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Abstract

This work addresses the important problem of the discov-
ery and analysis of social networks from surveillance video.
A computer vision approach to this problem is made possi-
ble by the proliferation of video data obtained from camera
networks, particularly state-of-the-art Pan-Tilt-Zoom (PTZ)
and tracking camera systems that have the capability to ac-
quire high-resolution face images as well as tracks of people
under challenging conditions. We perform “opportunistic”
face recognition on captured images and compute motion
similarities between tracks of people on the ground plane.
To deal with the unknown correspondences between faces
and tracks, we present a novel graph-cut based algorithm
to solve this association problem. It enables the robust es-
timation of a social network that captures the interactions
between individuals in spite of large amounts of noise in
the datasets. We also introduce an algorithm that we call
“modularity-cut”, which is an Eigen-analysis based ap-
proach for discovering community and leadership structure
in the estimated social network. Our approach is illustrated
with promising results from a fully integrated multi-camera
system under challenging conditions over long period of
time.

1. Introduction
Computer vision algorithms, such as crowd segmenta-

tion [21], crowd tracking [10, 26] and facial biometrics,
have seen tremendous progress in recent years and can now
handle challenging real-world conditions. They enable an
exciting new range of capabilities for detecting and recog-
nizing actions [16], activitives [22], and events [5, 20], that
go beyond the traditional capabilities of automated surveil-
lance systems .

More specifically, in this work, we attempt to gain a
higher level understanding of crowd behavior in terms of in-
teraction and social network patterns. A social network con-
sists of groups of people with a pattern of interactions be-
tween them [12] and the understanding of such networks in
environments such as prisons or public venues is of great in-
terest to law enforcement and homeland security. In partic-
ular, there is an increasing need to identify cohesive groups,
which we called social groups, and their leaders for security
purposes. One can easily imagine, for example in a prison
environment, the value of automatically identifying differ-

ent gangs and their leaders as well as changes over time in
gang and leadership structures.

Figure 1. Discovering Social Networks: Person tracks obtained
from fixed camera views are used to control the PTZ cameras to
capture face images. Faces recognized from these images and per-
son tracks are in turn used to build the social network or society.
The social interactions captured by the social network form the
basis for discovering the social groups.

Here, the low-level vision tasks that need to be per-
formed reliably include:

1. Persistently tracking an individual under occlusions.
These tracks allow the system to detect individuals that
are often “seen” together and assign them to the same
social group. For a multi-camera setup, centralized
tracking in a common coordinate system is required.

2. Uniquely recognizing an individual on a watchlist us-
ing face detection and recognition [8, 18]. For this pur-
pose, high-resolution images of faces are required.

Towards this end, advances in real-time tracking [1, 17, 25]
and PTZ camera control algorithms [11], that are capable
of effectively panning, tilting and zooming PTZ cameras to
capture high-resolution face images of people, have made it
possible to perform these low-level tasks in an efficient and
robust fashion.

Under this premise, we assume that the 3D tracks of in-
dividuals and high-resolution face images are provided, al-
lowing us to focus on the high-level task of analyzing and
discovering social groups in a social network. As far as
the authors are aware of, this is a new problem in the com-
puter vision community. Arguably, previous work on group
tracking [2, 6, 7] bears some resemblance to social group-
ing, but a few important differences will become clearer as
we continue.
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To begin with, the identities of individuals have to be
maintained with respect to a (possibly dynamically gener-
ated) watchlist of faces. That is, during tracking, individuals
are identified by performing face recognition. This allows
the system to reason about interactions between different
individuals, e.g., Joe and Frank have been together for the
last five minutes. In this way, connections between indi-
viduals, represented in a social network graph, who are fre-
quently seen together, become progressively stronger over
time. The nodes in a social network graph represent the
individuals as identified by their faces and the edges are
weighted according to the observed connections between
nodes. Such a social network graph can be built over time,
even offline, as long as individual tracks and captured face
images are stored. When a social network graph is divided
into social groups, each group conveys certain high-level
information (e.g., Joe is the leader of the group comprising
Frank, John and Tracy), which is not possible with mere
group tracking.

Building such a social network graph and discovering its
social groups correctly is non-trivial. Several challenges in-
volved in this process have to be tackled and we propose
robust solutions to address these challenges in this paper.
Noisy tracking and face recognition typically “corrupt” the
social network graph, which could potentially mislead the
division of the social network graph into incorrect social
groups. Moreover, given a set of tracks (observed from a
fixed camera network) and recognized faces (observed from
a bank of PTZ cameras), one has to associate each face
with its track correctly, a difficult task due to errors in cal-
ibration, uncertainty about the PTZ camera state, and the
proximity between tracks under crowded conditions. We
overcome these challenges with an energy function that el-
egantly models the association problem and minimize it us-
ing the multi-way graph-cut algorithm [3, 4, 9].

The captured social interactions form the basis for divid-
ing the social network into social groups. Essentially, we
are faced with a graph based clustering problem, for which
most previous work such as [15, 19, 23, 24] have focused
on a variety of techniques for minimizing the size of the
cut, which is defined as the strength of the edges that con-
nect two disjoint clusters. In this paper, we will introduce a
technique called the modularity-cut, originally proposed by
Newman [12, 13] in the domain of social network analysis.

The modularity-cut proposed here is an appealing tech-
nique for discovering social groups because of its computa-
tion of group assignments in a way that is very meaningful
in the “social” sense. The basic idea is that a cut should not
be determined merely by its size, but rather by its size rela-
tive to the expected size (i.e., when the connections between
groups are smaller than expected). As we will see, this is
a powerful idea, as it inherently does not need to know the
size of the social group beforehand (most cut based tech-
niques require some way of checking for the trivial case
where all nodes tend to fall into one group, in which case
we obtain a zero cut size). Moreover, it provides for a sim-
ple way to discover the number of social groups and their
leaders automatically.

The contributions of this work can be summarized as fol-
low:

1. We address the problem of discovering social groups
in, possibly closed-world, surveillance environments,

which is an emerging challenge for the computer vi-
sion community. The goal of identifying cohesive
groups and their leaders has tremendous value for prac-
tical surveillance purpose.

2. We present an elegant energy function to model the
problem of associating tracks (in fixed camera views)
with detected faces (in PTZ views). This will allow us
to construct a social network graph while mitigating
errors coming from low-level vision tasks.

3. We introduce the modularity-cut algorithm that (as far
as the authors are aware of) has not been applied to
the domain of computer vision. The modularity-cut
has several inherent advantages over classical cluster-
ing techniques. The algorithm also leads to an elegant
way of estimating the group leaders. This is an impor-
tant difference from mere group tracking.

4. We have built a fully integrated system that pro-
duces very good results, as described in the experi-
ments (Sec. 4). The system consists of a centralized
3D tracker that utilizes multiple fixed cameras. The
tracker performs very robustly under occlusions, and
effectively controls a set of PTZ cameras to capture
close-up face images. The tracks and the captured face
images serve as input for building the social network
graph and discovering social groups.

This paper is organized as follow. In the next section, we
will discuss the algorithm for constructing the social net-
work graph, and provide details for associating faces with
tracks. Then, in Sec. 3, we will introduce the modularity-
cut and analyze its utility for dividing a social network
graph into multiple social groups. We will also see how we
can identify the group leaders via modularity based Eigen-
analysis. Finally, we report results from a fully integrated
system in Sec. 4 and conclude in Sec. 5.

2. Building Social Network
A social network graph, G = (V,E), consists of a set

of nodes, V, and a set of edges, E. Each node represents
an individual in the society and is assigned a name and sig-
nature (which includes a face image and other identifying
information). In a closed-world environment, the number
of nodes, N , equals the number of signatures on a given
watchlist. To construct G, we estimate the social connec-
tion strength, Aij , between two individuals, i and j, based
on the following guidelines:

1. Both individual i and j need to be positively recog-
nized.

2. The interaction between them needs to be quantified
with a suitable metric.

3. The frequency with which they are seen together
should be measured appropriately over time, i.e., we
need to aggregate the knowledge gained from the
above two guidelines over the “lifespan” of a given set
of tracks and recognized faces.
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To achieve these guidelines, we begin by leveraging
a state-of-the-art face recognition engine [8] that oppor-
tunistically, hence often intermittenly, recognizes faces de-
tected [18] in the captured images. We obtain from the
face recognition engine a discrete probabilistic histogram,
p = [p1, . . . , pN ], where each histogram bin, pi, measures
the probability that the recognized face corresponds to indi-
vidual i. The index, i′, of the bin with the highest value is
thus, in a probabilistic sense, the ID of the individual. Given
a pair of histograms, (p,q), and i′ = arg maxi pi, j′ =
arg maxj qj , we can then update the social connection link,
Ai′j′ , with the degree of interactions between individual i′
and j′, which we model as the motion similarity of i′ and
j′.

Suppose now that we are given a total of M tracks. We
denote each track m ∈M by

Xm = {xtm,0m , . . . ,xtm,τm }, (1)

where xtm is the 3D ground plane location at time t, and
tm,0 and tm,τ are the start and end time of the track. Given
a pair of tracks, (Xm,Xn), which overlaps temporally be-
tween (tmn0 , tmnτ ), where

tmn0 = max (tm,0, tn,0), tmnτ = min (tm,τ , tn,τ ), (2)

we quantify their motion similarity as

Dmn = exp

−∑tmnτ
t=tmn0

‖xtm − xtn‖2

2σ2
loc(tmnτ − tmn0 )

 , (3)

such that the more consistently two tracks move together,
the larger the similarity Dmn is. Here, σloc is a scaling
factor that controls the influence of the variations between
the tracks’ locations.

Based on Eq. 3, we can now define the rule for updating
Ai′j′ for a pair of recognized faces, (p,q), and their tracks,
(Xm,Xn) (finding the association between faces and tracks
will be addressed in Sec. 2.1), as

Ai′j′ = Ai′j′ +Dmn(exp−αH(p) pi
′
+ exp−αH(q) qj

′
), (4)

where noisy recognition is elegantly mitigated by the en-
tropy measure H(.). Given a histogram p, the larger
H(p) is, or equivalently, the more uniformly distributed
histogram p is, which indicates ambiguous recognition, the
smaller exp−αH(p) would be and hence the lesser the influ-
ence on Ai′j′ . In addition, Eq. 4 shows that the links are
being continuously updated with all valid pairs of faces and
corresponding tracks. Hence, the more frequently the sys-
tem has “seen” the individuals together, the stronger a link
is.

2.1. Face-to-Track Association via Graph-Cut
So far, we have assumed that the track associated with

a recognized face is readily available. This assumption is
frequently violated due to the following reasons. During a
face capture, the images that are acquired from a PTZ cam-
era could capture one or more faces in different parts of the
image. As a result, detected faces have to be projected into

3D space (recall that our tracker operates in 3D space) in
order to be associated with the tracks. Such a projection
requires estimating the projection matrix of the PTZ cam-
era as it moves, which, depending on the accuracy of the
PTZ motor location provided by the system, is often inac-
curate. The situation, where several faces might be detected
within a single PTZ view at the same time, also makes it dif-
ficult to associate tracks using a simple distance metric due
to the proximity of these individuals. Furthermore, these
faces must clearly belong to different tracks, which needs
to be taken into consideration during track association. On
the other hand, faces from different PTZ views could belong
to the same individual and should not be used to update the
network. See Fig. 2 for an illustration. In this section, we
will look at how we can build a social network that would
still be a realistic representation of the true social interac-
tions between individuals, in spite of these challenges.

Figure 2. Face-to-Track Association: Three persons are tracked
on the ground plane with track ID 1, 2, and 3. Several face images
are detected in two different PTZ camera views. The algorithm
needs to find the correct correspondence between faces and tracks.

Let us denote a set of R detected faces by F =
{f1, . . . , fR}, and each capture fr, r ∈ R, contains

fr = (xr,Σr,pr, tr, cr), (5)

where tr is the time of capture, cr is the index of the PTZ
camera that performs the capture, xr is the 3D ground plane
location of the face computed by backprojecting the de-
tected 2D face location using the estimated projection ma-
trix, Pmr, of cr at tr, Σr is the backprojection variance due
to errors in the face location and noisy projection matrix es-
timation, and finally pr is the face recognition histogram
as presented in Sec. 2. Further let the set of M tracks be
X = {X1, . . . ,XM}, where each track Xm is defined as
in Eq. 1. The association problem is then to assign a label
l to fr so that lr ∈ {0, 1, . . . ,M} indicates the track this
capture belongs to. The extra label 0 is introduced to take
care of outlier situations, such as missing tracks and/or face
captures that are false positives.

Given such a labeling problem, and the difficulties in
associating faces to tracks as mentioned, we propose a
Markov Random Field (MRF) framework, and solve it us-
ing the multi-way graph-cut algorithm [3, 4, 9]. In our
MRF formulation, we define the site set over all face cap-
tures F with |F| = R, and the label set over X with
|X| = M + 1 (after adding the missing track with label
l = 0). In this framework, we seek to find an optimal label-
ing, L∗ = (l∗1, . . . , l

∗
R), where l∗r ∈ {0, 1, . . . ,M}, for all
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sites by minimizing the following energy function

E(L) =
∑
r∈R

D(lr) +
∑
r,s∈N

Vr,s(lr, ls), (6)

where the data term, D(lr), is for evaluating the cost of as-
signing the face capture fr (site r) to track Xlr (label lr),
and the pairwise smoothness term, Vr,s(lr, ls), is for com-
puting the cost of assigning the sites (r, s) (face captures
(fr, fs)) to labels (lr, ls), and N specifies some neighbor-
hood system.

In order to properly manage detected faces from multiple
PTZ views, N consists of three edge types: (1) the edge
between a pair of faces if they are captured from the same
camera view at the same time, denoted as N1, (2) the edge
between a pair of faces if they are captured from the same
camera view but at two successive time slots, denoted as
N2, and (3) the edge between a pair of faces if they are
captured from two different camera views at the same time,
denoted as N3.

For our data term, D(lr), we simply adopt the strategy
that if the 3D face location is closer to one of the track loca-
tions than others at the capture time tr, this face would be
more likely to be assigned to this track. Thus,

1. For lr = 0, i.e., the face capture is assigned to a null
(missing) track

D(lr) = δ. (7)

2. For lr 6= 0, we have

D(lr) ={
dm(xtrlr ; xr,Σr), if tr ∈ (tlr,0, tlr,τ )

∞, otherwise
(8)

where xtrlr is the estimated location of track Xlr at time tr,
(tlr,0, tlr,τ ) defines the lifespan of this track, dm(∼) is the
Mahalanobis distance defined by

dm(x;µ,Σ) =
√

(x− µ)τΣ−1(x− µ), (9)

and δ is set to be some penalty cost for assigning a face to a
null track.

Given that the neighboring edges might be of types
{N1,N2,N3}, the smoothness term is defined accordingly
as

1. For (r, s) ∈ N1, Vr,s(lr, ls) ={
−∞, if lr 6= ls
0. otherwise (10)

2. For (r, s) ∈ {N2,N3}, Vr,s(lr, ls) ={ −0.5 exp{−βdb(pr,ps)}∗
(dm(xr; xs,Σs) + dm(xs; xr,Σr)), if lr 6= ls

0, otherwise
(11)

where db(pr,ps) is the Bhattacharyya coefficient of two
histograms defined as

db(pr,ps) =
N∑
i=1

√
pirp

i
s. (12)

The idea here is that for case N1, if they are correctly as-
signed to two different tracks, there would be a tremendous
payoff of −∞. For cases N2 and N3, the payoff for as-
signing two faces to different tracks depends on the Ma-
halanobis distances between xr and xs, and the similarity
between their face recognition histograms evaluated by the
Bhattacharyya coefficient. The more distant (in space) the
faces are from each other and the more dissimilar their face
recognition histograms are, the larger the payoff.

Finally, as mentioned, we could solve for Eq. 6 using the
multi-way graph-cut algorithm, which can efficiently gen-
erate a solution within a known factor of the optimal. The
resulting face-to-track associations can then be utilized for
updating the social links as presented in Sec. 2.

3. Discovering Community Structure via
Modularity-Cut

After building a social network, we follow on to deter-
mine its community structure, i.e., the social groups that it
might contain. A social group, in our case, is defined as
a cohesive group of individuals that are frequently seen to-
gether. Individuals in the same social group display strong
connections between one another in the social network.
From a graph-theoretic perspective, the problem is to divide
the social network into subgraphs in a way that maximizes
connections between nodes in each subgraph and minimizes
connections between different subgraphs. A closer look at
the problem should reveal the applicability of several well-
known spectral clustering techniques [15, 19, 23, 24]. Most
of these techniques approach the problem by looking for di-
visions that minimize the connections between subgraphs,
or in other words, divisions that minimize the cut size [23].

3.1. Dividing into Two Social Groups
The utility of the above techniques for discovering com-

munity structure is limited by the requirement to know the
number of social groups beforehand, which is impracti-
cal for our purpose. Shi et al. [19] have proposed that
one can recursively divide the graph into two based on the
normalized-cut. We take a similar recursive approach but
instead of using cut size as the criterion, we adopt an ap-
proach originally proposed by Newman [12, 13] in the do-
main of social network study. He argued that using cut
size as the division criterion is counter-intuitive to the con-
cept of social group and that one instead needs to maxi-
mize the modularity measure [14], which expresses the dif-
ference between the actual and expected connections of in-
dividuals within each social group. We call this technique
the modularity-cut, which has been shown [12, 13, 14] in
many real-world examples to be superior at identifying so-
cial groups.

To understand the modularity-cut, one can consider the
notion that two individuals, i and j, are strongly connected
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only if their connection is stronger than what would be ex-
pected between any pair of individuals, that is,

Bij = Aij −
kikj
2m

, (13)

where Aij is the connection strength between i and j, ki
and kj are the total connection strengths of i and j (i.e.,
ki =

∑
j Aij), and m = 1

2

∑
ij Aij is the total strength of

all connections in the social network graph. The term kikj
2m

represents the expected edge strength, so that the further
an edge (Aij) deviates from expectation, the stronger the
connection. From Eq. 13, the modularity measure, Q, can
be easily derived as

Q =
1

2m

∑
i,j∈
same

group

Bij =
1

4m
sTBs, (14)

where s is a labeling vector with each element, si, cor-
responding to an individual (node) in the social network
graph. si = +1 if node i is assigned to the first group
and si = −1 if node i is assigned to the second. B is the
modularity matrix whose elements areBij . Thus, each time
we divide a graph into two subgraphs, as opposed to “sim-
ply” minimizing cut size, we maximize modularity Q us-
ing B. This is an appealing notion - by maximizing Q, we
favor stronger than expected within-group connections and
weaker than expected between-group connections (the cut).

Determining s that maximizes Q can be shown to be
NP-hard. We will next outline a method based on Eigen-
analysis that will provide a good approximation [13] to
our problem. We first perform an eigen decomposition
B =

∑
i βiuiui

T with eigenvalues βi and eigenvectors ui.
Substituting into Eq. 14, we obtain

Q =
1

4m

∑
i

(uiT s)2βi. (15)

Several key observations can be made in regards to Eq. 15:

1. If we let s = ui, then since the eigenvectors are or-
thogonal, uj|j 6=iT s = 0.

2. Since s is constrained to be ±1, s cannot be directly
assigned to an eigenvector, which is real valued. Oth-
erwise Q could be maximized by setting s equal to the
dominant eigenvector, umax.

3. We can, however, assign si to +1 if the corresponding
element in the dominant eigenvector is positive, and
−1 otherwise, i.e.,

si =
{

+1 (umax)i ≥ 0,
−1 (umax)i < 0, (16)

where (umax)i is the ith element of umax. In doing so,
we make an assumption that s remains close to being
orthogonal to the other eigenvectors so that majority of
the mass of the summation will come from the largest
eigenvalue, thereby giving us the largestQ. It has been
shown [13] that this assumption holds well in practice.

4. If none of the eigenvalues are positive, it implies that
based on the modularity measure, there should be no
division. This is a desirable behavior.

5. Classical spectral clustering techniques, which mini-
mize the cut size, have to deal with the trivial case
of zero cut size whereby all the nodes in the social
network graph are placed in one group. In contrast,
since we are maximizing the modularity, there is no
such problem.

3.2. Dividing into Multiple Social Groups
The strategy for dividing a graph into two subgraphs can

be naturally extended to finding multiple social groups by
applying the modularity-cut recursively to each subgraph.
For this purpose, it is important to point out that it is possi-
ble for an element in umax to have a value extremely close
to zero. In such cases, regardless of the signs of the ele-
ments, they should be assigned to the same subgraph. This
is because by being ≈ 0, these elements do not belong to
either groups (Eq. 16), and should be kept together just in
case subsequent divisions determine that they belong to the
same group.

To ensure that the contributions to the modularity mea-
sure generated by subsequent divisions are correctly com-
puted, it is imperative that such contributions be related to
the original graph. This is different from the recursive ap-
proach proposed in Shi et al. [19], whereby each subgraph is
treated independently. In our case, this amounts to remov-
ing the edges to other subgraphs and results in maximizing
the wrong modularity measure.

We first define a n × c community structure matrix, S,
where n is the number of nodes in the social network graph
and c is the number of social groups. We begin with c =
1, i.e., there is only one group (the entire social network
graph), but c increases as we recursively divide into multiple
groups. The (i, j)th element of S is 1 if node i belongs
to social group j, and 0 otherwise. It is obvious that the
modularity can be equivalently measured as

Q = Tr(STBS), (17)

where Tr represents the trace operator, and B is the orig-
inal modularity matrix. Based on Eq. 17, the strategy for
dividing into multiple social groups is as follow. Each time
we obtain a new social group as described in Sec. 3.1, we
generate a new community structure matrix, S′, with an ad-
ditional column corresponding to the new group. Denoting
the modularity for S′ as Q′ and the largest Q in the recur-
sion so far as Qmax, the contribution, ∆Q, to the modular-
ity measure is simply

∆Q = Q′ −Qmax, (18)

such that if ∆Q ≤ 0, the new group is “discarded”. The
algorithm at this point is very satisfying. It is much simpler
to check for zero or negative contribution to the modularity
before terminating the division process than, for example,
using a pre-specified cut size as the termination condition.

3.3. Eigen-Leaders
Furthermore, based on Eq. 15, the modularity-cut ap-

proach provides a simple way for identifying the leader of
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a social group. That is, the leader, `, of a social group is
simply

` = arg max
i

(umax)i. (19)

The rationale here is simple - elements of the dominant
eigenvector with large magnitudes make large contributions
to the modularity.

Let us consider the social network graph, which is con-
structed on the basis of the frequency with which individu-
als are seen together. The leader of a social group, G, can
be thought of as the individual in the group that was seen,
on average, most frequently with everyone else in the same
group. The value of B`j in Eq. 13, where j ∈ G, would
be the highest among all possible Bij|i,j∈G. Consequently,
the corresponding element in umax would have the largest
magnitude among its group members. On the other hand,
since spectral clustering techniques minimize the cut size,
there is no intuitive manner for exploiting the eigenvectors
to identify a group leader.

4. Experiments
In this section, we present results from a fully integrated

system that consists of 4 fixed and 4 PTZ surveillance cam-
era, capturing a total of 8 views. The fixed cameras are
utilized by a centralized 3D tracker that provides the 3D lo-
cations of individuals in a common coordinate system. As
shown in Fig. 3, the tracking capabilities of our system un-
der occlusions are very good, being able to track a dense
crowd of individuals in a small courtyard with relatively
small number of errors. The tracks are then used to con-
trol the PTZ cameras to capture face images at high resolu-
tion. Referring to Fig. 1, the system performs face detection
and recognition on these face images, and the recognized
faces are then associated with the tracks to build the social
network graph. The steps for building the social network
and discovering social groups can be optionally performed
offline as long as the tracks and face images captured on-
line are properly stored. For the remainder of this section,
we will present results from various aspects of the system,
namely face detection and recognition, face-to-track asso-
ciation, discovering social network and identifying group
leader.

Face Detection and Recognition: We firstly establish
the performance of the face detection and recognition com-
ponents, which we evaluated on a short section of video,
containing only a single subject. This allows us to easily
gauge the recognition performance, obtaining the results in
Table 1. In this case, the system manages to capture faces
in about 40% of the frames out of which 49% are deemed
to be high-quality frontal faces. Over 98% of these are rec-
ognized with a correct recognition rate of about 88%. In
our experiments, we have also observed that the recogni-
tion confidence (the score returned by the recognition en-
gine) for correct matches is significantly larger than the con-
fidence for incorrect matches.

Face-to-Track Association: To evaluate the perfor-
mance of our proposed association algorithm presented in
Sec. 2.1, the ideal experiment would be to compare the face-
to-track associations returned by the graph-cut solution to
the groundtruth obtained from manually associating faces
with their tracks. Generating such ground truth data is how-

Nr. of Frames: 2156 Face Detections: 843
Frontal Detections: 411 Recognitions: 403
Correct Recog.: 353 Recog. Rate: 88%
Rank 2: 14 Rank 7: 1
Rank 3: 2 Rank 8: 1
Rank 4: 2 Rank 9: 1
Rank 5: 4 Rank 10: 1
Rank 6: 1 Rank ≥ 11: 23

Table 1. Face Detection and Recognition Performance: A small
representative video segment was groundtruthed and evaluated for
accuracy.

ever a prohibitive task, considering the large number of rec-
ognized faces even for a single track, as seen in Table 1. We
overcome this by manually labeling each track (the number
of tracks is significantly smaller than the number of faces)
with the identity of the individual that this track is follow-
ing. Next, given that multiple faces are associated with each
track in our graph-cut solution, we perform majority vot-
ing whereby the most frequently recognized individual for
this track is assigned to it. Furthermore, for computational
reasons, our graph-cut optimization is performed for tem-
porally partitioned segments of the tracks. Therefore, the
majority voting procedure is conducted for these track seg-
ments. The groundtruth labels and the labels from our solu-
tion are then compared.

Seq #1 Seq #2 Seq #3
Nr. of Frames: 7000 5400 7000
Nr. of Tracks: 20 14 22
Nr. of Segments: 364 267 904
Recognized: 352 264 597
Correct Recog.: 336 255 470
Wrong Recog.: 16 9 127
Recog. Rate: 95% 97% 79%

Table 2. Track Recognition Performance: We groundtruthed 3
video sequences by labeling each track with the identity of the
individual that it was following, and compare them with the the
results from the graph-cut solution, see text for details.

Following such a procedure, we groundtruthed 3 video
sequences that contain a total of 19400 frames and 56
tracks. We show the comparative results in Table 2. Seq
#1 contains 20 tracks, generating a total of 364 segments,
among which 352 segments are recognized (some segments
may not have been associated with any faces, and thus re-
main unrecognizable). From these 352 segments, 336 are
correctly recognized, yielding a recognition rate of 95%,
which is higher than the face recognition rate in Table 1.
For Seq #2 and Seq #3, we obtained a recognition rate
of 97% and 79% respectively. While the recognition rate
for Seq #3 is lower than the face recognition rate in Ta-
ble 1, the amount of uncertainties for the latter is signifi-
cantly lower since the test sequence contains only a single
subject. On the other hand, we are faced with uncertainties
caused by crowded conditions, errors in the projection ma-
trix estimations of the PTZ cameras, and motion blur due
to PTZ movements. Thus, we consider the overall perfor-
mance of the 3 sequences very satisfactory.
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Figure 3. Large Motion Crowds: In this scene, there was a total of 23 individual subjects who were told to mingle in a 3-group configu-
ration. The overlayed white wireframes with IDs show the tracking result from 4 fixed camera views.

Discovering Social Networks: We have extensively
evaluated the robustness of our system in discovering social
network with several challenging sequences, with the main
sequence shown in Fig. 3 lasting about 30 minutes long and
capturing 23 human subjects. Our system managed to track
each individual quite reliably even under such a challenging
condition, as seen from the 4 fixed camera views in the fig-
ure. The participants were instructed to mingle in a 3-group
configuration. Given such a typical scenario, a social net-
work was estimated and shown in Fig. 5 left image. Based
on the social network graph, we proceed to discover its so-
cial groups. The modularity-cut was able to identify the
correct social groups, shown in Fig. 5 right image.

We have also compared the modularity-cut with recur-
sive division based on the normalized-cut [19] criterion. For
the latter, we face significant problems in setting the cut size
threshold. We found that a threshold that works for a se-
quence (after a trial-and-error adjustment procedure) would
perform badly for other sequences. In contrast, modularity-
cut performs extremely well and is able to correctly dis-
cover the social groups without requiring a tedious exercise
of setting the right threshold, as explained in Sec. 3.2.

Leadership Identification: To demonstrate our algo-
rithm’s capability to identify Eigen-leaders, we evaluated
the modularity-cut on an approximately 15 minutes long se-
quence (note that this is a different sequence from the one
used in Fig. 3 and 5). The leaders are determined only at
the end of the sequence so as to allow the system to observe
sufficient interactions. Different members of two groups
are seen interacting at different times. The leader of each
group is however always present, which generates strong
modularity connections between each leader and his group
members. By identifying the resulting Eigen-leaders, the
system was able to successfully identify the leaders, shown
as red nodes in Fig. 4, which, as mentioned, is not possible
with classical spectral clustering techniques that minimize
the cut size.

5. Conclusions
In this paper, we have addressed an emerging new prob-

lem of monitoring and recognizing social network and dis-
covering its community and leadership structures. A com-
puter vision solution to the problem has been proposed,
which should be of tremendous value for practical surveil-
lance purposes. Specifically, we have presented an algo-
rithm for robustly building social network by identifying in-
dividuals and analyzing their interactions using face recog-
nitions and person tracks, where the correspondence be-
tween them are established using an elegant graph-cut so-

Figure 4. Leaders of Social Groups: In this experiment, there
was a total of 11 individuals, divided into 2 groups. Members of
each group appear in the scene at different times, during which the
leader is always present. This generated, in a modularity sense,
strong connections between the leader of each group to its mem-
bers. As a result, the system was able to identify the Eigen-leaders
(Sec. 3.3), which are the red nodes in this figure.

lution. Admittedly, analyzing social interactions using such
information alone might be limited. A more sophisticated
scheme, such as the amount of eye contacts, could be em-
ployed. These schemes, however, are mostly very sensitive
to video quality and thus require further work. We have also
introduced the modularity-cut as a more intuitive way of di-
viding the social network into social groups, and demon-
strated its capability in identifying Eigen-leaders. The util-
ity of our algorithms was demonstrated by a fully integrated
system that works very well in practice; the system can be
run live for an extended period of time collecting sizeable
amount of tracks and face images for subsequent social net-
work analysis. The system in its current form, however,
assumes a closed-world environment where the watchlist
is pre-determined. This should be desirably extended to a
dynamically-generated watchlist, where new faces observed
during system operation are added to the watchlist automat-
ically.
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Figure 5. Discovering Social Groups: The left image shows the social network constructed from the sequence in Fig. 3, which was divided
into 3 groups correctly using the modularity-cut, shown on the right. Here, the links are shown with the weights between the individuals.
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