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Abstract

In this paper we revisit the process of constructing a
high resolution 3D morphable model of face shape varia-
tion. We demonstrate how the statistical tools of thin-plate
splines and Procrustes analysis can be used to construct
a morphable model that is both more efficient and gener-
alises to novel face surfaces more accurately than previ-
ous models. We also reformulate the probabilistic prior that
the model provides on the distribution of parameter vector
lengths. This distribution is determined solely by the num-
ber of model dimensions and can be used as a regularisa-
tion constraint in fitting the model to data without the need
to empirically choose a parameter controlling the trade off
between plausibility and quality of fit. As an example appli-
cation of this improved model, we show how it may be fitted
to a sparse set of 2D feature points (approximately 100).
This provides a rapid means to estimate high resolution 3D
face shape for a face in any pose given only a single face
image. We present experimental results using ground truth
data and hence provide absolute reconstruction errors. On
average, the per vertex error of the reconstructed faces is
less than 3.6mm.

1. Introduction
The problem of estimating 3-dimensional face shape

from one or more images has attracted considerable atten-

tion in recent years [4, 8, 10, 11, 18, 19]. The primary moti-

vation for this work is that 3D shape information provides a

pose and illumination invariant description of a face, which

can either be used for recognition directly [4, 7, 18], or to

produce illumination and pose normalised images for in-

put to a 2D recognition system [2, 18, 19]. The benefits

of such an approach are improved robustness to changes in

pose, illumination and expression, while still only requiring

a single intensity image as input.

Although shape-from-shading provides a possible route

to estimating facial shape, the most promising results have

been obtained using a statistical model of 3D face shape.

The best known work in this area is the 3D morphable

model of Blanz and Vetter [3]. This is a low-dimensional

parametric model of 3D face shape and texture. To solve

the problem of face shape recovery, the challenge is to fit

the model to images of previously unseen subjects. This

amounts to solving a highly complex nonlinear minimiza-

tion problem which requires estimation of: 1. shape and tex-

ture parameters, 2. pose, scale and position of the subject,

3. camera and surface reflectance parameters and 4. illumi-

nation conditions present in the scene. This approach has

been shown to be robust and provides high accuracy on real

world data. Indeed, the estimated appearance parameters

contain useful identity information and provide a route to

state-of-the-art performance in face recognition across pose

and illumination variation from a single gallery image [16].

The most recent work in this area has focused on de-

veloping more sophisticated morphable model fitting algo-

rithms. At the expense of simplifying the reflectance as-

sumptions by using a Lambertian model, Zhang and Sama-

ras [18] showed that a morphable model could be fitted un-

der unknown and arbitrarily complex illumination condi-

tions using a spherical harmonic basis. On the other hand,

both Romdhani and Vetter [17] and Moghaddam et al. [15]

focus on improving the accuracy and efficiency of the fitting

process respectively. In both cases, they avoid the problems

of local minima in the optimisation function by using fea-

tures derived from the input images rather than the inten-

sity data itself. Romdhani and Vetter [17] used edges and

specular highlights to obtain a smooth cost function, while

Moghaddam et al. [15] used silhouettes computed from a

large number of input images. Knothe et al. [13] have be-

gun to consider the problem of model dominance and used

local feature analysis to locally improve the fit of the model

to a set of sparse feature points.

All of these methods are based on explicitly modelling

the underlying physical processes that give rise to an ob-

served image, by rendering each hypothesised appearance.

It is not clear that this is either necessary, nor the most prac-

tical approach. As already mentioned, the optimisation is

complex and prone to becoming trapped in local minima.

An alternative approach proposed by Blanz et al. [1] in-

stead uses only the position of a sparse set of 2D feature
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points (perhaps as few as 17). In this case, shape parame-

ters are found by minimising the error between the observed

and predicted positions of the feature points in the image

plane. The model is also used as a regularisation constraint

to balance quality of fit against plausibility.

In this paper we make a number of contributions to the

use of morphable models for face shape recovery. First, we

provide a new framework for constructing a 3D morphable

model from a training set of facial meshes. By making use

of techniques from the statistical shape analysis literature,

we show how to construct a morphable model whose cap-

tured variance is of greater utility in the sense that the gen-

eralisation error (i.e. average error when representing out of

sample surfaces) is lower for both a fixed number of model

dimensions or fixed percentage of total variance captured.

Second, we show that the distribution of parameter vector

lengths follows a chi-square distribution and discuss how

the parameters of this distribution can be used as a regu-

larisation constraint on the length of parameter vectors. Fi-

nally, we use our improved model and statistical prior in the

setting of fitting a dense 3D morphable model to sparse 2D

feature points. We verify empirically that our analytical pre-

diction of the parameter vector length constraint coincides

with the optimum operating point of our algorithm.

2. Morphable model construction

The process of constructing a morphable model is di-

vided into three stages: 1. establishing a dense correspon-

dence, 2. shape alignment and 3. statistical modelling. In

each case, we outline previous methods before describing

our approach. We begin by describing how our approach

allows us to construct a morphable model as a shape space.

2.1. Morphable Models as Shape Spaces

The 3D morphable face model of Blanz and Vetter [3]

captures the class-specific properties of faces by finding a

low dimensional parameterisation of 3D face shape and tex-

ture. The model is learnt from a sample of high resolution

3D face scans. A common interpretation of the meaning

of the shape of an object is Kendall’s [9] notion that shape

is the geometrical information that remains after the effects

of location, scale and rotation have been removed. There

is a comprehensive toolbox of techniques available for the

statistical analysis of shape using data which is provided in

terms of coordinates of named point locations or landmarks.

Namely, these are Kendall’s shape space and the application

of linear multivariate statistics in the tangent space at the

Procrustes average. This group of techniques has become

to be known as geometric morphometrics. A landmark is

a hypothesis of equivalence under a particular measure of

similarity, e.g. anatomy, topology or function. In effect, the

implied meaning of a landmark point is, in some sense, the

same across the whole population.

However, the statistical analysis of continuous curves

or surfaces (which contain only relatively sparse salient

points) is not so well developed. For example, only a rela-

tively small proportion of the face surface contains salient

points which may be identified with good repeatability

across all faces. The remainder of the face comprises large

areas of smoothly shaded, textureless surface. It is therefore

not obvious how a landmark-based statistical approach can

be applied to model the variations in the face surface.

The morphable model of Blanz and Vetter [3] described

above is based on transforming a set of face surfaces into a

vector space such that any convex combination of members

of the training set results in a viable new face. However,

their model is not a shape space. They only coarsely re-

move the effects of rotation, translation and scale before the

dense correspondence between samples is known. In other

words, they ultimately treat every vertex in the model as

a landmark but do not remove pose effects with respect to

these landmarks.

We propose an alternative approach for constructing a

3D morphable model using Kendall’s notion of shape space.

Our work closely follows the semilandmark approach of

Bookstein [6]. The key idea is to compute correspondences

for ‘deficient’ regions (i.e. those lacking landmark points)

using the part of the data that is not deficient. This is done

in a principled manner by minimising a physically moti-

vated bending energy of the data about its Procrustes aver-

age. We use Procrustes analysis to obtain pose free shape

vectors. This combination of techniques allows us to con-

struct a dense 3D morphable model as a shape space.

2.2. Finding Dense Correspondences

Blanz and Vetter’s [3] approach is to effectively treat ev-

ery vertex of a face mesh as a distinct landmark point. This

is possible because a modified optical flow algorithm is used

to find dense correspondences between all samples in the

training set. These correspondences are based on matching

regions with similar colour and topography to a reference

face and subsequently resampling every face in a consistent

manner.

The advantage of their approach is that a model may be

constructed automatically with little manual intervention.

However, the similarity measure used to find correspond-

ing points between faces relies on an ad hoc formulation

of local surface features, such as 3D position, texture, local

curvature and the surface normal. It is unclear which fea-

tures should be chosen and how their relative importance

should be weighted. Moreover, the utility of different fea-

tures will vary spatially and between samples. For example,

when registering a sample with a beard to one without, tex-

ture is an unreliable feature to use. The second problem

is that large areas of the face contain no salient structures,

1328



either in the texture or shape domain. For example, the fore-

head and cheeks. In these regions the calculated flow field

is noisy and unreliable. Blanz and Vetter [3] overcome this

problem by smoothing and interpolating the flow fields. Fi-

nally, the choice of reference face will affect the quality of

detected correspondences and ultimately the final model.

At the expense of introducing some manual intervention,

we suggest an alternative approach which offers potentially

more stable performance. Because our method does not re-

quire the selection of a reference face, only one possible

model can be constructed from a given set of training data.

We commence with a set of face surfaces obtained by a

Cyberware 3030PS laser range scanner. These surfaces are

parameterised in cylindrical coordinates. This provides a

convenient representation of the facial manifold in 2 dimen-

sions, (u, v). A set of sparse 2D landmark points are manu-

ally identified on the parameterisation of each face surface.

The landmark points are chosen such that they can be re-

liably located on all training samples. With these sparse,

but reliable, correspondences in hand, the mean coordinates

of each landmark point are found. The x, y and z coordi-

nates of each vertex can be expressed as a function in (u, v)
space, e.g. x(u, v). Similarly for each colour channel in

the texture map. We warp the landmark points of each sam-

ple to the mean landmarks. We interpolate this warp using

a physically motivated bending energy, through the appli-

cation of a thin-plate spline warp [5]. Finally, we resam-

ple the vertex coordinate functions in a consistent manner

across all faces. The result is that a point (u, v) corresponds

to the same point on each face in the training set, i.e. we

have established a dense correspondence. This process is

demonstrated in Figure 1.

In drawing a comparison between our approach and

Blanz and Vetter’s [3] optical flow algorithm: both methods

begin with a sparse set of correspondences (ours manually

landmarked, theirs the set of automatically detected corre-

spondences that are considered reliable) and both interpo-

late the remainder. Construction of the morphable model is

done offline prior to its use in an application such as face

shape recovery. Hence the manual processing required by

our methods is an acceptable burden if it results in more

accurate correspondences.

2.3. Shape Alignment

In Blanz and Vetter’s [3] morphable model, shape align-

ment is treated as a preprocessing step. The raw face

meshes are marked with a small number of feature points

and a 3D-3D transform is used to align each face to a refer-

ence face. In other words, when this alignment takes place,

the dense correspondence between faces is unknown and

the scale, translation and rotation necessary to register each

face to the reference is only a very coarse approximation.

Further, as with computing the dense correspondences, the

Figure 1. Shows the correspondence of scans based on the princi-

ple of thin-plate splines. Using two sets of 2D points (white dots),

a novel scan (left) is warped to the mean scan (right) using the

thin-plate spline function −U (r) = −r2 log r2.

choice of reference face will affect the final model. We pro-

pose instead to use Procrustes analysis as a rigorous means

to remove pose effects without having to choose a refer-

ence face (the reference face is instead the Procrustes mean

which is iteratively updated).

With our sample of faces in dense correspondence (form-

ing a vector space) we can proceed with shape alignment us-

ing the standard tools of statistical shape analysis. The idea

here is to remove any effects of scale, rotation and transla-

tion to obtain a pure shape model that captures only vari-

ation in identity. The ith face is represented by the shape

vector xi = (x1, y1, z1, . . . , xp, yp, zp)T ∈ R
3p, that con-

tains the x,y,z coordinates of its p vertices.

Our aim is to transform the shape vectors into a shape

space. We do this by aligning the shape vectors to a com-

mon coordinate frame using generalised Procrustes analy-

sis. This is an iterative procedure which alternates between

aligning all samples to the current estimate of the mean

shape and then re-estimating the mean from the aligned vec-

tors. These two steps are iterated until convergence.

Our mean shape estimate (for m face scans) is the Pro-

crustes mean:

x0 =
1
m

m∑
i=1

xi. (1)

In order to maintain a constant scale for the model, we fix

the length of the mean shape at each iteration:

x̄ =
x0

‖x0‖ . (2)

All samples are aligned to the current estimate of the

mean shape using a 3D similarity transform, Tr(xi, γi) =
(x′1, y

′
1, z

′
1, . . . , x

′
p, y

′
p, z

′
p)

T , where

⎛
⎝ x′k

y′k
z′k

⎞
⎠ = sR

⎛
⎝ xk

yk

zk

⎞
⎠+ t. (3)

Here, R ∈ SO(3) is a rotation matrix, s ∈ R is a scaling

and t ∈ R
3 is a translation. The optimal pose parameters

γi = (R, s, t) which map a sample onto the mean shape
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vector are found by using Horn’s method [12] to solve:

γi = arg min
γ

‖Tr(xi, γ)− x̄‖2. (4)

A summary of the steps involved in generalised Pro-

crustes analysis is as follows:

1. Find the Euclidian mean of the face shape vectors (1).

2. Rescale the the mean shape vector to unit length (2).

3. Find the optimal pose parameters, γi, to align each

shape vector, xi, to the mean.

4. Set xi = Tr(xi, γi).
5. If change in estimate of mean indicates convergence,

stop. Otherwise iterate to step 1.

This process converges very rapidly (typically within 3 iter-

ations).

Since scale has been removed from the shape vectors,

they all lie on the surface of a curved manifold in shape

space (since we set the model scale to 1, the shape vec-

tors will all lie on a unit hypersphere). This invalidates the

application of linear statistical analysis using tools such as

PCA. A standard technique to overcome this problem is to

apply a stereographic projection to the shape vectors in or-

der to transform them to points on the tangent space to the

Procrustes average. This is simply a case of rescaling the

aligned shape vectors as follows:

x′i =
1

x̄ · xi
xi. (5)

It is to these rescaled vectors that we apply further analysis.

In practice, this rescaling slightly improves the efficiency

of the model (typically reducing the dimensions required to

capture 95% variance by one).

In our experimental results, we demonstrate that our

shape alignment procedure results in a superior model to

that of Blanz and Vetter [3].

2.4. Statistical Modeling

We apply PCA to the set of pose free shape vectors x′i.
This performs a basis transformation to an orthogonal coor-

dinate system spanned by the m eigenvectors Pi. Any face

surface x which has been aligned to the mean and projected

to the tangent space may now be represented as a linear

combination of the average surface and the model eigen-

vectors:

x = x̄+
m∑

i=1

biPi, (6)

where b = (b1, . . . , bm)T is a vector of parameters. We

stack the eigenvectors to form a matrix P, such that we may

write: x = x̄ + Pb. The PCA eigenvalues λi provide a

measure of how much of the variance of the training data is
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Figure 2. Probability density function for parameter vector lengths

(measured in terms of the squared Mahalanobis distance) for a 100

parameter model.

captured by each eigenvector. We may choose to retain n <
m model dimensions, such that a certain percentage of the

cumulative variance is captured. We discuss the effect of the

number of model dimensions in our experimental results.

Our statistical model also provides an estimate of the

probability distribution of the shape vectors. We begin by

defining the distance of a sample from the mean in terms of

the square of the Mahalanobis distance:

D2
M (b) =

n∑
i=1

(
bi√
λi

)2

. (7)

Since we assume each parameter follows a Gaussian distri-

bution, the parenthesised terms are independent, normally

distributed random variables with zero mean and unit vari-

ance. This is exactly the definition of the chi-square distri-

bution.

In other words, the lengths of the parameter vectors (as

measured by the square of the Mahalanobis distance from

the mean) follow a chi-square distribution with n degrees

of freedom, i.e. D2
M ∼ χ2

n. Such a distribution has a mean

value of n and variance 2n. The probability density function

over the parameter vector length x for an n parameter model

is:

f(x;n) =
1

2n/2Γ(n/2)
x(n/2)−1e−x/2. (8)

The interesting observation here is that the expected length

of the parameter vector of a n-dimensional model is n. The

likelihood of a sample having a length close to zero (i.e. ap-

proximately the mean sample) is extremely small. For ex-

ample, a model with 100 dimensions would have a mean

vector length of 100 and over 99% of parameter vectors

would have lengths greater than 70. The probability of a

vector length less than 50 is negligibly small. In Figure 2

we show the probability density function for parameter vec-

tor lengths for a model with 100 parameters. Note that as n
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increases, the shape of the chi-square distribution tends to a

Gaussian.

This prior on the parameter vector lengths is starkly dif-

ferent to Blanz and Vetter’s [4, 1] assertion that the parame-

ter vector lengths are normally distributed with zero mean.

Their assumption is that the most probable parameter vec-

tor is that with length zero and that the probability decreases

as the parameter vector length increases. Empirical experi-

ments on out of sample data have confirmed that our model

fits real data well. The predicted mean parameter vector

length matches observed values almost exactly. However,

the variance tends to be underestimated for models with

more than 10 parameters. This is likely to be a result of

trying to estimate model eigenvectors in a very high dimen-

sional space from a relatively very sparse sample.

We use this prior distribution on the parameter vector

lengths to motivate imposing a hard constraint on the length

during the fitting process. In effect, we hypothesise that all

samples lie approximately on the shell of a hyperellipsoid

in parameter space.

3. 3D Face shape from sparse feature points
In this section we lay the framework for a nonlinear, iter-

ative fitting algorithm to estimate a high resolution 3D face

surface given the positions of k 2D annotations on the sub-

jects face (k << p). In contrast to the analysis-by-synthesis

approach of Blanz and Vetter [4], we do not use face ap-

pearance or a model of texture variation to reconstruct the

3D surface of a face. This makes the shape recovery process

approximately two orders of magnitude faster.

3.1. The need for regularisation

If the effects of pose are discounted (i.e. if it is assumed

that the rotation required to align the model with a set of fea-

ture points in the image plane is known), then estimating the

morphable model shape parameters that give rise to a par-

ticular configuration of landmark points can be solved using

linear least squares. Such an approach is impractical as it

leads to gross overfitting of the data. Clearly, there is a trade

off between the quality of fit to the observed data and prior

probability as measured by the model. Using our model of

prior probability described in Section 2.4 as a regularisation

constraint results in a nonlinear optimisation problem.

Blanz et al. [1] proposed a linear, single step solution

to this problem based on their assumption of a Gaussian

distribution over the parameter vector lengths. However,

the 3D rotations on the position of 2D feature points in the

image plane also introduce nonlinearities. To sidestep this

problem, Blanz et al. [1] use small angle approximations

which are only valid for very small changes in pose. Due to

this approximation, the estimated pose may be inaccurate.

To overcome this problem, they repeat the process using the

result of the first pass as an initialisation, in effect turning

their one shot method into an iterative one.

We choose instead to separate the influence of pose and

shape parameters on the optimisation and solve the problem

using nonlinear, iterative optimisation. As stated above, the

chi-squared distribution of parameter vector lengths implies

that the parameter vectors lie on the surface of hyperellip-

soid in parameter space. We use this observation to motivate

imposing a hard constraint on the length of the estimated pa-

rameter vectors. If the number of parameters in the model is

n, we enforce the constraint D2
M < n. In practice, because

of the tendency to overfit, the result is that D2
M = n. To

impose this constraint, at each iteration of the minimization

we scale the estimated parameter vector such that its length

in terms of squared Mahalanobis distance from the mean is

n:

b =
√

n

DM (b)
b. (9)

3.2. Fitting to sparse data

Given a set of k annotations marked on the input face

(L2d ∈ R
2k), we can determine the vertices corresponding

to those salient points on the mean face as shown in Figure

6. Once we have the k indexed vertices we can extract their

corresponding 2D projections using:

L̂2d = PkT−1
r (x̄+Pb, γ) . (10)

where, the term x̄ + Pb provides the estimated shape, γ
provides the 3D pose with respect to the mean shape and

Pk is the projection of the k indexed vertices under an or-

thographic projection.

Using (10) our aim is to minimize the error between L2d

and L̂2d subject to the constraint on the parameter vector

length. The quality of fit to the data is measured by:

E (b, γ) =
∥∥∥L2d − L̂2d

∥∥∥ . (11)

The optimal parameters are therefore given by:

(b∗, γ∗) = arg min
D2

M (b)≤D2
max,γ

E (b, γ) , (12)

where D2
max is the maximum allowable parameter vector

length. We examine the effect of varying this value in

our experimental results. We solve this minimization using

Levenberg-Marquardt optimization [14].

4. Experimental Results
In this section we present the results of our experimental

evaluation. We begin by evaluating our approach to con-

structing a morphable model as a shape space and compare

it to that of Blanz and Vetter [3]. We then demonstrate an

example application of our model by using it to reconstruct

high resolution 3D face surfaces from sparse 2D landmarks.
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4.1. Morphable Model Construction

In this section we compare our strategy for morphable

model construction described in Section 2 with the state of

the art. In order to ensure a fair comparison, we use exactly

the same data as was used in [3]. This comprises 100 3D

face scans which have been set into correspondence using

a modified optical flow algorithm. Blanz and Vetter’s [3]

model is obtained by applying PCA directly to these shape

vectors. Our model uses generalised Procrustes analysis to

obtain a stable estimate of the mean face and shape vectors

that are free of scale, translations and rotations. We rescale

each shape vector according to the tangent space projection

given in (5).

We divide the data into a training set of 75 scans and a

test set of 25 scans. In Figure 3 we plot the percentage cu-

mulative variance captured as a function of the number of

model dimensions. It is clear that the model of Blanz and

Vetter captures a larger proportion of cumulative variance

for a given number of model dimensions. This is often seen

as evidence that a model is more efficient and hence supe-

rior. Our results show that in fact, the variance captured is

spurious and is related to variations in pose rather than iden-

tity. Although our model apparently captures less cumula-

tive variance, the variance it does capture is of more use

for representing out of sample data. The modes of variation

of the two models are visually distinguishable. In Figure 5

we show the effect of adding and subtracting the first two

modes of variation to the mean face for both models. As

can be seen, the characteristics captured by the modes are

subtly different.

We compare generalisation ability by measuring the ac-

curacy with which the two models can reconstruct out of

sample face meshes. For a novel shape vector, s, we find

the optimal parameter vector b∗ = PT (s− x̄). The recon-

structed surface is given by Pb∗ + x̄. The average recon-

struction error over the whole test set is given by:

E3d =
1
tp

t∑
i=1

p∑
j=1

∥∥∥∥∥∥
⎛
⎝ xi,j

yi,j

zi,j

⎞
⎠−

⎛
⎝ xr

i,j

yr
i,j

zr
i,j

⎞
⎠

∥∥∥∥∥∥ , (13)

where t is the number of samples in the test set, xi,j is the

x component of the jth vertex in the ith test sample, with

xr
i,j being the corresponding reconstructed value after pro-

jection onto the model.

Figure 4 shows the absolute reconstruction errors (in

mm) for both models. We vary the number of model dimen-

sions retained and observe its effect on the generalisation er-

ror. In Figure 4a, we use the same number of dimensions for

both models. In Figure 4b, we retain as many dimensions

as are required to capture a fixed proportion of the cumu-

lative variance. By either measure, our model generalises

to unseen data more accurately, even when less cumula-

tive variance has been retained. This makes our model both
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more efficient (fewer model dimensions required to obtain a

given generalisation error) and more accurate (even with all

dimensions retained, our model provides higher accuracy).

4.2. Estimation of 3D faces from Sparse 2D Features

In this section we show the result of using the tech-

nique described in Section 3 to estimate high resolution

3D face surfaces from sparse 2D feature points. For these

experiments we use a morphable model constructed from

100 face scans using the techniques described in Section

2. The scans are preprocessed to remove the hair and neck

regions and are set into correspondence using a thin-plate

spines based warping (Figure 1). Each face is represented

by p = 50468 vertices. To test the effects of the resolution

of the model, we also obtained lower resolution model com-

posed of face meshes containing p = 3147 vertices. In both

cases, we retain the 99 most significant modes.

Our reconstruction algorithm requires the user to anno-

tate the positions of the landmarks on the input image (Fig-

ure 6). Note that in practice this could be done using a 2D
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Figure 5. Shows the deviations in the two most significant para-

metric modes. The deviations are shown for our model (left hand

side) and the Blanz and Vetter Model (right hand side). The devia-

tions from the mean head (middle row) of the most significant (top

row) and second most significant (bottom row) parameters shows

the subtle differences in the morphing ability of the two models

Non-Linear
Iterative Fitting

Figure 6. Shows the framework for the proposed system. The

mean mesh (top left) and 2D input image with k indexed annota-

tions (center) are the inputs to the system. The mean texture map

(bottom left) is used to determine the vertices (white dots) corre-

sponding to the k indexed points (yellow dots) in the input image.

The system outputs the estimated shape and pose (right column).

A simple blending function is used to estimate the occluded tex-

ture.

feature detector. We use k = 104 annotated points. The

computation time (on a 1.78 GHz AMD Athlon processor)

is approximately 550ms and 10000ms for the p = 3147 ver-

tices and p = 50468 vertices face models respectively.

As discussed in Section 3, we impose a hard constraint,

D2
max, on the length of the estimated parameter vectors dur-

ing the fitting process. Without this constraint, the tendency

of the algorithm is to overfit the sparse data resulting in a

very poor global shape estimate. We examine the effect of

varying the value of this constraint on the 3D error of the

reconstructed surface. In effect, this parameter controls the

trade off between fitting quality and shape plausibility. Our

statistical prior predicts that the average length of the pa-

rameter vectors for an n parameter model is n. For values

of D2
max significantly greater than n, the system clearly over-

fits and the faces are heavily distorted. For values of D2
max

close to zero, the shape estimate is always similar to the av-

erage face and the fitting quality is low. We show that the

optimum operating point of our algorithm coincides with

the prediction of our statistical prior on real data, i.e. opti-

mal performance occurs when D2
max ≈ n. An example of

underfitting, overfitting and optimal performance is shown

in Figure 7.

To provide quantitative confirmation of this assertion, we

applied our shape estimation algorithm to 50 ground truth

samples. These were disjoint from the samples used to con-

struct the morphable model. For each scan we obtained the

k indexed vertices corresponding to the salient annotations.

These were projected to 2D. The faces were in approxi-

mately frontal pose (variations of up to 12◦ from frontal

occurred in practice). For different values of D2
max, we fit-

ted our morphable model to this sparse data and computed

the per vertex average 3D reconstruction error over all 50

samples. This experiment was carried out for both the high

and low resolution models.

Figure 8 shows the result of this experiment. For both

models, the minimum reconstruction error occurs approx-

imately when D2
max = n. The error of the reconstructed

faces is approximately 3.6mm. Although this is only a

slight quantitative improvement over using the average face,

the perceptual improvement is much greater, as evidenced

by Figure 7.

Our findings show that our analytical prediction of the

average parameter vector lengths coincide with the opti-

mum operating point of our reconstruction algorithm and

hence provide a non-heuristic constraint for optimal fitting.

5. Conclusions

3D morphable models are an important tool for face

shape estimation, recognition and reanimation. In this paper

we have revisited the process of constructing a morphable

model from training data. We have described alternative ap-

proaches to finding dense correspondences, removing pose

from the model (which results in a morphable model which

is a shape space) and constructing a probabilistic prior over

the distribution of parameter vector lengths. We applied the

model and hard constraint implied by the prior to the prob-

lem of estimating high resolution 3D face surfaces from

sparse 2D feature points. In future work, we intend to de-

velop more sophisticated fitting algorithms which employ

the probabilistic prior as a soft constraint. We will also in-

vestigate using the estimated shape parameter vectors for

the purposes of face recognition.

1333



Under Fitting Optimum Fitting Over Fitting

Figure 7. Shows the tradeoff between the fitting quality and shape

plausibility. Given a novel face (top row), the bottom row shows

the three cases of fitting: (a) Under Fitting (b) Optimum Fitting

and (c) Over Fitting
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