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Abstract

The ability to constrain the geometry of deformable mod-
els for image segmentation can be useful when informa-
tion about the expected shape or positioning of the ob-
jects in a scene is known a priori. An example of this oc-
curs when segmenting neural cross sections in electron mi-
croscopy. Such images often contain multiple nested bound-
aries separating regions of homogeneous intensities. For
these applications, multiphase level sets provide a partition-
ing framework that allows for the segmentation of multiple
deformable objects by combining several level set functions.
Although there has been much effort in the study of statisti-
cal shape priors that can be used to constrain the geometry
of each partition, none of these methods allow for the di-
rect modeling of geometric arrangements of partitions. In
this paper, we show how to define elastic couplings between
multiple level set functions to model ribbon-like partitions.
We build such couplings using dynamic force fields that
can depend on the image content and relative location and
shape of the level set functions. To the best of our knowl-
edge, this is the first work that shows a direct way of geo-
metrically constraining multiphase level sets for image seg-
mentation. We demonstrate the robustness of our method by
comparing it with previous level set segmentation methods.

1. Introduction
Deformable models based on level sets have been suc-

cessfully applied to a variety of computer vision tasks such
as image segmentation and video tracking over the last ten
years [25, 3, 7, 8]. Their success is mostly attributed to their
parametrization-free nature, intuitive formulation, and abil-
ity to easily adapt to shapes of unknown topology [13].

The problem of image segmentation (partitioning) within
this framework is usually cast in a variational formulation;
an energy functional is defined on the space of possible con-
tours or image partitions (phases), and the geometric de-
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Figure 1: Image segmentation of a scene with two objects.
Subfigures (a) and (b) show a deformation of Object I. Cur-
rent multiphase level set methods for image segmentation
do not allow for the addition of prior knowledge about the
geometric arrangement of the partitioning. However, in this
example we might know a priori that region B should al-
ways surround region A, and that the partitions C, and D
form a different object that should not ever be surrounded
by B. This paper introduces a way of grouping and inducing
such geometrical arrangements in the partitioning.

formable model is then iteratively evolved until an optimal
solution is found.

A common approach to constrain the geometry of a de-
formable model is to build shape priors that are statistically
learned from a set of training templates [15, 5, 10]. How-
ever, such priors are limited to the subspace of learned de-
formations from the training set (typically up to an affine
or a projective transformation), and they cannot directly
model sophisticated geometric arrangements of deformable
models. Such ability is important in many imaging appli-
cations. For example, as we discuss further in this paper,
the segmentation of cellular and intracellular membranes in
biomedical imaging often requires partitioning the image
into multiple nested contours. Such prior information about
the image geometry can be used to avoid undesired segmen-
tations and improve the overall segmentation accuracy.

Here, we introduce a way to directly model geometric
objects that are naturally described using multiple level set
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functions. As opposed to most of the previous work on
multi-shape learning for deformable models [20, 12], our
method does not rely on the statistical inference of a multi-
shape distribution from a set of training samples. We in-
stead provide a way to directly design entire families of
partition arrangements using dynamic force fields that can
depend on the image content and multiple level set func-
tions. There are a number of important application areas
where such an approach is useful. Consider the example of
Fig. 1 that shows a scene with two objects and the back-
ground. A classical multiphase method for segmentation
would partition the scene into several phases according to
image features (gradient, statistical variance, etc.), and op-
tionally, according to some statistically learned shape prior
for each of the partitions. Such approaches do not allow for
the addition of prior knowledge about the relative arrange-
ment of the regions in the partitioning. A real example of
this idea can be seen when tracking neural processes (cellu-
lar and intra-cellular boundaries) in a sequence of sections
from a 3D volume of brain tissue. In each section, cells,
mitochondria and other intra-cellular objects have a mem-
brane of homogeneous intensity and varying thickness (see
an example in Fig. 2). The tracking of these processes is
of important interest in neuroscience, where scientists are
aiming at identifying and analyzing the internal wiring of
the brain.

The main contributions of our work are first, the defi-
nition of elastic couplings between level set functions us-
ing dynamic force fields that can be easily integrated in
any variational-based multiphase framework, and second,
the modeling of ribbon-like deformable models that can be
used to segment and track neural processes. To the best of
our knowledge none of these issues have been addressed to
date.

2. Related work
Variational and energy minimization models for image

segmentation based either on level sets or graph cuts are
well documented in the literature [25, 2, 22]. For multi-
object segmentation, multiway graph cuts and multiphase
graph cuts and level sets provide a natural extension of the
single object case [22, 19, 18, 21]. In the multiphase level
sets literature, much attention has gone into the study of
topologically constrained flows that avoid vacuum regions
and overlap between the different phases [3, 17, 26, 24],
and into extending shape priors for single level set evolu-
tions to the multiphase case [6, 4, 9, 12]. Two interesting
problems have been addressed in this last area, first, iden-
tifying which shape prior should be applied to which level
set function (this process is also known as shape prior com-
petition) [6, 4], and second, applying shape priors while al-
lowing for mergers and splits of multiple phases [9].

Very recently, there has been an effort to employ exter-

Figure 2: Example of a cross section of a 3D volume of
brain tissue acquired with an electron microscope (1px. =
3nm x 3nm). Given the nature of the images, we can safely
make the assumption that sections can be decomposed into
a set of “ribbons” of varying thickness.

nal force fields within the multiphase level set framework in
a manner which preserves the underlying, assumed known,
topology of the problem [7]. Our work shares some similar-
ities with this work. Mostly, we both consider the integra-
tion of external force fields in multiphase level sets and their
application in segmentation. However, our work focuses on
how to induce a geometrical arrangement on the different
phases, while the work of [7] focuses on preserving the
topology of the different phases and avoiding vacuum re-
gions and overlap altogether.

3. Minimum partition with multiphase level
sets

To motivate our work, we consider the classical two
dimensional grayscale piecewise-constant segmentation
problem in computer vision known as the minimal partition
problem or the Mumford and Shah problem. This problem
was originally formulated in [16], and since then, several
variations have appeared in the literature. In the follow-
ing we introduce a variation of the so called reduced model
[21] of this problem: Let Ω ∈ R2 be open and bounded,
then, given an observed image u, we seek a decomposi-
tion G = (Ω1, . . . ,Ωm) of Ω and a vector of constants
c = (c1, . . . , cm) such that the following energy is mini-
mized:

E (G, c) =
m∑
i=1

(
λi

∫
Ωi

(u− ci)2
dx+

αi
2

∫
Γi

ds

)
(1)
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Figure 3: (a): We make the assumption that any cross sec-
tion of the brain tissue can be decomposed into a set of “rib-
bons”. (b): In the simplified case where we only have one
ribbon, the ribbon partitions the image into three different
phases. According to our multiphase encoding of Eq. (2),
we need at least two distance field functions φ1 and φ2 to
represent three phases.

where Γi represents the boundary set of each partition Ωi
and the tuning parameters λi ≥ 0 and αi ≥ 0 weigh the
relative importance of the different terms in the energy. The
above energy favors intensity smoothness along each parti-
tion and penalizes the size of their boundary sets.

In order to translate the above problem into a multiphase
formulation, we use n = log2m level set functions and
follow the implementation in [21], which guarantees no
vacuum and overlap between phases. In this framework, a
vector level set function Φ is defined as Φ = (φ1, . . . , φn)
where each φi : Ω → R is a level set function. Similarly, a
partition Ωi is represented by a binary vector Ki of length
n. This way, we can define the characteristic function χi for
each partition Ωi as follows:

χi =

{
1 when (H (φ1) , . . . ,H (φn)) = Ki

0 otherwise
(2)

where (H (φ1) , . . . ,H (φn)) is a binary vector that takes
different values when evaluated in different partitions of the
image. The function H (φ) takes the values H (φ) = 0
when φ ≤ 0 and H (φ) = 1 when φ > 0.

We can now rewrite Eq. (1) in terms of the level set
functions as:

E (Φ, c) =
m∑
i=1

(
λi

∫
Ω

(u− ci)2
χidx+

αi
2

∫
Ω

|∇χi|
)
(3)

Notice that our level set representation uses the same num-
ber of level set functions as [21] and [6], and is different
from the work of [3, 9, 19], where one level set function
per partition was used instead, and from [7] where only a
total of four functions were needed. The Euler-Lagrange
equation corresponding to the gradient descent of the func-
tional in Eq. (3) yields a system of n evolution equations
for (φ1, . . . , φn) (see [21] for an example of a four-phase
system).

Figure 4: Force field for ribbon consistency. The iso-lines
of φ1 and φ2 are depicted in blue and red, respectively. De-
pending on the sign of σ1 and σ2, the force field would
attract or repel the boundaries of the ribbon. In the case
displayed, both σ1 and σ2 are considered to be positive.

4. Adding geometric priors to the multiphase
framework

The variational formulation of Eq. (1) only uses what are
conventionally called internal terms (those associated with
the regularity of the interface), and data terms (those asso-
ciated with the image data). There is nothing in such for-
mulation that constrains the relative shape and positioning
of the partitions. In the present section, we present a way
of controlling the geometric arrangement of the partition-
ing by coupling several phases using dynamic force fields.
These force fields will generate velocities for each partition
that will be added to those generated by the gradient descent
of the Mumford Shah (MS) functional. First, we recall the
relationship between curve evolution, level sets and their
connection with force fields.

The Level Set Method allows to connect the propaga-
tion of a 2D front γ to the evolution of the zero level set
of a function φ (γ, t). This way, γ propagates with a speed
γt ∈ TγM , if and only if, by the chain rule, φ propagates
according to the Level Set equation:

∇φ (γ, t) · γt + φt = 0 (4)

where TγM ∈ R2 is the tangent space of the manifold
M of closed curves immersed in R2, defined at γ [14].
The n evolution equations for (φ1, . . . , φn) that result from
the gradient descent of the MS functional in Eq. (3) prop-
agate the zero-level sets of each φ function with speeds(
γMS

1t , . . . , γMS
nt

)
due to the connection established by the

Level Set Method. Since the encoding of each partition in
Eq. (2) links the evolution of each level set function with
the evolution of each partition, the gradient flow also im-
plicitly propagates each partition (Ω1, . . . ,Ωm) with speeds
that we denote as

(
ΓMS

1t , . . . ,ΓMS
mt

)
. These velocities result

from the optimization of the minimum partition problem,
and therefore have a variational nature.
Consider now a vector field v : Ω→ R2. We can build a ve-
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Figure 5: σ1 as a function of φ2 The graph for σ2 is obtained
by reversing the φ axis (σ2 (φ) = σ1 (−φ)). The region
labeled as A corresponds to the attraction (σ1 ≥ 0, v1 ≥ 0)
between the ribbon boundaries (stronger as the boundaries
separate from each other). Region B is the region where
the ribbon shows a plastic behavior (no resistance towards
deformation). Region C corresponds to the repulsion (σ1 ≤
0, v1 ≤ 0) between the ribbon boundaries (stronger as the
boundaries come closer to each other).

locity field γvit for the zero-level set of one of our functions
φi if we project v on Tγi

M via the mapping γvit = v · γ⊥i .
Such mapping extracts the normal component of v to the
zero level set of φi. As in the Mumford Shah case, the vec-
tor field v implicitly also maps into a vector of velocities
(Γv1t, . . . ,Γ

v
mt) for each of the boundary sets of the parti-

tions.
We can extend this concept to build a force field F =

(v1, . . . , vn) for each zero-level set γi. In the more gen-
eral case, we can generate p force fields that, if designed
wisely, could be used to arrange the different partitions
(Ω1, . . . ,Ωm) on the plane. Since TγM is a vector space,
the velocity fields derived from such force fields can be
added to the velocities derived from the MS functional as
follows:

γt = γMS
t +

p∑
j=1

µjγ
Fj

t (5)

where γt = (γ1t, . . . , γnt) is the vector of total veloci-
ties of the zero-level sets, γMS

t =
(
γMS

1t , . . . , γMS
nt

)
is

the vector of velocities given by the gradient descent of
the MS functional, and γ

Fj

t =
(
γ
v1j

1t , . . . , γ
vnj

nt

)
is the

vector of velocities given by the action of the force field
Fj = (v1j , . . . , vnj) onto each of the φ functions. The pa-
rameters µj determine the strength of the force fields rela-
tive to that arising from the MS functional.

It is important to note, however, that since the vec-
tor fields v don’t have to be irrotational (curl-free), some
of them might not equal the gradient of a scalar poten-
tial, and therefore it is not always possible to guarantee
the existence of an equivalent variational formulation for
each vector field. For this reason, we will consider that a
solution for the segmentation problem is found (the evo-
lution finishes) when the velocities from the optimization
of the MS functional and those from the external force

Figure 6: We want the outer side of the active ribbon
(φ2 = 0) to be attracted towards the outer side of the cel-
lular membrane (feature map in green), and the inner side
of the ribbon (φ1 = 0) towards the inner cellular membrane
(feature map in pink).

fields balance each other and an equilibrium is reached
(||(γ1t, . . . , γnt)||L2 ≤ ε). In the best case, the velocities
from the MS functional balance their counterparts from the
force fields Fj :

γMS
t = −

p∑
j=1

µjγ
Fj

t (6)

In the next section we show several examples of force
fields that can be used to induce geometrical arrangements
in the partitioning.

5. Active Ribbons

Consider again the problem of segmenting and track-
ing neural processes presented in the introduction. Neu-
ral membranes can be composed of myelin in the case of
axons, and the analysis of their thickness can reveal impor-
tant information about the connectivity of biological neural
networks and neural-related diseases [1]. For this reason it
would be useful to be able to segment and extract each of
the membranes in an isolated partition. This allows us to use
the ideas from the previous section to model such geometric
partitioning.

We start by defining an active ribbon as the deformable
region between two non-intersecting contours, one con-
tained within the other. Figure 3(a) shows that a single ac-
tive ribbon yields a partitioning of the image in three regions
(inside, ribbon and outside). According to our multiphase
encoding of Eq. (2), we need at least two distance field
functions φ1 and φ2 to represent three regions.

We now consider three force fields that can be used to
arrange the image partitions into a set of ribbons. The first
two forces control the shape of each ribbon and their ability
to find the right cellular boundaries in an image of brain
tissue. The third one is required for problems where we
wish to track simultaneously multiple neurons and models
the interaction between ribbons by controlling their mutual
repulsion or attraction.
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(a) (b)

Figure 7: (a): Active ribbon (in green) on a sample image.
(b): Normalized feature maps e1 (left) and e2 (right) for the
inner and outer side of the ribbon (blue).

5.1. Force field for ribbon consistency

Consider the force field:

F1 (v1, v2) =
(
∇φ2

σ1
,−∇φ1

σ2

)
(7)

where v1 and v2 act on φ1 and φ2, respectively, and σ1 and
σ2 are scalar fields defined on the image plane. The joint
action of v1 and v2 creates a repulsion or an attraction force
between the boundaries of the ribbon depending on the sign
of σ1 and σ2 (see Fig. 4). Ideally, we want to design the rib-
bon so that it shows plasticity (no resistance to deformation)
when the thickness of the ribbon is within some reasonable
range (5-20 nm.). In such cases, the evolution of the rib-
bons would be mostly driven by the gradient flow of the
MS functional Eq. (1). On the other hand, we want to trig-
ger the repulsion or attraction between the boundaries of the
ribbon when the ribbon has an abnormal thickness. Follow-
ing this reasoning, we can design σ1 and σ2 for φ1 and φ2

so that they react to the proximity between the boundaries
of the ribbons. We can achieve this effect by setting σ1 (φ2)
and σ2 (φ1) with a profile such as the one depicted in Fig.
5. A piecewise polynomial approximation of this profile is
discussed in Section 6.

5.2. Force field for ribbon-cell interaction

The previous force field model adds a purely geometric
force to the multiphase partitioning by inducing the creation
of elastic ribbons. The combination of such force field with
the MS functional will segment the image in homogeneous
ribbon-like partitions. However, the model so far does not
necessarily guarantee that the two different boundaries of
the ribbon will be attracted to different boundaries of the
cellular membranes (see Fig. 6). In this section we intro-
duce a second force field that, when added to the previous
model, achieves precisely that.

We start by recalling the vector field convolution model

(a) (b)

Figure 8: (a): Close-up of component v1 of Force field F2

generated from the ribbon and sample image in Fig. 7(a).
The vector field points towards the inner side of the cellular
membranes (b): User defined vector kernel for vector field
convolution. See [11] for more details on different types of
kernels.

introduced in [11]. Given a feature map defined on the im-
age e : Ω → R+ (i.e. a bitmap) we can build a smooth
vector field v (vx, vy) : Ω → R2 that points towards the
highest values in e as:

(vx, vy) = e ∗ k = (e ∗ kx, e ∗ ky) (8)

where k(kx, ky) is a 2D user-defined vector field kernel
such as the one shown in Fig. 8b, and the subscripts re-
fer to the x and y components of each vector field. See [11]
for additional notes on kernel selection.

Building on this idea, consider the following force field:

F2 (v1, v2) = (e1 ∗ k, e2 ∗ k)
= ((∇Iσ · ∇φ1) ∗ k,− (∇Iσ · ∇φ2) ∗ k) (9)

where Iσ is a smoothed version of the image I, and e1 =
∇Iσ · ∇φ1 and e2 = −∇Iσ · ∇φ2 are the feature maps for
φ1 and φ2, respectively. The above force field is made of a
vector field v1 that acts on φ1 by pushing its zero-level set
towards the inner side of the cellular boundaries, and v2 that
acts on φ2 by pushing its zero-level set towards their outer
side (see Fig. 6). Figures 7 and 8(a) show the feature maps
and the resulting force field on examples of real images.

5.3. Interaction between ribbons

The previous two force fields control the shape and seg-
mentation of each ribbon in an individual manner, and
therefore they do not offer control over the interaction of
neighboring structures. However, going back to our ap-
plication of interest (tracking of neural boundaries), it is
known that when moving from one section to the next one
through the 3D volume of brain tissue, the cellular bound-
aries of the neurons should not change their relative position
abruptly. That is, if two neurons were adjacent to each other
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Figure 9: (a): A force of mutual repulsion or attraction is
created between each pair of ribbons based on the result
from previous sections. (b): σI is chosen to create a elastic
repulsion (region A) or attraction force (region C) to keep
the distance between the ribbons within some range (region
B).

and/or relatively close in one section, they should be so in
the next one. We can take advantage of this fact and con-
trol the geometric arrangement of the partitioning further
to avoid undesired segmentations and speed up the conver-
gence of the multiphase evolution.

Consider that while processing section i of the volume
of brain tissue we are given the segmentation results from
section i− 1. Since we know the location of each ribbon in
section i, we can build a force field Fab (v1, v2, v3, v4) for
each pair of ribbons a and b, such that:

v = σI (|abi| − |abi−1|) âbi
v1 = v2 = v, v3 = v4 = −v (10)

where the vectors abi and abi−1 are the vector that points
from the center of mass of a to the one of b, and σI : R→ R
is a function that controls the strength of the mutual repul-
sion (σI < 0) or attraction (σI > 0) between the two rib-
bons (see Fig. 9). Section 6 discusses a piecewise polyno-
mial approximation of σI .

6. Experiments
In this section we present several experiments that show

the robustness of our active ribbons model on real data.
First, we compare our model with three other well known
level set-based deformable models for the segmentation of
single cellular boundaries. We then compare our method
with a geometrically-unconstrained multiphase level set
model for the segmentation multiple cellular boundaries.
Finally, we show how our active ribbon model can effi-
ciently track cellular boundaries on a sequence of cross-
sections obtained from a volume of brain tissue and give
an example of failed segmentation.

Figure 10 shows a comparison of our model with sev-
eral geometrically-unconstrained deformable models. In
the best cases, these models were able to accurately extract

Figure 10: First row: Best result obtained using the mod-
els of [11] and [23] with the deformable model initial-
ized with a single connected component from outside. Sec-
ond and third row: Results obtained using the two-phase
model of [21] when the deformable model was initialized
from outside, and from both inside and outside, respec-
tively; Similar results were obtained with this initialization
for the models of [11] and [23]. Fourth row: Results ob-
tained with the model of [17] with region descriptors based
on the mean and variance for both the foreground and back-
ground. Fifth row: Results obtained with our active ribbon
model. The columns correspond to iterations 1, 34 and 71.

the outer cellular boundaries or the inner cellular bound-
aries alone, but none of them could segment the cellular
membranes in a single isolated partition, making them in-
valid for the analysis and study of myelin thickness. The
parameters chosen for the ribbon-consistency force field in
the last row were |b| = 10px and |c| = 25px and a = 10−9.

Figure 11 shows a gradual comparison between a classi-
cal geometrically-unconstrained multiphase level set model
and our active ribbon model. The parameters chosen for
the ribbon-to-ribbon interaction force were d = 50px and
e = 2px. It is important to note that in our model, by us-
ing two level set functions to represent each ribbon, we al-
low the ribbons to overlap on the image. This overlap is
a consequence of our partition encoding of Eq. (2), where
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Figure 11: Gradual comparison between a classical geometrically-unconstrained multiphase level set model and our active
ribbon model. First row: Results obtained with the model of [21] with λi set to 0 for the background phases in Eq. (3).
Second row: Results obtained with our force field for ribbon consistency. Third row: Results obtained with all the force fields
discussed in the paper enabled. The columns correspond to iterations 1, 34, 55 and 79.

the zero-level sets of multiple level set functions can inter-
sect. This encoding uses a total of 2m level set functions
for m ribbons, but gives direct access to each ribbon via
their zero-level sets. Such encoding also guarantees that
ribbons can share cellular boundaries and therefore agrees
with the biological model of neural membranes in cellular
biology. Finally, such overlap facilitates the tracking of neu-
rons throughout the volume of brain tissue, since this way
each ribbon can more easily sit on image boundaries.

Figure 12 shows the tracking of a neural process, where
in each section, the active ribbon model is initialized with
the results obtained in the previous cross-section of the
brain tissue. Such approach to tracking only works a neural
process is orthogonal to the image plane, since otherwise
neural processes would experiment large displacements be-
tween consecutive sections.

Finally, Fig. 13 shows an example of a failed segmenta-
tion with one ribbon, where the presence of multiple adja-
cent cellular membranes confused the ribbon to believe it is
segmenting a single process.

The active ribbon parameters for the examples of Fig. 10
and Fig. 11 were µ1 = 1.5, µ2 = µ3 = 1 and αi = λi = 1
for the foreground phases and 0 for the background ones.
The parameters for Fig. 12 were: µ1 = 1, µ2 = 0.35, and
same αi’s and λi’s as in the segmentation examples. The
function graphs of Figs. 9 (b) and 5 were approximated
using quadratic polynomials that interpolate the point coor-
dinates derived from the horizontal and vertical lines corre-
sponding to the parameters a, b, c, d and e. Large variations

Figure 12: Left-to-right and top-to-bottom: Tracking of a
cellular membrane that is orthogonal to the scanning plane.
The active ribbon is initialized with the results obtained in
the previous cross-section of the brain tissue.

of appearance of neural processes were accounted by in-
creasing the overall elasticity of the model, which can be
controlled with σ1, σ2 and σI .
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Figure 13: Example of a failed segmentation with one rib-
bon. The images correspond to iterations 1, 10, 16 and 30.

7. Conclusions and future work
This paper is, to the best of our knowledge, the first work

that shows a direct way of geometrically constraining a mul-
tiphase level sets flow for image segmentation. This is done
using dynamic force fields such as those introduced previ-
ously in the literature for active contours for helping them
deal with local minima. Our method requires no training
set and can be easily combined with other variational level
set segmentation models. Future work includes extensions
to 3D deformable models, and the study of the ability of
dynamic force fields to induce other possible geometric ar-
rangements.
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