on a vector space, finding an effective

distance measurement for histogram is difficult [9]. Finally,

because common machine learning algorithms treat feature

as a point in vector space, it is hard to classify on histograms

optimally.

Recently, Tuzel et al. [10] propose a novel feature de-

scriptor called region covariance. The basic idea is describ-

ing a signal’s feature using its covariance matrix. For a

n channel signal, its covariance is a n × n matrix Cn×n.

Because covariance matrix is symmetric, Cn×n has only
1
2n(n + 1) different values. That’s to say, dimensionality of

region covariance is 1
2n(n+1), which is significantly lower

than histogram. Using region covariance, it is very conve-

nient to fusion more signal channels to describe an image.

For example, Tuzel et al. [8] use 7 channels (x-coordinate,

y-coordinate, RGB values, horizontal gradients and vertical

gradients) in total to track an object, the resulting feature

vector is only of 1
2 × 7 × (7 + 1) = 28 dimensions. It

is also possible to combine different modalities (e.g. color

and infrared image) by using region covariance. As covari-

ance matrix can be represented as a connected Riemannian

Manifold, distance of region covariance can be measured in

Riemannian space. Furthermore, since Riemannian Mani-

fold is locally Euclidean, learning on region covariances can

be solved by locally mapping [12].

Although region covariance has been successfully ap-

plied to many computer vision fields. A theory analysis

of it is necessary. Under a theory framework, we can un-

derstand why and how it works. A theory analysis can also

guide us to choose proper signal channel for specific appli-

cation. Moreover, a theory analysis gives us the direction

to extend region covariance itself. In this paper, we present
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SOSPDF to understand region covariance. Under the view

of SOSPDF, histograms and region covariances are unified

theoretically. Then we propose a new feature descriptor

SOG, which inherits all the advantages of region covariance

and can harvest more useful information. There are three

major contributions in this paper: Firstly, we give a the-

ory analysis of region covariance and propose the SOSPDF

framework. Secondly, we propose a new feature descrip-

tor called SOG. Finally, we identify that SOGs form a Lie

group and derive a distance measurement for SOGs based

on Lie group theory. We test image SOG features in visual

tracking problem. Experiments show better tracking results

compared with region covariance.

2. Shape of Signal pdf

We present shape of signal probability density function

(SOSPDF) as a general framework for feature descriptor de-

sign. The term shape here means characteristic of a func-

tion. We consider a probability density function (pdf ) as a

geometry object (a curve or a surface), then the shape of this

geometry object is the characteristic of the pdf.

We model a n channel signal as a n dimension random

vector X ∈ ℜn. The signal contains raw original data or

results of some computation. For images, X may contains

three color channel (RGB) data. If we want spatial informa-

tion of pixels, horizontal position (x-coordinate) and verti-

cal position (y-coordinate) can be added to X . If we want to

describe image gradient, gradient values can be one channel

of X . For example, a typical X may have a form as

X = [x, y, R, G, B, |Ix|, |Iy |,
√

I2
x + I2

y ] (1)

where x and y are horizontal and vertical positions respec-

tively. R G and B are values of the three color channel. Ix

and Iy are the gradients in two direction.

SOSPDF describes a signal based on its pdf. Histogram

is a discrete approximation of a pdf. So it is a kind of

SOSPDF. However structure of the space formed by his-

tograms is difficult to analyze. Therefore, it is hard to de-

sign effective distance measures and machine learning al-

gorithms for histograms.

Region covariance is also a kind of SOSPDF. It describe

a signal using covariance matrix, which is also a charac-

teristic of the signal’s pdf. Different covariance matrices

produce different shapes of curves or surfaces representing

the signal’s pdf s. Covariance matrices, which are symmet-

ric positive definite (SPD), forms a connected Riemannian

manifold. Therefore, effective distance measure and ma-

chine learning algorithm for region covariance can be de-

signed by analyzing its structure using Riemannian geomet-

ric theory.

However, region covariance is an incomplete parame-

terized multivariate Gaussian, which ignores the important

mean vector parameter. If we approximate SOSPDF of X

with full parameterized multivariate Gaussian, we can de-

sign feature descriptors which are more effective than re-

gion covariance. A full parameterized multivariate Gaus-

sian approximation of f(X) is:

f(X) =
1

(2π)
n

2 |Σ|
1

2

e−
1

2
(X−µ)T Σ−1(X−µ) (2)

Where n is the dimensionality of X . The shape of f(X)
are controlled by mean vector µ and covariance matrix Σ
together. We call this kind of SOSPDF shape of Gaussians

(SOG).

In the next section, we present the definition of SOG de-

scriptors and analyze the structure of the space they formed.

We identify that SOGs form a Lie group. Then we can mea-

sure distance of SOGs based on Lie group theory.

3. Shape of Gaussians

3.1. Transformation of Multivariate Gaussians

Let X0 be a n dimensional standard multivariate Gaus-

sian distributed random vector. That’s to say, each element

of X0 is independent and have mean 0 and standard vari-

ance 1. Then n dimensional random vector X = PX0 + µ

is also multivariate Gaussian distributed and has mean µ and

covariance matrix Σ = PPT . In reverse, given an X with µ

and Σ, finding such a transformation is to find a solution of

factorization Σ = PPT . Because covariance matrices are

SPD matrices, the factorization is always exist. We restrict

P to a lower triangular matrix (i.e. nonzero elements are

found only in the lower triangle of P , including the main

diagonal). Then the solution of factorization PPT = Σ is

unique and it is the solution of Cholesky factorization in-

deed. We call transformation Z = PZ0 + µ with such kind

of P positive definite lower triangular affine transforma-

tion (PDLTAT). So each multivariate Gaussian distribution

can be transformed from a standard multivariate Gaussian

distribution by a PDLTAT. The corresponding PDLTAT also

represents the SOSPDF of the Gaussian distribution. PDL-

TAT can be written in a matrix form

[

X

1

]

=

[

P µ

0 1

] [

X0

1

]

(3)

where P is a positive definite lower triangular matrix. We

use matrix

M =

[

P µ

0 1

]

(4)

to represent the PDLTAT. PDLTAT matrices are close under

matrix multiplicational and inverse operation, which means

the product of two PDLTAT matrices and inverse of a PDL-

TAT matrix are also PDLTAT matrices. For any two n di-

mensional multivariate Gaussian distribution X1 and X2,
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let M1 and M2 be their PDLTAT matrices, then we have:

[

X2

1

]

= M2

[

X0

1

]

= M2M
−1
1

[

X1

1

]

(5)

We can see that PDLTAT from X1 to X2 is also an PDLTAT

∆M = M2M
−1
1 . So shape of multivariate Gaussians and

their distance measure can be derived by analyzing structure

of PDLTAT matrix M .

3.2. Definition of SOG

Let xi be the ith sample of n dimensional random vector

X . Note that xi and X are both vectors. Then SOG of X is

defined as:

S(X) =

[

R µ

0 1

]

(6)

Where R is the Cholesky factorization of X’s covariance

matrix Σ. That’s to say, RRT = Σ and R is a lower triangle

matrix. µ is the mean vector of X . µ and Σ can be computed

as follows:

µ =
1

N

N
∑

i=1

xi (7)

Σ =
1

N − 1

N
∑

i=1

(xi − µ)(xi − µ)T (8)

It can be proved that S(X) forms a Lie group, the group

multiplicational and inverse operation is matrix multiplica-

tion and inverse respectively. So we can analyze structures

of SOGs using Lie group theory.

3.3. Distance Calculation on SOGs

As PDLTAT matrices form a Lie group, we measure dis-

tance of two SOGs as distance between their corresponding

PDLTAT based on Lie group theory. Lie group is also a

differentiable manifold. Distance of two points on the man-

ifold (i.e. elements of Lie group) can be measured by length

of curve connecting these two points. The curve with min-

imum length between two points is called geodesic. The

length of geodesic can be measured in tangent space.

The tangent space of Lie group G to its identity element

forms a Lie algebra g. We can map between Lie group and

its tangent space from identity element I using exp and log
map.

m = log(M) (9)

M = exp(m) (10)

where m ∈ g and M ∈ G are elements of Lie algebra and

Lie group respectively.

Specially, Lie algebra of n dimensional PDLTAT is the

set of matrices

m =

[

U v

0 0

]

(11)

where U is a n × n lower triangular matrix, v ∈ ℜn is a

n×1 vector. We often unfold m to a 1
2n(n+3) dimensional

vector.

For matrix Lie group such as PDLTAT matrices, a log
map in equation (9) is a common matrix log operation with

a following matrix to vector unfolding manipulation (i.e. to

complete a log map operation, we should complete a matrix

log operation firstly, then unfold the resulting (n + 1) ×
(n + 1) matrix to a 1

2n(n + 3) dimensional vector since it

has only 1
2n(n + 3) variables). In the same way, a exp map

in equation (10) is a vector to matrix manipulation with a

following common matrix exp operation.

The geodesic length d between two group elements M1

and M2 of PDLTAT can be computed as

d(M1, M2) = ‖ log(M−1
1 M2)‖ (12)

where ‖ � ‖ is L2 norm of a vector. Geodesic length is an ef-

fective distance measure of points on a manifold. So we can

measure distance between two SOGs using geodesic length

of their correspondence PDLTAT matrices.

4. Image SOG features

SOG is a general feature description scheme, which can

describe images, audios and other signals even combination

of different signals. In this section, we discuss SOG for

images.

To describe an image using SOG, the first step is to

choose signal channels we need. Signals may contain raw

data in an image as well as data produced from raw data. For

example, sometimes we just need RGB values to represent

color information of an image. But if we need to describe

how color is distributed in image plane, spatial coordinates

should be added to signals. In some applications, gradients

should be included in signals.

Let n be the number of signal channel we choose, for

each pixel in an image or a region of the image we can get

a n × 1 vector. Let N be number of pixels, we can get

N samples x = {xi|i = 1, 2 . . .N} of signal X . Using

formula (7),(8) and (6), we can compute SOG of the image

(or region of the image).

In object detection and tracking, we usually need to com-

pute SOG of many regions which are heavily overlapped in

the same image. Under such situation, the mean vector µ

and covariance matrix Σ which are needed by SOG can be

computed using a fast algorithm based on the integral im-

age idea. Tuzel et al. [12] present the fast computation algo-

rithm for covariance matrix. Fast mean vector computation

can be derived easily in the same manner.

5. Experiments

To compare SOGs with region covariances, we apply

them in visual tracking. The main goal of our experiments
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is to test the effectiveness of SOGs. So we do not focus on

designing sophisticated tracking algorithms. In all of our

experiment, we using a local exhaustive search algorithm to

track manual initialized object.

We conduct experiments on the image sequences of

OTCBVS dataset [4]. We use seven channels signal for

color image sequences. The signal vector is chosen as

X = [x, y, R, G, B, |Ix|, |Iy |] (13)

where x and y are horizontal and vertical positions respec-

tive. R, G and B are values of three color channel. Ix and Iy

are gradients in two directions. Both our SOG descriptors

and region covariance are calculated on the same signals.
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Figure 2. Tracking results on OTCBVS OSU 1b color image se-

quence. The horizontal axis is frame number of images, The ver-

tical axis is tracking errors. The red solid line and blue dash-dot

line are plotted by our proposed SOG tracker and region covari-

ance tracker.

The tracked object is represented as an rectangle re-

gion. Initial position of the object is set manually. Fea-

tures of different positions are computed on the correspond-

ing rectangle regions. For SOG feature, we set the mean

of x-coordinate and y-coordinate to zero. Because same

sized boundary box at different position contain different

x-coordinate and y-coordinate values are region related, set-

ting their mean to zero can eliminate the affect. Features of

initial position in the first frame are used as model of ob-

ject appearance. In the following frames, we locally search

the region around the position of the preceding frame. We

use a fixed search radius, which is 40 pixels, and a fixed

search step, which is 2 pixels. The size of the boundary

box is fixed too. In other words, we do not search object at

different scales. For each position in the search range, we

compute a feature descriptor. Then we calculate distances

from these descriptors to the object appearance model. At

each frame, we update object position to the best matched

position.

(a) (b)
Figure 3. Similarity map of region covariance (a) and SOG (b).

The mode of SOG’s similarity map is more apparent than region

covariance’s.

Figure 2 shows error curves of both SOG based and re-

gion covariance based tracker. We use the Euclidean dis-

tances from positions produced by the two tracking algo-

rithms to ground truth positions as tracking errors. The re-

sults prove that our SOG feature descriptor is more effective

than region covariance. Figure 1 gives some tracking exam-

ples.

To give an illustration of the effectiveness of SOG, we

plot a similarity map in figure 3. The similarity map was

computed on the 120th frame of OTCBVS OSU 1b image

sequence. Both similarity of region covariance and SOG are

computed. We exhaustively scan the image with window of

object size. The scan step is one pixel horizontal and verti-

cal. At each position (x, y) we compute a region covariance

RCx,y and a SOG feature vector Sx,y. Note that the mean

of x-coordinate and y-coordinate is set to zero in SOG fea-

tures as discussed in previous paragraph. Then distance of

region covariance ρRC
x,y and distance of SOG feature ρSOG

x,y

from the associate object appearance model are measured.

At last we calculate the similarity measurement LRC
x,y and

LSOG
x,y as follows

LRC
x,y =

1

ρRC
x,y

(14)

LSOG
x,y =

1

ρSOG
x,y

(15)

The whole map LRC and LSOG are show in figure 3. We

observed that the global maximum value of SOG’s similar-

ity map is much higher than local maximums. In another

word, the mode of SOG’s similarity map is very apparent.

For region covariance, differences between the largest simi-

larity value and the second largest values are much smaller.

This property proves that SOG harvest more useful infor-

mation than region covariance.

To test sensitivity against noise, we contaminated the im-

age color values with additive zero mean Gaussian noise

with variance σ2. We use four different values for σ2, which

is 0.001, 0.01, 0.1 and 0.3. The error curves are show in fig-

ure 4. We observed that SOG is less sensitive against noise.

Actually, when variance of noise increases, region covari-

ance based tracker lost the object but SOG based tracker
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Figure 1. Tracking example on OTCBVS OSU 1b color image sequence. From left to right and top to down, the frame numbers are

1,19,32,39,121,171,184,194 respectively. Results of region covariance and SOG are marked by blue and red ellipses respectively.

still have very low error. Even when the variance is 0.3, the

image is blurred heavily, SOG based tracker still works sta-

bly. This can be explained that zero mean Gaussian noise

affects the covariance of signal but does not change the

mean of signal, by adding mean to feature descriptor, SOG

is less sensitive against noise than region covariance. Ac-

tually, region covariance can not discriminate two distribu-

tion with different mean but same covariance. Moreover,

because region covariance dose not take the mean of a dis-

tribution into consideration, two pair of distributions which

have same distance under SOG feature will have different

distance under region covariance. Just as points in a circle

have same distance to center point if we use x-coordinates

and y-coordinates together to compute distance, but if we

compute distance using x-coordinates only, they have dif-

ferent distances.

6. Discussion

One may argue that SOG is just a slight extension of

region covariance. But the most important advantage of re-

gion covariance is that its structure can be well analyzed us-

ing Riemannian geometry, which means effective distance

measure and classification algorithms can be designed for

it. Simply adding a mean vector to region covariance will

destroy its Riemannian structure. So the corresponding ad-

vantages will not exist. To analyze the structure of SOG in

a way like region covariance, more work need to do. In

this paper, we form SOGs as PDLTAT matrices utilizing

Cholesky factorization. Then we identify that PDLTAT ma-

trices form a Lie group. So we analyze the structure of SOG

using Lie group theory.

Just as histogram and region covariance, SOG is not a

specific descriptor, but a scheme for designing descriptors.

We can choose different signal channel to design different

descriptors according to application requirement. Whether

a SOG descriptor is sensitive to illumination change or not
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(a) σ2 = 0.001
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(b) σ2 = 0.01
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(c) σ2 = 0.1
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(d) σ2 = 0.3
Figure 4. Tracking results on OTCBVS OSU 1b color image se-

quence with zero-mean gaussian noise added. The horizontal axis

is frame number of images, The vertical axis is tracking errors.

The red solid line and blue dash-dot line are plotted by our pro-

posed SOG tracker and region covariance tracker. The four curves

show errors when gaussian noise with different variance σ
2 con-

taminated. In (a) (b) (c) and (d), σ
2 is 0.001 0.01 0.1 and 0.3

respectively.

depends on choice of signal channel. As we know, we have

color histograms which are sensitive to illumination change

and histogram of oriented gradients (HOG) which are not.

For SOG, it can be done in the same way. If we chose signal

channels which are insensitive to illuminate change, then

the corresponding SOG descriptor will be insensitive to il-

lumination change too.

Although it is possible to use mixture of Gaussian (MoG)

in our SOSPDF framework, there are some issues remained.

SOG can be extracted in a very fast way as discussed in

section 4. But algorithms such as EM for estimating MoG

are very slow. Furthermore, it is difficult to analyze MoG’s
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structure, so to design an effective distance measure. Nev-

ertheless, as discussed in section 7, integrate MoG with

SOSPDF is a promising direction for our future work.

This paper focuses on image feature descriptor, but not

sophisticated tracking algorithm. Object tracking itself is

an open problem which has many challenges such as partial

and full occlusions. Solving all these problems in object

tracking involves a lot of technologies such as Kalman fil-

ter, particle filter, mean shift et al. However, it is possible

to integrate SOG feature into sophisticated tracking algo-

rithms.

The most important contribution of this paper is the iden-

tification of Gaussian function space’s Lie group structure.

Therefore, we can analyzing Gaussian function space using

Lie group theory. Utilizing Lie group structure of Gaussian

function space, we can derive more effective distance mea-

sures, mean computation and machine learning algorithms.

As Gaussian pdf is very useful in computer vision, espe-

cially in feature description, analyzing the structure of its

space have many promising application. For example, im-

age feature space analyzing gains more and more attention

in recent years [12] [5] [13]. But all these related works

focus on region covariance. To the best of our knowledge,

no one has analyzed structures of other feature descriptors.

In this paper, we analyze structure of SOG, which is a more

general and more effective feature descriptor than region co-

variance.

Tuzel et al. [11] also measure distance of two affine ma-

trices using Lie group theory. But we note that the idea and

problem in this paper is very different from theirs. We fo-

cus on image feature descriptor. But they focus on object

motion information. Although both of us use the geodesic

length as a distance measure, it is an already existent well-

known mathematical theory. More precisely, we make a

connection between Gaussian pdfs and PDLTAT matrices

using Cholesky factorization. PDLTAT matrices is a sub-

space of affine matrices.

7. Conclusion

In this paper, we present a novel feature descriptor called

Shape of Gaussians (SOG) and a feature descriptor frame-

work called Shape of Signal Probability Density Function

(SOSPDF). SOG, region covariance and histogram are the-

oretically unified under SOSPDF. Using transformations of

multivariate Gaussians, we form SOGs as positive definite

lower triangular affine transform matrices. Then we identify

that SOGs form a Lie group. Based on Lie group theory, we

derive a distance measure of SOGs. Experiments are con-

ducted on visual tracking problem. Tracking results show

that SOG is more effective and less sensitive against noise

than region covariance.

There are several interesting issues for future work, some

of which we are currently working on. The first is to de-

sign a more sophisticated tracking algorithm using SOG.

For tracking, the update of object appearance model is im-

portant. As SOG does not lie on Euclidean space, we should

complete the update procedure by mean computation on Lie

group. A second issue is to classify on SOGs, such as de-

signing an object detection algorithm based on SOG. Fi-

nally, we may also consider extending SOG to more dis-

criminative descriptors based on more sophisticated distri-

bution approximate model, such as Gaussian Mixtures.
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