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Abstract

We present a general technique for rectification of a
stereo pair acquired by a calibrated omnidirectional ca-
mera. Using this technique we formulate a new stereo-
graphic rectification method. Our rectification does not
map epipolar curves onto lines as common rectification me-
thods, but rather maps epipolar curves onto circles. We
show that this rectification in a certain sense minimizes the
distortion of the original omnidirectional images. We for-
mulate the rectification for multiple images and show that
the choice of the optimal projection center of the rectifica-
tion is under certain circumstances equivalent to the classi-
cal problem of spherical minimax location. We demonstrate
the behaviour and the quality of the rectification in real ex-
periments with images from 180 degree field of view fish eye
lenses.

1. Motivation
A pair of images is thought to be rectified when its epipo-

lar lines coincide. Rectification is typically a pre-step for
methods of dense stereo matching and is mostly parameter-
ized so that epipolar lines coincide with image scanlines.
This type of rectification simplifies the following dense
stereo matching and various methods for scanline rectifica-
tion with respect to minimization of image distortion have
been developed [8, 9, 7]. Although these methods perform
well when epipoles are not present in the original images,
they produce infinitely large images otherwise. Pollefeys
et al. [12] proposed a rectification method based on polar
parameterization, producing finite area images even when
epipoles are located in the images.

However, in case of omnidirectional images epipolar
lines become epipolar curves. Another difference between
perspective and omnidirectional epipolar geometries is the
existence of a second epipole in a single image. As the
closest equivalent to the method described in [12], spher-
ical parameterization can be considered. In [1], Arifan and
Frossard used spherical parameterization in connection with

an energy minimization based approach to estimate dense
disparities from omnidirectional images. In [6] Geyer and
Daniilidis proved the existence of conformal rectification
for stereo pairs obtained using a parabolic catadioptric ca-
mera, superposing bipolar coordinate system onto the two
epipoles.

Nonetheless, both spherical and bipolar parameteriza-
tions inherit a significant setback congenital to all types of
scanline rectifications – a severely disproportional expan-
sion of the area near epipoles. Since at least one epipole is
always present in an omnidirectional image, every scanline
rectified omnidirectional image suffers from this blowout.
This might not pose a problem in cases when rectified stereo
pair is used as a pre-step for epipolar lines marching tech-
niques, since the epipolar lines are parameterized anyway.
However, it can be heavily counterproductive when tech-
niques concerned with point neighbourhoods are employed.

In this paper we present a general method of rectifica-
tion of a calibrated omnidirectional stereo pair and a novel
rectification method based on the stereographic projection
which we call the stereographic rectification. Using the
stereographic projection, the scanline rectification is re-
placed by a epipolar curve rectification which maps circles
on circles. In exchange for such a mapping we get a param-
eterization that in a certain sense minimizes distortion of
original images as well as distances between corresponding
image points. Besides that, circles are easy to parameterize
and the length of a circle segment is easy to compute for
further sampling optimization. Since the epipolar geometry
is applied, the shapes of scanning windows for the same
pixel positions are identical and distortion of the scanning
window is governed by the geometry of circles. Further, the
intersection of the respective fields of view (FOV) can be
parameterized as intersection of two circles.

2. General rectification of stereo pairs

2.1. Geometry of omnidirectional cameras

By a central omnidirectional camera we understand any
large view angle camera with a single effective viewpoint
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and by image formation the formation of an image from
a surrounding scene through an optical system to a digi-
tal camera’s chip and the process of digitization. We as-
sume that the cameras are calibrated and that the epipolar
geometry of a stereo pair has been computed, e.g. by [10].
Geometry, calibration and the process of image formation
of such central omnidirectional cameras are described in
[3, 4, 5, 10, 11, 13].

The objective of the camera calibration is to find the
mapping from an image point to a corresponding 3D ray
represented by a unit vector. Formally, the camera calibra-
tion of a specific camera is a map C : R2 → S3, where
S3 def= {v ∈ R3 : ||v|| = 1}. In this paper the avail-
ability of C and existence of inverse mapping C−1 is al-
ways assumed. Further, a canonical orientation such that
C((0, 0))> = (0, 0,−1)> is assumed.

2.2. Epipolar geometry

The central notion of the image rectification is epipolar
geometry [8]. An analogy to the epipolar geometry of cen-
tral perspective cameras can be formulated for central om-
nidirectional cameras likewise [10, 14]. The difference be-
tween directional and omnidirectional cameras is the shape
of the retinas as well as the distinguishability of the ray
orientations and thus existence of two epipoles. Here, we
will use the spherical model of the retinas [10]. In the
spherical model, intersections of epipolar planes and the
retinas form pencils of epipolar circles. In the following,
epipoles will be denoted e1,1, e1,2 ∈ S3 for epipoles in the
first view, e2,1, e2,2 ∈ S3 for epipoles in the second view,
E ∈ R3×3 will denote the essential matrix describing a par-
ticular epipolar geometry, e2,iEe1,i = 0, i = 1, 2. Epipoles
are oriented such that e1,1, e2,1 are always directions to the
same scene point X and such that if only one epipole is vis-
ible in the first view, e1,1 is that epipole. In the following
we will use the following observation:

Observation 1 Let E be an essential matrix and e1,i, e2,i,
i = 1, 2 the respective epipoles, u ∈ R3\{(0, 0, 0)>} such
that u and e1,2 are linearly independent. Then vectors u
and [e2,2]× Eu lie in the same epipolar plane.

2.3. Epipolar alignment

Given two calibrated images of the same rigid scene and
an essential matrix describing the epipolar geometry of the
image pair, the goal of this section is to derive transforma-
tion A1 from the coordinate system of the first camera C1

and transformation A2 from the coordinate system of the
second camera C2 to the world coordinate system so the re-
spective epipole pairs e1,i, e2,i, i = 1, 2 coincide with the
z axis and the corresponding epipolar circles are superim-
posed, see Figure 1. The pair [A1, A2] will be called the

z

x

A1e1,1 = A2e2,1

Figure 1. Epipolar alignment example. The Red dots denote ca-
mera centers and vectors incident to the respective centers of the
fields of view. The blue dot represents the position of the epipoles
after the epipolar alignment. The grey areas represent the vectors
in the fields of view of the respective cameras.

epipolar alignment of an image pair. It is a simple obser-
vation that transformations A1, A2 : R3 → R3 are linear
invertible mappings expressed as matrix multiplications

∀q ∈ R3 : A1(q) = A1q, A2(q) = A2q, (1)

where A1, A2 ∈ R3×3 such that A1 and A2 map z axis of the
world coordinate system onto the respective epipoles.

Definition 1 Let e be an epipole in an image from an om-
nidirectional stereo pair. We say that a coordinate system
Σu

e = [x,y, e], so that u ∈ S3 and e are linearly indepen-
dent, x = [e]× u and y = [x]× e is the epipolar coordinate
system incident to the epipole e with up-vector u.

Let E be an essential matrix, e1,i, e2,i, i = 1, 2 the
respective epipoles, as described in the previous section,
I =

[
(1, 0, 0)>, (0, 1, 0)>, (0, 0, 1)>

]
the world coordinate

system. Transformation from the ordered basis Σu1
e1,2

to the
ordered basis I and transformation from the ordered basis
Σu2

e2,2
to the ordered basis I , for u1,u2 ∈ R3, where u1

is not collinear with e1,2 and u2 is not collinear with e2,2,
would solve the goal of superimposing epipoles with z axis.
However, in order to superimpose epipolar circles as well,
another constraint to these mappings must be introduced. In
order to ensure superposition of epipolar circles, up-vectors
u1,u2 have to “select” the same epipolar circle, i.e. lie in
the same epipolar plane. It follows from Observation 1 that
u2 = [e2,2]× Eu1 is a sufficient condition for u1,u2 to lie
in the same epipolar plane.

Let us derive the epipolar transformation [A1, A2]. Since
A−1

1 is the transformation from the ordered basis I to the
ordered basis Σu1

e1,2
= [x,y, e1,2],

A−1
1 I = Σu1

e1,2
, (2)

A1 =
(

x y e1,2

)−1
. (3)
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u′ ∈ R2 C1,C2−→ q′ ∈ S3 A1,A2−→ q ∈ S3 F◦T−→ u ∈ R2

(a) (b) (c) (d)
Figure 2. General rectification. (a) A point u′ in an image captured by an omnidirectional camera is (b) mapped by the camera’s calibration
transformation Ci onto a unit sphere vector q′. Then, q′ is (c) aligned using epipolar alignment transformation Ai to vector q. Finally,
vector q is (d) mapped to a plane by a characteristic transformation T and its position is adjusted by a final affine transformation F onto a
resulting image point u.

By analogy matrix A−1
2 , realizing the transformation

from the ordered basis I to the ordered basis Σu2
e2,2

=
[x′,y′, e2,2], where u2 = [e2,2]× Eu1, is as follows

A2 =
(

x′ y′ e2,2

)−1
. (4)

Note that the up-vector u1 is a free parameter of the
epipolar alignment [A1, A2].

2.4. General rectification

Let P1, P2 be an omnidirectional image pair. Let C1

be the calibration transformation of the camera C1 that ac-
quired the image P1, C2 the calibration transformation of
the camera C2 that acquired the image P2. Let E be an es-
sential matrix describing the epipolar geometry of the cam-
eras C1 and C2 and [A1, A2] the epipolar alignment based
on the essential matrix E. Then a rectification of the omni-
directional image pair P1, P2 can be viewed as a pair of de-
pendent geometric transformations connected by the epipo-
lar alignment [A1, A2]. A pair of such underlying geomet-
ric transformations G1, G2 : R2 → R2 forms a rectification
method. The inner structure of the geometric transforma-
tions is the following:

G1 = F ◦ T ◦A1 ◦ C1, (5)
G2 = F ◦ T ◦A2 ◦ C2, (6)

where T : R3 → R2 we call the characteristic transforma-
tion of a rectification method and F : R2 → R2 the final
affine transformation, see Figure 2. The first partA1,2◦C1,2

is clearly mutual to all methods, thus to fully define a rec-
tification method only the second part F ◦ T needs to be
specified. Note that the general rectification inherits the free
parameter u1 from the epipolar alignment. The epipolar
alignment and the shared second part F ◦ T ensure that the
epipolar curves will overlap no matter what the particular
formulation of F ◦ T is.

For practical applications, e.g. for computing rectified
images using backward mapping with interpolation, inverse

transformations

G−1
1 = C−1

1 ◦A−1
1 ◦ T−1 ◦ F−1, (7)

G−1
2 = C−1

1 ◦A−1
2 ◦ T−1 ◦ F−1, (8)

need to be derived. Since we assume to know of C−1
1,2 and

previously derived A−1
1,2, again, only T−1 ◦ F−1 need to be

specified.

3. Stereographic projection
In this section we review the stereographic projection,

since it is the keystone of the stereographic rectification.
In the canonical definition of the transformation, the unit

sphere centered in the origin and the plane z = 0 are con-
sidered. The sphere is mapped onto the plane by means of
the central projection, where the center of the projection is
the North Pole (0, 0, 1)>. Since the North Pole itself is not
projected onto the plane, it is customary to add a new point,
called∞, to the plane, and to complete the map by mapping
the North Pole onto∞. This turns the stereographic projec-
tion into a bijection, and leads to the following definition:

Definition 2 Let q = (x, y, z)> ∈ S3 be a point on the
surface of the unit sphere. Then the stereographic projection
S : S3 → R2 ∪ {∞} maps q onto a point u ∈ R2 ∪ {∞}
on the plane z = 0 extended by∞ so that

u =


∞ for q = (0, 0, 1)>,(
x

1−z
y

1−z

)
otherwise.

(9)

To be able to change the center of the projection from
the North pole to an arbitrary point on the unit sphere, we
introduce the following definition:

Definition 3 The stereographic projection from the point N
is the central projection SN : S3 → R2 ∪ {∞} of the unit
sphere S3 with the center of projection N ∈ S3 to the plane
(x, y, z)N = 0.
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Observation 2 Let R ∈ R3×3 be an orthogonal matrix,
N = R(0, 0, 1)>. Then

∀q ∈ S3 : SN(q) = S(R−1q). (10)

4. Stereographic rectification
In this paper we propose a novel rectification method

we call the stereographic rectification to address the issue
of epipole expansion of previous rectification methods, e.g.
[1, 6]. For this reason we chose the stereographic projec-
tion as its characteristic transformation. The stereographic
projection maps epipoles onto points instead of lines, as is
the inherent case of previous rectification methods. Because
of this the stereographic rectification does not map epipolar
curves onto scanlines but onto general circles. However,
there is a setback to the stereographic projection – as any
sphere to plane conformal map it does not preserve area.
Along the unit circle, there is no distortion of area but near
infinity areas are distorted by arbitrarily large factors. It can
be shown that the ratio of an area element and its projection
under the stereographic projection depends only on the dis-
tance of the area element from the center of the projection
on the unit sphere. This leads to an intuitive observation that
to minimize the distortion one could minimize the maximal
ratio for an area element from Ω. Since both Ω and stere-
ographic projection are given, one can change only the po-
sition of the projection center N to change the position and
thus the distortion of SN(Ω). We chose to formulate this
observation to quantify what we call the optimal projection
center for an area Ω as

N = arg max
p∈S3

∆(Ω,p), (11)

where ∆ is the spherical distance between p and Ω,

∆(Ω,p) def= inf
q∈Ω

arccos(p>q). (12)

If more areas of interest are considered, a compromise
in distortions introduced to the respective areas can be
achieved by projecting from a point maximizing the dis-
tance from the union of the areas,

N = arg max
p∈S3

∆(
⋃
i∈I

Ωi,p), (13)

where I = {1, . . . , n} and n is the number of the studied
areas.

In the case of the stereographic rectification the areas
of interest are the respective fields on view. If we denote
Vi ⊂ R2, i ∈ I as sets of pixels lying in the fields of view
of the respective images, i.e. the FOV ellipses, the “visible”

directions in the coordinate systems of the respective cam-
eras form

Ω′i = {p′ : p′ ∈ S2 & C−1
i (p′) ∈ Vi}, (14)

where Ci are respective calibration transformations. After
the epipolar alignment, Ω′i transform to

Ωi = {p : p ∈ S3 & C−1
i (A−1

i p) ∈ Vi}. (15)

Now the characteristic transformation of the stereographic
rectification TSGR can be formulated:

∀q ∈ R3 : TSGR(q) = SN(q). (16)

Using Observation 2 we can express the inverse character-
istic transformation of the stereographic rectification

∀u ∈ R2 : T−1
SGR(u) = RS−1(u), (17)

where R ∈ R3×3 is an orthogonal matrix such that
R(0, 0, 1)> = N. Any such R can express the change of
the projection center to N, affecting only rotation of the re-
sulting 2D image. We choose R =

(
r1 r2 N

)
such

that r1 =
[
(0, 1, 0)>

]
×N, r2 = [N]× r1.

To finalize the description of the stereographic rectifi-
cation the final affine transformation needs to be specified.
Here, we define final affine transformation FSGR based
on a parameter a ∈ R, cropping the range of TSGR to
[−a, a] × [−a, a]. The final affine transformation FSGR :
R2 → R2 for an image with width w and height h reads as

∀u ∈ R2 : FSGR(u) =
(

w
2a 0
0 h

2a

)
u+

(
w
2
h
2

)
. (18)

F−1
SGR can be derived trivially.

4.1. Two view stereographic rectification

Although Equation 16 is a mathematically correct def-
inition of a transformation, it says a little about its actual
enumeration. The obstacle lies in the computation of the
optimal projection center N, which in its general formula-
tion and with general shapes of Ωi poses a rather difficult
optimization problem. However, we can heavily simplify
this by assuming that the FOVs of both cameras is 180◦1.
Then Ω′i, i = 1, 2 become exactly the southern hemisphere
Ω′i = {p : p ∈ S3 & N′i

−1p ≤ 0}, where N′i = (0, 0, 1)>

are the hemisphere “normals”. After the epipolar alignment
Ω′i, i = 1, 2 transform into arbitrary positioned hemispheres
Ωi = {p : p ∈ S3 & N>i p ≤ 0}, where Ni = Ai(0, 0, 1)>

are the new normals, see Figure 3. Using these constraints,
Theorem 1 explicitly states the optimal projection center.

1The 180◦ assumption can be relaxed to a radially symmetric FOV
with the same results.
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Ω2

Ω1

N2

N1

A1C1

A2C2

N1+N2
||N1+N2||

L

Figure 3. Optimal projection vector. Example of the epipolar
alignment of two fields of view of 180◦ Ωi, i = 1, 2 and the re-
sulting optimal projection center of the stereographic rectification.

Theorem 1 Let i = 1, 2, Ai be the epipolar align-
ment of a stereo pair, Ni = Ai(0, 0, 1)>,Ωi = {p :
p ∈ S3 & Ni

>p ≤ 0} . Then

N = arg max
v∈S3

∆(
⋃

i∈{1,2}
Ωi,v) =

N1 + N2

‖N1 + N2‖
. (19)

4.2. Multiview stereographic rectification

Stereographic rectification can be also used to rectify
more than two images. Such a rectification is useful if
epipoles appear in images in similar locations, which hap-
pens when a camera travels along a line or a slowly vary-
ing curve. An extension of the general rectification tech-
nique presented in this paper for multiple images can be
done by pairwise application of the respective epipolar con-
straints and by adaptation of the epipolar alignment so that
the epipoles are not necessarily aligned with the z axis.

In this section we reformulate Equation 13 as the spher-
ical minimax location problem. The spherical minimax lo-
cation problem is a well known type of a minimax problem
and can be solved in polynomial time, e.g. using an algo-
rithm by Das et al. [2].

Let’s assume that the visible angle of n cameras is 180◦,
Ωi, i ∈ I = {1, . . . , n} are the hemispheres after epipolar
alignment and Ni are the hemispheres “normals”. Since
∆(
⋃

i∈I Ωi,p) = ∆(Ωj ,p) for a certain j ∈ I , the union
operation and the distance operators in Equation 13 can be
swapped to get

N = arg max
p∈S3

min
i∈I

∆(Ωi,p). (20)

Further, using the assumption that Ωi are hemispheres, the
minimization of the distances of p to Ωi can be expressed
as the maximization of the spherical distance of p and the
hemisphere normals Ni

N = arg max
p∈S3

(
π

2
−max

i∈I
δ(Ni,p)

)
, (21)

where
δ(p,q) def= arccos(p>q). (22)

Finally, since addition of a constant is identity under
arg max operation and the fact that max(−f(x)) =
min(f(x)), we get

N = arg min
p∈S3

max
i∈I

δ(Ni,p). (23)

The resulting Equation 23 is the direct formularization
of the spherical minimax location problem. Theorem 1 is a
direct consequence of Equation 23, see Figure 3.

5. Experiments
For experimentation with stereo pairs we implemented

the stereographic rectification and several other pre-existing
methods in MATLAB. The code is available for download at
http://cmp.felk.cvut.cz/˜pajdla/software/omnirect/omnirect-
1.0.2.tar.bz2.

‘Street’ sequence, see Figure 4, was acquired using
Canon EOS 1Ds with Sigma 8mm-f4-EX fish-eye lens. An
image pair further referred to as PL, Figure 4(a,b), resulted
from a lateral move of the camera between the shots. n
image pair further referred to as PF , Figure 4(d,e), resulted
from a forward move of the camera between the shots. Im-
ages were transformed to appear as if they were acquired
by a para-catadioptric camera in order to transform epipo-
lar curves into circles. Several epipolar curves are shown
in the pictures, as well as projections uei,j , i, j = 1, 2 of
the respective epipoles ei,j . Figure 4(c) shows the overlay
of PL with Figure 4(a) in the red channel and Figure 4(b)
in the green channel. Figure 4(f) shows the overlay of PF

with Figure 4(d) in the red channel and Figure 4(e) in the
green channel.

Scanline rectification methods [1, 6] perform reasonably
well in the case of the lateral move in PL, see Figures 4(g)
for the overlay of the rectification based on spherical pa-
rameterization [1], 4(h) for the overlay of the rectification
based on bipolar parameterization [6]. Yet there is a no-
ticeable area enlargement around epipoles in both cases.
However, the scanline rectification methods produce heav-
ily distorted images in the case of the forward move in PF ,
see Figures 4(j) for the overlay of the rectification based on
spherical parameterization [1], 4(k) for the overlay of the
rectification based on bipolar parameterization [6]. Again,
in the case of the scanline rectification methods the areas
near the epipoles are heavily expanded at the expense of
the rest of the image. On the other hand, the stereographic
rectification performs well for both the lateral and the for-
ward move, see the rectification overlays in Figure 4(i) for
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PL and Figure 4(l) for PF – the images produced using the
stereographic rectification feature the least distortion com-
pared to the original images. Both Figures 4(i) and 4(l)
were produced using the parameter a from Equation 18
set to 1.2 and the free parameter of the epipolar alignment
u1 = (0, 1, 0)>.

‘Office’ sequence, see Figure 5, was acquired using KY-
OCERA Finecam M410R with custom mounted Nikon FC-
E8 fish-eye lens. It documents the behaviour of the stere-
ographic rectification method in cases when an epipole is
present between the center of the FOV and its boundary.
The image pair PO1 (Figures 5(a, b)) resulted from moving
the camera along 1

4 of a circle of diameter of about 2 m
with the camera facing the center of the circle. The image
pair PO2 (Figures 5(d, e)) resulted from moving the camera
along 1

8 of the circle. Projections ue1,2 ,ue2,1 of the respec-
tive epipoles e1,2, e2,1 are shown in both pairs. Figure 5(c)
shows the overlay of PO1 with Figure 5(a) in the red chan-
nel and Figure 5(b) in the green channel. Figure 5(f) shows
the overlay of PO2 with Figure 5(d) in the red channel and
Figure 5(e) in the green channel. Note that Figures 5(a) and
5(d) depict the same image.

In case of images with the 180◦ FOV, there is always at
least one epipole visible in the FOV. The closer the epipole
is to the center of the FOV, the greater distortion is intro-
duced by a scanline rectification method, see Figure 5(g)
for the overlay of the rectification of PO1 based on spher-
ical parameterization [1] and Figure 5(j) for the overlay of
the rectification of PO2 with the same type of rectification.

The stereographic rectification produces noticeable dis-
tortion as well, see Figure 5(h) for the rectification of PO1

with a from Equation 18 set to 1, Figure 5(k) for the rectifi-
cation of PO1 with a = 2.7, Figure 5(i) for the rectification
of PO2 with a = 1, Figure 5(l) for the rectification of PO2

with a = 2.7; u1 = (0, 1, 0)> for all Figures 5(h,k,i,l).
However, as expected, the overlapping areas of the rectified
images are mainly unaffected. The area expansion produced
by the stereographic rectification, see Figure 5(k, l), is lim-
ited to the parts of the respective fields of view that do not
overlap and thus poses no problem for stereo matching.

6. Conclusion
We presented a novel method for rectification of an om-

nidirectional stereo pair based on the stereographic projec-
tion. We formulated the stereographic rectification for mul-
tiple images as well. We showed that the choice of the op-
timal projection center of the stereographic rectification is
for 180◦ FOV cameras equivalent to the classical spheri-
cal minimax location problem. This allowed us to provide
an explicit formula for the optimal projection center of the
stereographic rectification for the case of omnidirectional
stereo pairs taken with 180◦ FOV lenses. We compared the
stereographic rectification to previous rectification methods

and for several significant epipole positions showed that the
stereographic rectification produces significantly less dis-
torted images.
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Figure 4. Comparison of previous rectification methods and the stereographic rectification, see text.

1420



ue1,2
ue2,1

(a) (b) (c)

ue1,2
ue2,1

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
Figure 5. Comparison of previous rectification methods and the stereographic rectification, see text.
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