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Abstract

Multi-modal registration is the task of aligning images
from an object acquired with different imaging systems, sen-
sors or parameters. The current gold standard for medical
images is the maximization of mutual information by com-
puting the joint intensity distribution. However intensities
are highly sensitive to various kinds of noise and denoising
is a very challenging task often involving a-priori knowl-
edge and parameter tuning. We propose to perform regis-
tration on a novel robust information support: the wavelet
energy map, giving a measure of local energy for each
pixel. This spatial feature is derived from local spectral
components computed with a redundant wavelet transform.
The multi-frequential aspect of our method is particularly
adapted to robust registration of images showing ambigu-
ities such as tissues, complex textures and multiple inter-
faces. We show the benefits of the wavelet energy map
approach in comparison to the classical framework in 2D
and 3D rigid registration experiments on synthetic and real
data.

1. Introduction
Image registration is a crucial preprocessing step in all

image analysis tasks in which information from various

imaging sources needs to be combined. These sources of

information can be acquisitions from different viewpoints

of an object, at different times or with different sensors [20].

Establishing the correspondences between images acquired

with different medical imaging modalities is a challenging

task known as multi-modal registration. To identify the ge-

ometric transformation that maps the coordinate system of

one modality to the other [21], objective functions that eval-
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uate the quality of alignment known as similarity measures

are optimized. The choice of the appropriate measure is not

straightforward, because it implicitly models the relation-

ship between the different images to register. Indeed, this

measure quantifies how well images are registered accord-

ing to the transformation parameters [16]. As modeling the

physical relationship between different imaging modalities

is very difficult, statistical measures have become more and

more popular.

Since its introduction by Viola and Wells [19] and Col-

lignon et al [3], mutual information remains the state of the

art of multi-modal registration of medical images. Several

other entropy-based measures have also been introduced:

for example, the normalized version of mutual information

proposed by Studholme et al. [18] or the Kullback-Leibler

distance introduced by Chung et al. [2]. Furthermore, a

quantitative-qualitative measure of mutual information has

been presented by Luan et al. [12] to take the saliency of

each image voxel into account. All these different entropy

definitions use the same support of information: the inten-

sity distribution. But image intensities are very inclined to

be corrupted by noise due to different phenomena that can

occur during the acquisition procedure. Indeed, medical im-

ages such as magnetic resonance suffer very often from dif-

ferent types of noise due to interferences between electronic

devices, which can dramatically influence registration re-

sults. Image denoising is however a very challenging task,

because the type of noise has to be known or modeled to

perform an efficient filtering.

To gain in robustness, Gan and Chung [7] introduced

a novel spatial feature named maximum distance-gradient-

magnitude (MDGM) for rigid registration of medical im-

ages. Each pixel is characterized by the most dominant local

variation and its intensity value. Again, taking into account

intensity values can lead to misregistration in presence of

noise. Because of its ability to extract features charac-

terizing local frequency components, the Discrete Wavelet
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Transform (DWT), whose main application is data com-

pression, has been recently introduced in the field of im-

age registration. Le Moigne et al. [14] and Sharman et

al. [17] proposed to perform the registration on a feature

space formed by the dominant local variations. In a coarse

to fine strategy, wavelet coefficients are selected with a mag-

nitude above a certain threshold. This selection method

is also used by Hongli et al. [9] on approximation coef-

ficients computed with a slightly different wavelet trans-

form scheme. Using a Complex Wavelet Transform (CWT),

Oubel et al. [15] present a 2 steps registration framework, in

which a first alignment is done on low frequency and refine-

ment on high frequency coefficients from the first decom-

position level. But relying on these high frequency compo-

nents is not a safe strategy, especially in the case of high fre-

quency noise. Li et al. [11] propose an energy feature based

on the coefficients of the first decomposition level computed

with a Discrete Frame Wavelet Transform. Each pixel being

only characterized by the highest part of the frequency spec-

trum, again, these features are not reliable in the presence

of noise.

To take fully advantage of this kind of transforms, we

combine the information contained in all sub-bands of the

frequency spectrum. In this paper, we propose to perform

the registration on a novel feature map we name wavelet
energy map (WEM), whose computation is parameter-free

and which is very robust to the noise present in the orig-

inal images. The WEM measures the local signal energy

at each pixel and is computed from local spectral compo-

nents in its neighborhood. These spectral components are

obtained with the redundant wavelet transform [4], which

gives the best approximation of a space-frequency repre-

sentation. For registration tasks, the energy probability dis-

tribution of the WEM is used as input for mutual informa-

tion. The method does not require any additional a-priori in-

formation or parameter, but only a slightly increased initial

computation. The multi-frequential aspect of this approach

is especially adapted to registration of medical images pre-

senting ambiguities such as tissues with complex textures

or multiple interfaces. We demonstrate its value on a wide

range of experiments on synthetic and real images. In the

remaining of this paper, section 2 will define the wavelet

energy map and the registration framework. Section 3 will

present experiments demonstrating three properties of the

WEM:

1. correctness: energy and intensity maps give the same

global maximum for mutual information

2. robustness: registration on local energies is robust to

noise

3. efficiency: mutual information computed on wavelet

energy maps outperforms the classical approach in

terms of robustness for an equivalent accuracy

2. Methods
2.1. Problem statement

The goal of multi-modal image registration is to identify

the geometric transformation that maps the coordinate sys-

tem of one modality to the other. Let us consider two 2D

images defined on the domains Ω1 and Ω2 with intensity

functions I1 : Ω1 ⊂ R2 → R and I2 : Ω2 ⊂ R2 → R.

The registration task can be defined as a maximization prob-

lem, in which we want to estimate the best transform T ac-

cording to a chosen similarity measure S computed on the

discrete overlap domain Ω = Ω1 ∩ T (Ω2):

T = argmax
T

SΩ(I1, T (I2)) (1)

Since intensities are highly sensitive to noise, we propose to

evaluate the similarity in a more robust feature space. We

introduce a novel spatial feature map named wavelet energy
map (WEM) giving a measure of local energy around each

pixel of the original images. In the following parts, we de-

fine the concept of local energy and its computation from lo-

cal spectral components extracted with a redundant wavelet

transform. We will discuss the 2D case for better readabil-

ity, the extension to three dimensions being straightforward.

In that case, T is the composition of a translation and a ro-

tation.

2.2. Energy vs. Intensity

In signal processing, the energy of a signal x(t) is de-

fined as:

E =
∫

t

|x(t)|2 (2)

and in the discrete case, for an image with intensity function

I:

E =
∑
i,j

|I(i, j)|2 (3)

Interpreting a zero image as a flat surface, energy can be un-

derstood as the work capacity accumulated during its defor-

mation to the final relief. In the previous equation, energy

is expressed in terms of intensities. Because they do not

provide any contextual information, intensity values are not

a safe support of information. Their variation frequencies,

in contrary, offer a safer support by involving spatial con-

text. Parseval’s theorem guarantees that in a Hilbert space

(we assume intensity functions being elements of a Hilbert

space, for example L2(R2)) the energy of a signal x can

also be determined from its frequency spectrum:∫
t

|x(t)|2 dt =
∫

f

|X(f)|2 df (4)

with X being the Fourier transform of x. In the discrete

case we obtain:∑
i,j

|I(i, j)|2 =
∑

f

|FI(f)|2 (5)
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where FI is the 2D Fourier transform of the image. The

major drawback of the Fourier transform is its poor resolu-

tion in space domain. To define a local energy as a spatial

feature, we need a frequency-space representation to know

which spectral components exist at any given position in

the image. A relatively new method introduced by Gross-

mann and Morlet [8] known as wavelet transform provides

the best approximation of this space-frequency representa-

tion.

2.3. Extraction of local spectral components

2.3.1 The redundant wavelet transform

The traditional discrete wavelet transform (DWT) projects

a signal onto an orthogonal wavelets basis. Its principle is

to extract iteratively the information contained in each sub

bands of the frequency spectrum [13]. In practice, the DWT

is performed by passing the image through a cascade of or-

thogonal high pass (H) and low pass (L) filters to select

each sub bands and analyze their content. The resulting de-

composition coefficients are then down-sampled according

to the Nyquist-Shannon sampling theorem as represented

on Fig. 1. The original image is decomposed in 4 com-

ponents: HH corresponds to the application of high pass

filters in x and y directions, HL to high pass in x and low

pass in y direction, LH to the contrary and LL to low pass

filters in both directions. The LL component is then re-

decomposed in 4 components and the process is repeated.

HH , HL and LH components are called details and LL
approximation coefficients.

Figure 1. Discrete Wavelet Transform of a 2D image.

Orthogonality is a crucial property ensuring the most

exact conservation of the spectral information. DWT does

not only provide orthogonality between each sub bands, but

also between their components. Its major drawback is the

down-sampling operation that results in a loss of position

information. Hence, we use another transform known as re-

dundant discrete wavelet transform (RDWT) that basically

removes the down-sampling operation. The RDWT also

known as “Algorithme à trous” produces an over complete

representation of the image and is considered as a better

approximation of the continuous wavelet transform [4]. It

is implemented by using a bank of filters (refer to the filter

cascade on Fig. 2). In the one-dimensional case, the signal

is filtered by a low l and a high pass h as shown below:

vj+1[n] =
p∑

k=1

vj [k]lj [n− 2jk] (6)

wj+1[n] =
p∑

k=1

vj [k]hj [n− 2jk] (7)

with vj+1 being the approximation and wj+1 the detail

component at the decomposition level j + 1 and p the size

of the filter. This is analog to a classical filtering of the sig-

nal by iteratively inserting zeros, or in other words “holes”

(“trous” in french) between all coefficients of the filters. In

Figure 2. Filter Bank for Redundant Discrete Wavelet Transform

of a 1D signal.

the two-dimensional case, each row and column of the orig-

inal image are treated like a one dimensional signal. By in-

troducing redundant information, the RDWT is not orthog-

onal but projects the signal onto a frame. A frame can be

a stable and redundant representation of signals if its ba-

sis verifies the Heisenberg-Weyl condition [5]. The whole

frequency axis is then covered by this representation and it

can be considered according to Daubechies [5] as a quasi-

orthogonal expansion. Such a representation helps to char-

acterize textures of an image and increases the robustness to

additive noise [6]. This redundancy has the main advantage

to permit a better localization of each spectral components

in the image: indeed, to each pixel corresponds a set of co-

efficients characterizing the local spectrum.

2.3.2 Choice of the wavelet basis

Since the RDWT removes the down-sampling operation,

the spatial sampling rate is fixed across all scales. This

gives to this transform a translational invariance property

in contrary to the traditional DWT. Unfortunately the

RDWT is not rotational invariant. To reduce the impact

of this rotational non invariance, we focus on two types

of wavelets that have a compact support: orthogonal
wavelets from the Daubechies family and the biorthogonal
Cohen-Daubechies-Feauveau 9/7 wavelets.
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Figure 3. The wavelet energy map computation.

2.4. Local energy formulation

After decomposing an image I with a RDWT in m sub-

bands with m being the maximum number of possible lev-

els, we obtain for each pixel (i, j) a set of 3m + 1 coef-

ficients (3 detail components per level and the approxima-

tion from the last level) providing information on local fre-

quency components. Let w(i, j) be the coefficient vector:

w(i, j) = (w1(i, j), w2(i, j), . . . , w3m+1(i, j)) (8)

Using Parseval’s theorem, we can define a local energy

W(i, j) computed from the local spectral components:

W(i, j) = ‖w(i, j)‖2 =
3m+1∑
k=1

|wk(i, j)|2 (9)

We name wavelet energy map (WEM) the array contain-

ing all values W(i, j). Its computation is summarized by

Fig. 3.

2.5. Energy based registration framework

In terms of WEMs, equation 1 becomes:

T = argmax
T

SΩ(W1, T (W2)) (10)

withW1 andW2 being the WEMs computed from both im-

ages to align. Since different imaging systems emphasize

different characteristics of an object, the resulting WEMs

will highlight different structures. As presented in the intro-

duction, statistical similarity measures are the current stan-

dard in multi-modal registration. Thus, we propose to use

the mutual information (MI) to evaluate the statistical rela-

tionship between both wavelet energy maps. First, we nor-

malize them between 0 and 1:

W(i, j) =
W(i, j)−mini,j(W(i, j))

maxi,j(W(i, j))
(11)

By dividing the domain [0, 1] in N bins B1, . . . ,BN , we can

determine the probability of a pixel x to fall in the bin Bk:

p(x ∈ Bk) =
#

{
(i, j), W(i, j) ∈ [

k
N

k+1
N

[}
#Ω

(12)

where #· is the cardinality operator. It is then possible to

compare the shared amount of information in the energy

maps of both images by using the classical definition of

MI:

MI(W1, T (W2)) =

H(W1) + H(T (W2))−H(W1, T (W2))
(13)

with H(W) being Shannon’s definition of information en-

tropy:

H(W) = −
N∑

k=1

p(x ∈ Bk)log2(p(x ∈ Bk)) (14)

The joint entropy H(W1, T (W2)) is defined by using the

probability of the pixel x to respectively fall into the bins

Bk and Bl in the mapsW1 and T (W2).

3. Experiments and Results
First, experiments on synthetic datasets show that energy

and intensity maps give the same global maximum for mu-

tual information. Further tests reveal the robustness of our

approach to gaussian noise. Finally, 2D and 3D experiments

on real medical datasets illustrate the benefits of a WEM

based registration framework. The different wavelets trans-

forms are based on the Matlab implementation by Gabriel

Peyré and the Rice wavelet toolbox. To compute a consis-

tent WEM, three conditions have to be fulfilled:

1. Images must have the same pixel size,

2. the domains where the RDWT is computed must have

a size which is a factor of 2,

3. both images have to be decomposed in the same num-

ber of levels.

Convergence to the right solution depends much more on

the topography of the search space offered by the similar-

ity measure than on the optimizer. Hence, we can choose a

Downhill-Simplex optimizer, that does not require any gra-

dient information, to solve our measure maximization tasks.

The quality of registration will be evaluated by using the

target registration error (TRE). The TRE is computed by

comparing the positions of a set of points {pi, 1 ≤ i ≤ M}
after being mapped by the estimated transform T and by the

ground truth transform G:

TRE =
1
M

i=M∑
i=1

‖T (pi)−G(pi)‖ (15)

In the following, mutual information computed on wavelet

energy map will be denoted by MEI (Mutual Energy In-

formation), while the classical approach on intensity maps

by MII (Mutual Intensity Information). Different MEI
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based on Haar, Daubechies 4 (D4) and Cohen-Daubechies-

Feauveau 9/7 (CDF) wavelet bases have been evaluated. All

experiments were performed with MATLAB 7.5.0 on a Intel

Core 2 Duo CPU 2.40 GHz.

3.1. Correctness

The goal of these experiments is to show that registration

performed with MEI leads to the same global maximum

than by using MII. Therefore, we use synthetic images and

plot both measures to compare their global maxima and

smoothness. For a better understanding and visualization of

the results, we analyze separately rotation and translation.

The images contain ambiguities resulting in several local

maxima to demonstrate the superiority of our approach in

terms of smoothness of the search space.

Experiment 1:

Figure 4. Experiment 1: the Mandelbrot fractal image and its in-

verse used for visualizing the similarity measure as function of the

rotation parameter.

We use a Mandelbrot fractal with equation f(z) =
z8 + c which has interesting multi-frequential character-

istics. Indeed, it shows fine structures at arbitrary small

scales, as observed in medical images presenting tissues

with complex textures. This fractal shows an orientation

ambiguity: we can distinguish 7 different global rotation

maxima. Thus a “CVPR 2009” detail is added to give an

orientation to the whole image (see Fig. 4). We compare

MEI and MII similarity measures for this image and its in-

verse, both having a resolution of 256x256. Similarity val-

ues are plotted for a rotation angle varying between −90
and +90 degrees. As shown on Fig. 5 (left), the global

maxima perfectly correspond for both approaches. Besides,

the WEM emphasizes the right solution by smoothing other

local maxima contrary to the intensity map.

Experiment 2:
In our second experiment, we use the following sum of

cosinus to simulate multiple interfaces such as those ob-

served in many medical images: f(x) = a1cos(2πf1x) +
a2cos(2πf2x)+a3cos(2πf3x). The resulting image shows

ambiguities in both x and y directions. As before, we add

the “CVPR 2009” detail giving a unique solution (see Fig.

Figure 5. Experiment 1 (left) and Experiment 3 (right): plot of

the similarity measures for rotation angles between −90 and +90
degrees. On this figure, D4 wavelet has been used to compute the

WEM.

Figure 6. Experiment 2: the multiple interfaces image and its in-

verse used for visualizing the similarity measure as function of the

translation parameters.

6). We compare MEI and MII for this image and its inverse,

both having a resolution of 128x128. Similarity values are

plotted for translation parameters varying between−20 and

+20 pixels in both directions. As shown on Fig. 7 the global

maximum perfectly corresponds for both approaches. This

experiment also reveals the abilities of the WEM to both

emphasize the global maximum and offer a smoother search

space, which are very valuable for optimization purposes.

Figure 7. Experiment 2: Measures plotted for variations in trans-

lation. On this figure, D4 wavelet was used to compute the WEM.

3.2. Robustness to noise

The goal of these experiments is to argue for the

superiority of MEI in terms of robustness in comparison

to the classical approach, even when a denoising step

has been performed prior to the similarity computation.

Two denoising methods are used: averaging and adaptive

wavelet denoising [1]. The later method is parameter-free

and based on soft-thresholding of the wavelet coefficients.

It was chosen for fair comparison with wavelet energy

maps. Denoising being a challenging task usually involving

a priori knowledge on the type of noise, a “denoising-free”

measure such as MEI is very valuable for robust registra-

tion. We will use for the following experiments a gaussian
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noise model, that affects independently all pixels of the im-

ages and thus highly corrupts the information content. We

show in experiment 3 that MEI preserves its search space

from distortions on the same synthetic images corrupted

by gaussian noise. Experiment 4 shows its robustness to

different levels of noise and is performed on an image

without any ambiguity. A real registration framework is

used for evaluation of the search space formed by the three

transform parameters.

Experiment 3
The impact of gaussian noise on the smoothness of the

search space of MEI, MII and MII preceded by a denoising

step is analyzed. We use the same figures and setup than

in the previous section, and add to all images an additive

gaussian noise with σ = 20% of the maximum intensity

value. Figures 5 (right) and 8 show that our approach

Figure 8. Experiment 3: From left to right, top to bottom: MEI,

MII without denoising, MII with adaptative wavelet denoising and

MII with averaging denoising for variation in translation. In this

figure, D4 wavelet was used to compute the WEM.

preserves the global maximum in presence of gaussian

noise unlike the others. Even when a denoising step is

applied prior to the computation of the similarity measure,

MEI offers a smoother search space with a meaningful

global maximum. The rotational case even reveals that MII

looses the right solution.

Experiment 4
In this experiment, we evaluate the robustness to an increas-

ing amount of gaussian noise. MEI is compared to MII and

MII preceded by a denoising step on an image without any

ambiguity. We use the portrait of Lena with a resolution

of 128x128 pixels. Registration to its inverse image is per-

formed with a Downhill Simplex optimizer by starting from

10 random initial positions within the range−3 to +3 pixels

translation and −3 to +3 degrees rotation. Fig. 9 shows the

mean target registration error in function of the percentage

of noise. For the classical computation of mutual informa-

Figure 9. Registration performed on Lena image and its inverse to

evaluate the robusness to noise of each method.

tion, the TRE increases dramatically in contrast to our ap-

proach that always presents the smallest error. Even when a

denoising step is performed prior to the registration, results

illustrate the benefits of MEI in terms of robustness.

3.3. Efficiency on medical images

In this part, we evaluate the efficiency of our approach

in 2D and 3D multi-modal registration experiments. First,

2D experiments are conducted on magnetic resonance (MR)

images from sequences acquired with different system pa-

rameters, namely T1, T2, PD and TOF acquisitions. Then,

3D experiments are performed on MR and SPECT volumes

with an increasing amount of noise. MEI computed with

Haar, D4 and CDF wavelet bases are compared to the clas-

sical MII. To evaluate the registration efficiency of each

method, we distinguish between success rate and accuracy.

A registration is considered as successful when the final

target registration error is inferior to a given threshold te.

Otherwise, the approach did not converge in the neighbor-

hood of the right solution. The accuracy is evaluated as the

mean target registration error computed on the cases where

all methods have converged under te.

The chosen multi-modal datasets contain ambiguities

which can lead classical approaches to misregistration. Ex-

perimental results illustrate the ability of our method to cope

with such ambiguities by emphasizing the right global max-

imum and smoothing other local extrema.

3.3.1 2D registration experiments: Real Magnetic Res-
onance datasets

While T1, T2, PD sequences provide different information

related to tissue characteristics (refer to Fig. 10), TOF gives

dynamic information related to the blood flow in arteries.

The circular shape of the neck makes the registration task

ambiguous in 2D. Indeed, to recover the right rotation pa-

rameter, registration can only rely on corresponding tissues

or interfaces appearing in each modalities.

In the following experimental setup, 2D registration tests

are conducted on all possible combinations of T1, T2, PD

and TOF images taken from 8 patients. They have a resolu-
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tion of of 128 x 128 with a pixel size of 1.25mm x 1.25mm.

Knowing the ground truth position for each dataset, we

give a random initial perturbation within the TRE range of

20mm. The threshold te is set to 10mm which corresponds

to 50% of the initial TRE range. Results presented in table 1

reveal the benefits of our approach on real medical datasets:

MEI shows the best success rates for an equivalent accu-

racy. In hard tasks such as registrations to TOF images,

both success rate and accuracy are better. Even though MII

is an accurate measure, it shows more local extrema than

MEI when images present ambiguities. These local extrema

trap the optimizer, leading thereby to more misregistration

errors. In contrast, by smoothing these local extrema, our

approach offers a better success rate.

Figure 10. From left to right, and top to bottom: T1, T2, proton

density (PD) spin echo sequences and Time of Flight (TOF) MR

Angiography gradient echo sequence of the neck of the same pa-

tient.

3.4. 3D registration experiments: T1 Magnetic Res-
onance and SPECT-Tc volume

Single photon emission computed tomography (SPECT)

is a nuclear medicine tomographic imaging technique used

to provide information related to the blood flow. In 3D,

SPECT volumes present a blurry cloud aspect with smooth

intensity variations that do not correspond to any structure

visible in the MR volume. This makes the recovery of trans-

formation parameters for such a task challenging.

In the following experimental setup, 3D registration tests

are conducted on MR and SPECT volumes of 4 patients

taken from the Whole Brain Atlas online database [10].

They have an in-plane resolution of 128 x 128 with a voxel

size of 1.67mm x 1.67mm x 1mm. When the size in z is not

Success rate in %
Haar MEI D4 MEI CDF MEI MII

T1/TOF 87.50% 87.50% 87.50% 84.38%
T1/T2 100% 100% 100% 98.96%
T1/PD 100% 100% 100% 98.96%

T2/TOF 86.46% 87.50% 87.50% 85.42%
T2/PD 100% 100% 100% 98.96%

PD/TOF 87.50% 87.50% 87.50% 82.29%

Target Registration Error in mm
Haar MEI D4 MEI CDF MEI MII

T1/TOF
mean 2.84 3.18 2.80 3.75
std dev 1.69 1.96 0.92 2.16

T1/T2
mean 0.91 0.90 0.99 0.64
std dev 0.64 0.49 0.59 0.55

T1/PD
mean 0.95 1.04 1.05 0.83
std dev 0.55 0.55 0.52 0.58

T2/TOF
mean 2.99 3.25 3.19 3.26
std dev 1.78 2.03 2.02 2.32

T2/PD
mean 1.14 1.02 1.25 0.60
std dev 0.61 0.56 0.73 0.44

PD/TOF
mean 2.68 3.03 2.79 3.21
std dev 1.82 1.91 1.61 2.32

Table 1. 2D registration: success rate and final TRE on T1, T2,

PD and TOF images.

a power of 2, a zero-padding is performed at the boundaries

of the volume before the RDWT. Knowing the ground truth

for each dataset, an initial perturbation is applied within a

range of 14mm of initial TRE. By using 20 initializations

for each patient, and this for an increasing amount of noise,

we can investigate the ability of each measure to converge

towards the right solution and thereby assess their robust-

ness. The threshold te is set to 7mm which corresponds to

50% of the initial TRE range. Results presented in Fig. 11

show that MEI offers better success rate for a better accu-

racy. With an increasing amount of noise, even though an

averaging denoising step is performed prior to registration,

our approach leads to better results. Since noise is local-

ized in a small part of the frequency spectrum, its impact is

minimized by the computation of the WEM. As in the 2D

experiments, our method copes better with the ambiguities

caused by the aspect of the SPECT volumes.

4. Conclusion
In this paper, we proposed to perform the registration on

a feature map called wavelet energy map (WEM) instead

of using the original image. We empirically showed that

mutual information performed on the WEM leads to the

same solution than the classical approach on intensity

maps. Moreover, its multi-frequential aspect permits

to emphasize the global maximum in ambiguous cases

containing multiple local extrema, offering thereby a

smoother search space, even in presence of noise. 2D

and 3D registration experiments on real medical datasets
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Figure 11. 3D registration: Plot of success rate and final TRE ac-

cording to an increasing amount of noise for MR-SPECT volumes.

illustrated the efficiency of our approach in comparison to

the classical framework which is more sensitive to noise

and image ambiguities. In future work, we plan to address

the rotational non-invariance issue of the redundant wavelet

transform, for instance by using filters computed on more

orientations.
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