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Abstract

State-of-the-art approaches for detecting filament-like
structures in noisy images rely on filters optimized for sig-
nals of a particular shape, such as an ideal edge or ridge.
While these approaches are optimal when the image con-
forms to these ideal shapes, their performance quickly de-
grades on many types of real data where the image deviates
from the ideal model, and when noise processes violate a
Gaussian assumption.

In this paper, we show that by learning rotational fea-
tures, we can outperform state-of-the-art filament detection
techniques on many different kinds of imagery. More specif-
ically, we demonstrate superior performance for the detec-
tion of blood vessel in retinal scans, neurons in brightfield
microscopy imagery, and streets in satellite imagery.

1. Introduction
State-of-the-art approaches to detecting linear structures

of significant width rely on ideal models of their appearance
and of the noise processes. They are usually optimized to
find ideal lines or tubular structures with smooth profiles.
However, real linear structures such as those of Fig. 1 often
do not conform to this model, which can drastically impact
performance.

In this paper, we use the rotational properties of Gaus-
sian derivatives to achieve rotational invariance as in [9, 11],
However, instead of steering the filters, we rotate the image
features to a common reference and replace the optimality
criteria by a machine-learning algorithm that learns from
training data. Because this data encompasses the deviations
from the ideal model, the resulting algorithm is more robust
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(a) (b) (c)
Figure 1. Examples of complicated filament structures. (a) Blood
vessels in retinal scans. (b) Dendrites in brightfield microscopy.
(c) Streets in a neighborhood.

than traditional ones and can be trained to detect not only
simple linear-structures but also junctions and crossings. As
a result, we obtain better performance than [7] and [9] for
the detection of blood vessels in retinal scans, neurons in
brightfield microscopy imagery, and streets in satellite im-
agery. We chose these two methods as our baseline because
they are widely acknowledged as being among the best in
their respective classes.

2. Related Work

Current approaches to finding linear structures that are
not simple edges fall into two main categories. Some rely
on models of an ideal ridge-like structure to derive optimal
filters while others involve computing the Hessian matrix
centered on individual pixels and relying on its eigenvalues
to classify the pixel on the basis of how cylinder-like the
local intensities are. We discuss these two classes below.
For an extensive review on vessel extraction techniques, we
refer the reader to [10].
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2.1. Optimal Filtering

Optimal filters attempt to find linear image structures by
following the criteria for optimal edge detection outlined
in [4]. Methods following this approach include the Canny
detector [4], and optimal convolution filters [12].

An elegant and computationally efficient approach to de-
tect edges or ridges at any given orientation is the use of
steerable filters [8]. The underlying principle is that the re-
sponse of the filter at any orientation can be calculated as a
linear combination of a basis of filters, thus avoiding the ex-
pensive convolutions with orientation-specific 2D kernels.
A special case of steerable filters is the linear combination
of Gaussian derivatives up to a given order [9, 11].

However, the criteria used to derive the steerable filters
for ridge detection assumes ideal models of the ridges and
noise. In theory, more realistic models could be used with-
out changing the overall approach, but no generic strategy
has been offered as to how this should be done.

2.2. Hessian-Based Approaches

Hessian-based approaches to filament detection model
them as being elongated elliptical structures. This involves
computing the eigen-decomposition of the Hessian matrix
at individual pixels and relying on the eigenvalues of the
Hessian to classify pixels as filament-like or not [14, 7, 18].
The Hessian matrix for a given pixel is constructed by
convolving the local image patch with a set of Gaussian
derivative filters. The Hessian can be modified to create
an oriented filter in the direction of minimum variance,
which should correspond to the direction of any existing fil-
ament [11]. To find filaments of various widths, a range of
variances for the Gaussian is used and the most discriminant
one is selected. The fact that intensity changes inside and
outside the filaments has also been explicitly exploited by
locally convolving the image with differential kernels [3],
finding parallel edges [5], and fitting superellipsoids to the
vessel based on its contour integral [19, 15]. All these meth-
ods, however, assume image regularities that are present in
well-behaved images but not necessarily in noisier ones.
Furthermore, they often require careful parameter tuning,
which may change from one data-set to the next.

Recently, probabilistic approaches able to learn whether
a pixel belongs to a filament or not have been applied to
the problem. Instead of assuming the filaments to be ellip-
soidal, they aim at learning their appearance from the data.
In [1], the eigenvalues of the structure tensor, are repre-
sented by a mixture model whose parameters are estimated
via Expectation Maximization. Support Vector Machines
operating on the Hessian’s eigenvalues have also been used
to discriminate between filament and non-filament pix-
els [13]. Probabilistic Boosting Trees with rotational fea-
tures have also been used for vessel segmentation [16]. The

main difference with our rotational features is that ours are
estimated densely around the pixel under analysis, while
theirs are sparsely sampled points.

The approach in [13] is closest to ours because it also re-
lies on a learning paradigm. However, its ability to general-
ize is limited by the fact that it still relies on the eigenvalues
of the Hessian, a low-dimensional descriptor, whereas we
train our classifier directly on the space of gaussian deriva-
tives, thereby making fewer assumptions and allowing our
classifier to handle structures whose shape is more variable.

3. Methodology
Our goal is to devise an algorithm that detects filament-

like structures of interest at any orientation or scale while
rejecting the noise present in the images.

Our algorithm is as follows. For each pixel we compute
multi-scale rotational features using Gaussian derivatives of
various widths. Then, we train an SVM classifier on those
feature vectors rotated to a canonical orientation. This clas-
sifier is used to classify filament-like structures, as depicted
by Fig. 2.

3.1. Feature Vector

More precisely, let Gσ denote the symmetric centered
Gaussian kernel of variance σ

∀z ∈ R2, Gσ(z) =
1

2πσ2
exp
(
−‖z‖

2

2σ2

)
, (1)

This function and all its derivatives are separable in x and
y due to their diagonal covariance matrix. Let Gσi,j be the
ithderivative of the Gaussian kernel with respect to x and
the jth derivative with respect to y,

Gσi,j =
∂i+jGσ

∂xi∂yj
. (2)

Then, the feature vector of dimension d = 1
2 (M + 3)M

can be written as the value at z of the convolution of the
image by the Gaussian derivatives:

vσ(I, z) =
(
I ∗
[
Gσ0,1
E0,1

,
Gσ1,0
E1,0

,
Gσ2,0
E2,0

· · ·
Gσ0,M
E0,M

])
(z) (3)

where Ei,j is the energy of the Gσi,j function.
To achieve scale independence, we extend the feature

vector of each point by adding features to it at S different
scales. The full feature vector is of dimension D = Sd and
can be written as:

v(I, z) = [vσ1(I, z), · · · , vσS (I, z)] (4)

This feature vector is the projection of the image around
pixel z into the space defined by the Gaussian derivatives.
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Figure 2. Our approach for filament detection is composed of two steps. First, we compute a feature vector for the image patch that can be
rotated to any orientation. The second step is to classify the feature vector as a filament or non-filament using an SVM. This is done by
rotating the feature vector to find the orientation with maximum classification score.

3.1.1 Rotating the Feature Vector

Following [9], any vector in the space defined by the Gaus-
sian derivatives can be rotated or steered. By rotation, we
mean that the shape of the function at any orientation can be
defined as a linear combination of the Gaussian derivatives.
The coefficients of that linear combination depend on the
desired orientation. For a full explanation of this property
we refer the reader to [9].

More precisely, if for an image I , angle θ, and location z
in the image frame, Iθ denotes the image after rotation and
zθ the location in the rotated image frame, we have

∀σ, ∀θ, ∃Rθ,σ∈ Rd×d, such that,

∀I, ∀z, vσ(Iθ, zθ) = Rθ,σ vσ(I, z). (5)

Hence, extraction of the feature vector at any orientation
does not require the evaluation of new linear filter re-
sponses, but simply multiplying the vector vσ(I, z) by a
d× d matrix. For each scale, the relation between vθ and v
is [9]:

vθk,j =
k∑
i=0

∑
{l,m}∈S

vk,i

(
k − i
l

)(
i
m

)
(−1)k−i−lcos(θ)i+l−msin(θ)k−i−l+m (6)

The set S can be defined as the set such that S(k, j, i) =
{l,m|0 ≤ l ≤ k − i, 0 ≤ m ≤ i, k − (l +m) = j}.

This rotation of the feature vector is done for all scales.
LetRθ denote theD×D block matrix corresponding to the
same linear operator for the multi-scale feature vector.

3.2. Learning the Shape of the Filaments

Because we can rotate all feature vectors to a canonical
orientation, we can train a single general classifier. This
classifier is trained as follows:

We select at random N triplets (image, location, orienta-
tion) corresponding to filament structures

{(I1, z1, θ1), . . . , (IN , zN , θN )}, (7)

and N triplets corresponding to non-filaments

{(IN+1, zN+1, θN+1), . . . , (I2N , z2N , θ2N )}. (8)

Then, from the D-dimension feature vectors extracted at
these points

∀n, vn = Rθn v(In, zn) (9)

we define a training set, the first N samples of which are of
class 1 and the last N of class 0

{(v1, 1) , . . . , (vN , 1) , (vN+1, 0) , . . . (v2N , 0)} . (10)

From that labelled sample set, we train an SVM of the form

f : RD → R

f(v) =
N∑
n=0

an κ (vn, v) + b ,
(11)

where κ is the standard Gaussian kernel, the variance ν of
which is obtained by minimizing the error on a validation
set.

This strategy of training a classifier common to all orien-
tations is a direct application of the idea of data aggregation
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through stationary features [6]. We parametrize the features
with a complex pose instead of training several classifiers
dedicated to constrained subsets of samples. Doing so, we
avoid both the computational overhead of training several
classifiers and the over-fitting due to the fragmentation of
the sample set.

3.3. Detecting Filaments

To build a predictor invariant to rotation, we take as a
final prediction score the maximum over all possible orien-
tations of the classifier f . More precisely, for any image I
and any location z in the image, the final predicted score is

ψ(I, z) = max
θ
f
(
Rθ v(I, z)

)
, (12)

where f denotes the trained SVM, v(I, z) is the D-
dimensional feature vector computed in image I at location
z and Rθ is the rotation linear operator for angle θ defined
in Section 3.1.1.

3.4. Relationship with Steerable Filters and
Hessian-Based Methods

The image features we use are the same as those pro-
posed in [9] but, because the SVM is nonlinear, there is
no analytical criterion to decide by how much the features
should be rotated. As a result, we have to sample the space
of possible orientations and find the one that produces the
greatest SVM response. This, of course, results in addi-
tional computational complexity, which could be mitigated
in several ways. The simplest would be to estimate the ori-
entation at each pixel using a standard method and then to
evaluate SVM response using that orientation only. A more
sophisticated way would be to use the training data not only
to learn the SVM parameters but also a specialized orienta-
tion estimator. A completely different, but compatible, ap-
proach would be to use a cascade of classifiers of increasing
complexity to perform the full computation only at loca-
tions where it makes sense. These are issues we intend to
pursue in future work.

Our method, as all those that involve steearable fil-
ters, has tight links with those that rely on the eigen-
decomposition of the Hessian. The eigenvalues of the Hes-
sian can be interpreted as the response to a second order
steerable filter in the direction of the underlying ridge [11].
The final result of this methods is a non-linear function ap-
plied on the eigenvalues of the Hessian [7, 14]. This func-
tion can actually be learned, as in [13], but because the Hes-
sian is very specific, it does not have the kind of flexibility
to learn the shape of very different kinds of filament-like
structures, such as junctions and intersections, that our ap-
proach offers.

4. Results
We compared the detection performance of our algo-

rithm against that of [9] and [7] on the three very different
kinds of images depicted by Fig. 1. We have chosen these
two algorithms as our baseline because they are state-of-
the-art representatives of the two main classes of existing
detection methods, as discussed in Section 2.

Images containing representative results of each method
are shown in Figures 6, 8 and 10. Each figure contains the
original image, the ground truth annotations, and the results
of our method and the methods of [7] and [9]. The bottom
row shows a detailed area of interest. To help visualizing
these results, we threshold the images for a true positive
rate and draw true positives in red, false positives in green,
and false negatives in blue. The resulting figures are best
seen in color.

The ROC curves in Figures 3,9 and 7 summarize the per-
formance of each method. We will use the results to argue
the following points:

1. On relatively clean images in which the linear struc-
tures truly conform closely the ideal model we obtain
results very similar to those of [9] and [7] for very low
false positive rates. When higher false positive rates
are allowed we outperform the other methods.

2. On more difficult images, the performance of all meth-
ods degrade, but our methods degrades to a lesser ex-
tent.

We first discuss our experimental methodology and then the
specific results obtained for blood vessels in retinal scans,
dendrites in brightfield microscopy imagery, and streets in
satellite images.

4.1. Experimental Methodology

Ground truth data sets were collected for each type of
images, either by experts (blood vessels, neurons) or man-
ual annotation (roads). The annotations denote linear struc-
tures and corresponding orientations. Negative samples
were chosen randomly from non-filament structures. We
compute a feature vector vn for each sample ground-truth
location zn and its corresponding orientation θn. For each
image type we collected a minimum of two fully annotated
images. The annotated data was divided into disjoint train-
ing, validation and test sets, leaving at least one whole im-
age for testing.

The training and validation sets for each image type con-
tains 2500 positive and 2500 negative samples for each of
the three kinds of linear structures we are interested in. The
training set is used to train the SVM and the validation set
is used to optimize its meta-parameters, namely the kernel
variance ν and the regularization parameter C, as discussed
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Figure 3. ROC for the blood vessel images. For high true pos-
itive rates, both our single-scale and mult-scale methods outper-
form those of [7, 9].
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Figure 4. Landscape of the validation error with respect to the ν
parameter of the kernel and the C parameter of the SVM for the
blood vessels. The function is smooth and a simple optimization
method yields good results.

in Section 3.2. In Fig. 4 we plot the typical landscape of the
validation error with respect to ν and C.

For each image type, we trained a single-scale and a
multi-scale classifier. The single scale classifier is trained
to allow for a fair comparison against the filter of [9]. The
multi-scale one is trained using a range of scales that is
adapted to the width the linear structures we are looking
for.

The order of the derivatives in this paper is fixed to M =
4 to allow a fair comparison against the filters described in
[9].

4.2. Blood Vessels

Blood vessel images obtained from the Drive data set
[17] are the cleanest of the three image types. The back-
ground is mostly uniform and the vessels appear as dark
structures. However, a circular clear structure, close to the
root of the tree is a localized source of noise, as it can be

(a) (b) (c) (d)
Figure 5. Re-training. (a) Original image. (b) Ground truth. (c)
Detection obtained with our original detector. Note the high re-
sponse to the bright circular structure. (d) Detection after retrain-
ing using negative examples obtained from similar circular struc-
tures. While not eliminated, the response to the distracting circular
structure has been reduced.
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Figure 7. ROC for the neuron images. Our multi-scale and single
scale methods outperform the methods of [9, 7] over the entire
ROC curve.

seen in Fig. 6(a). The edges of this structure causes prob-
lems to both our classifier and to the algorithms of [9, 7].

The scales used for the training and detection are σ =
{2, 5, 8} in the multi-scale case and σ = 2 for the single
scale . This single-scale σ was selected to give the best
results in the method of [9].

The corresponding ROC curve and images can be seen in
3. At high true positive rates we clearly outperform [9, 7].
When the true positive rates falls below 60%, the methods
of [9, 7] outperform ours. This is because our algorithm
is more sensitive to edges of the clear structure than [9, 7].
During the training phase, very little points fell in this area,
and thus we did not learn to reject it. Modifying the training
and validation sets to include those points as negative sam-
ples makes our algorithm much less sensitive to this effect
and improve our detection results. The response of this new
classifier, together with the response of the original SVM
classifier, is shown in Fig. 5.

This illustrates one of the strengths of our approach. We
are not stuck with a rigid model, but can apply a bootstrap-
ping approach that allows us to retrain the system until the
desired results are obtained.

1586



Original Ground Truth SVM-Multiscale Jacob 04 ([9]) Frangi 98 ([7])

Figure 6. Images of blood vessels in retinal images. For each method, a threshold has been applied to achieve a true positive rate of 80%.
Top row: full image. Bottom row: detail. In each result, red pixels indicate true positives, blue indicate false negatives and green indicate
false positives. While all three methods are able to correctly recover the main structures, our approach is less sensitive to noise. Note the
increase in density of green pixels in the two right-most columns.

Original Ground Truth SVM-Multiscale Jacob 04 ([9]) Frangi 98 ([7])

Figure 8. Images of neurons thresholded for a true positive rate of 80% for each method. Top row: full image. Bottom row: detail. The
detections of our algorithm and [7] have a tighter fit around the filament than [9]. This can be explained by the fact that our method and the
method of [7] employ non-linear techniques, whereas [9] uses a linear filter with a smoother profile. Note that our method is less sensitive
to noise from blob structures than [7] because we have learned to reject such structures.

4.3. Neurons in Brightfield Microscopy

Images of neuron dendritic trees, shown in Fig. 8, are
obtained from brain sections of rats. The neuron is dyed and
then imaged with a brightfield microscope at different tissue
depths. The images we analyze are the minimum intensity

projection of the 3D stacks.

Several artifacts appear in these images due to irregu-
larities of the staining process, non-gaussian blur attributed
to the image acquisition technique and the 3D to 2D pro-
jection. As a result, many interesting filaments appear as
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Figure 9. ROC for the street images. All three methods performed
noticeably worse on street images, however, our algorithm is the
most robust to structured noise and outperforms [7, 9] by a greater
margin.

faint structures, and filaments with abrupt changes in width
severely blurred. The image in Figure 1(b) contains some
of these challenging artifacts.

We compare the performance of our single and multi-
scale detectors and those of [9, 7] in Fig. 7. We clearly
outperform [9, 7] over the entire ROC curve.

4.4. Streets in Satellite Images

Detecting streets in satellite images was the most chal-
lenging task for the filament detectors. As seen in Fig. 10,
the streets are often occluded by trees. The intensities of the
streets vary according to the quality of the concrete. There
are many other structures that can be mistaken for roads,
such as houses, swimming pools and parking lots. Further-
more, the areas surrounding some streets have the same in-
tensity as the street. In this case the street no longer resem-
bles a filament.

We detected filaments in the street images in the same
manner as the vessel or and neuron images. As one might
expect, the results are worse in this dataset than in the previ-
ous ones. Nevertheless, our algorithm outperforms [9] and
[7], and even more convincingly in this case. This is be-
cause our algorithm is much less sensitive to the structured
noise present in the images (e.g. from houses, parking lots),
as we have learned to reject it in the training phase. This
robustness to structured noise is demonstrated by the white
houses that appear in the detail of Fig. 10. While [9, 7]
react strongly to them, our algorithm rejects them almost
completely.

5. Conclusion
We have presented an algorithm to detect filament-like

structures in complicated imagery. Instead of explicitly
modeling the filaments and the noise present in the image,
we learn a model of the filaments from the data itself. By
doing this we are able to not only detect filaments, but re-
ject structured noise. Our approach is also able to detect
non-ideal filament structures, which cannot be easily explic-
itly modelled, such as junctions or filaments of non-uniform
width.

Our main contribution is to combine a machine learning
approach with the decomposition of the image into a multi-
scale rotational basis to achieve rotation and scale invari-
ance. This allows us to train a single classifier that learns
on data in a canonical orientation. Our classifier is able to
detect filaments at any orientation by applying a simple ro-
tation transformation to the extracted feature vector of the
pixel under analysis.

We have shown the generality of our approach by eval-
uating it on three different types of images: blood vessels
in retinal images, neurons in brightfield microscopy and
streets in satellite imagery. Our results demonstrate that our
approach outperforms state-of-the-art methods in all three
scenarios and, that the margin of improvement increase with
the difficulty of the image.

6. Future Work
Thus far, we have not discussed optimal selection of the

set of scales in which the feature vector is computed, or the
order of the filters. For some type of images, only Gaussian
derivatives of even order might be relevant. The automatic
selection of the scales and orders could be done through the
inclusion of an L1 regularization term in the computation of
the SVM.

Finally, a future line of research might be to extend our
algorithm to 3D image stacks using the rotation properties
of steerable filters in 3D [8, 2]. The computational cost of
adding a new dimension would have to be addressed, as
the number of features needed to achieve rotation increases
drastically.
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