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Abstract

A variety of flexible models have been proposed to de-
tect objects in challenging real world scenes. Motivated
by some of the most successful techniques, we propose a
hierarchical multi-feature representation and automatically
learn flexible hierarchical object models for a wide variety
of object classes. To that end we not only rely on automatic
selection of relevant individual features, but go beyond pre-
vious work by automatically selecting and modeling com-
plex, long-range feature couplings within this model. To
achieve this generality and flexibility our work combines
structure learning in conditional random fields and discrim-
inative parameter learning of classifiers using hierarchical
features. We adopt an efficient gradient based heuristic for
model selection and carry it forward to discriminative, mul-
tidimensional selection of features and their couplings for
improved detection performance. Experimentally we con-
sistently outperform the currently leading method on all 20
classes of the PASCAL VOC 2007 challenge and achieve the
best published results on 16 of 20 classes.

1. Introduction
Hierarchical and multi-feature representations have

shown to be a powerful basis for achieving impressive re-
sults in object detection and recognition across a variety of
different datasets [1, 6, 12, 24, 28]. These are often paired
with discriminative learning approaches, such as support
vector machines [6, 12]. The use of multiple features re-
quires appropriate determination of the relative importance,
i.e., weighting, of the features. Beyond doing this manu-
ally, a number of recent approaches have attempted to learn
these weights automatically [1, 24] using variants of multi-
ple kernel learning. These learning mechanisms, however,
only allow to identify and weigh the most discriminant fea-
tures, but do not allow to identify and model the interplay
between features that may prove important to representing
objects well. In fact, one may posit that for many object
classes the coupling between different features might be key
to discriminating object classes from others. A number of
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Figure 1. Schematic overview of our hierarchical model (Best
viewed in color). The nodes of our graphical model are indicated
as green dots; learned feature couplings are represented as colored
lines. F refers to the discriminative unary classifiers.

recent conditional random field approaches allow model-
ing local as well as simple hierarchical couplings of fea-
tures [7, 9, 13, 21, 26]. In particular, these approaches as-
sociate a label with each localized feature and model label
dependencies by leveraging the interplay of the correspond-
ing features. These approaches are limited, however, in that
they model only simple, short-range dependency structures
in the label space; the corresponding features are typically
neighboring in space or scale.

To address these limitations, we propose an approach
that allows to learn short-range as well as long-range de-
pendencies, where the structure of these dependencies is
identified and learned in a fully automatic manner. Unlike
previous work, our approach does not require any notion of
locality of the coupled features, but instead allows to find
and model relevant (i.e. discriminant) couplings among ar-
bitrary pairs of features. To enable learning of the interplay
of features we cast the problem as one of structure learn-
ing in graphical models [14, 18, 20]. Specifically, we use
a conditional random field to predict local labels from the
image features and employ discriminative structure learn-
ing to identify dependencies whose modeling improves the
discriminative power of the model.

We follow [1] by using a hierarchical and multi-feature
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Figure 2. Highest-scored true and false positives of [4] and our model for the PASCAL VOC 2007 challenge (aeroplane, motorbike, horse).
Our framework is more flexible in modeling viewpoint, appearance, and articulation changes.

representation of objects. In particular, our model is based
on a hierarchy of HOG descriptors (histograms of oriented
gradients, [2, 4]) and a hierarchical bag-of-visual-words
(BoW) representation [5, 6, 12] (see Fig. 1 for a schematic
overview). Our model extends previous work by learning
the contribution of the different feature types and simulta-
neously including relevant long-range as well as short-range
couplings between arbitrary pairs of image features. As
such our framework could model the dependency between
the prediction from a HOG feature at a certain level in the
hierarchy and a BoW feature at another level (c.f . Fig. 1), if
that improves the discriminative power of the model.

We apply our approach to the problem of object detec-
tion and show that it consistently outperforms SVM classi-
fiers, which may be seen as the de facto standard in discrim-
inant object model learning. On the PASCAL VOC 2007
detection challenge, the proposed approach outperforms the
currently leading SVM-based technique [4] on all 20 object
categories. Moreover, we report the most accurate results in
the literature on 16 of the 20 classes.

As the experimental results below show, our model prof-
its from the use of powerful hierarchical and multi-feature
representations. It is important to note, however, that the
proposed approach is very general and can be used for any
local or global feature representation, not just the features
used here1.

Fig. 2 shows the first true positives (TP) and false pos-
itives (FP) of our model as well as of DPM [4], the cur-
rently leading method on the dataset. DPM typically assigns
high scores to canonical sideviews, while our work seems to
show more flexibility in modeling variations in viewpoint,
appearance and articulation. Instead of being wholly mis-
classified, many FPs are due to misaligned bounding boxes.

1Code for structure learning of arbitrary feature representations will be
available at http://www.mis.informatik.tu-darmstadt.de.

Related work. Conditional random fields (CRF) [11] have
proven to be effective for a wide variety of applications, in-
cluding challenging segmentation and categorization tasks
[15, 21, 22, 26]. In contrast to Markov random fields, CRFs
are discriminative approaches that avoid modeling the de-
pendencies between the input variables (such as the im-
ages) and instead focus on modeling the dependencies of
the output variables (e.g., class labels). To express these
output dependencies most CRF approaches rely on pairwise
graph structures based on very local, short-range connec-
tions [21, 22, 26]. Of course, this limits the modeling power,
but introducing long-range dependencies in a dense, brute
force fashion is often computationally prohibitive. Our
model, on the other hand, can benefit from long-range de-
pendencies, while staying tractable and efficient.

To facilitate that, we rely on structure learning in graph-
ical models, which allows to identify the graph structure
that best models the dependency structure inherent in the
data. Since optimal structure learning in general models is
NP-hard, a number of efficient approximations have been
proposed [18, 19, 20]. Since our goal is high discrimina-
tive power in object detection, we employ a discriminative
variant of structure learning. An overview of various ap-
proaches to structure learning is given by Schmidt et al.
[20], who apply these methods to the problem of heart ab-
normality detection. Despite their power, structure learn-
ing methods have not found widespread use in computer
vision. A notable exception is the work of Tran and Forsyth
[23], who propose to estimate the configuration of pedestri-
ans and learn a discriminative classifier based on a global
descriptor enriched with configuration features.

To keep the learned model efficient, it is necessary to en-
sure that the graph structure stays sparse despite allowing
for long-range connections. To that end, various regulariza-
tion approaches have been proposed [20]. Lee et al. [14],
e.g., suggest to use L1-regularization for structure learning

2239



in Markov networks with promising performance improve-
ments. They evaluated different heuristics for feature selec-
tion and reported results for the MNIST digits dataset, but
are restricted to binary features. One contribution of this pa-
per is a gradient-based heuristic for the case of continuous-
valued multi-dimensional feature vectors. We then apply
this discriminative feature selection method to the problem
of discriminating objects from the background.

2. CRF model
In our approach we rely on conditional random fields

(CRFs), which has several motivations, among them that
structure learning in graphical models is a well-established
field. Our approach represents each object class as a CRF
with a pairwise graph structure, which models the poste-
rior probability P (y|x) of labels y given an image x. Each
node i ∈ V of the underlying graph represents a binary
label yi ∈ {1,−1} encoding the presence or absence of
an object of a specific class. The set of all possible edges
Ω = V × V connecting the nodes is partitioned into the ac-
tive set A ⊂ Ω and the inactive set I ⊂ Ω (withA∪I = Ω
andA∩I = ∅). The active setA defines the edge structure
of our CRF model. Later we will see how to learn A auto-
matically from training data; for now we assume that A is
already given. The posterior distribution is then defined as

P (y|x; θ,A) =
1

Z(θ,A)

∏
i∈V

ψi(yi, x; θ)

·
∏

(i,j)∈A

φij(yi, yj , x; θ),
(1)

where ψi are the unary potentials, φij are the pairwise or
edge potentials, θ are the parameters of the model, and
Z(θ,A) is the partition function (a normalization factor).
The set of parameters θ = {α,w, e} includes parameters of
the unary potentials α and w, as well as the parameters e of
the edge potentials.

Unary potentials. The unary potentials in the CRF allow
for local and global evidence aggregation; each potential
ψi models the evidence from considering a specific image
feature fi(x). Our representation relies on several levels
of features in a hierarchy, where the feature functions at
the lowest level extract local representations and the fea-
ture functions at higher levels aggregate a larger area until
a global view of the object is obtained at the top level (c.f .
Fig. 1 for the hierarchical view on objects). The features
will be explained in more detail in Section 2.1.

We define the unary potential for a node i using the soft-
max function (c.f . [10])

ψi(yi, x; θ) =
exp

(
yi · wT

i F (αi, fi(x))
)∑

c∈{−1,1} exp
(
c · wT

i F (αi, fi(x))
) (2)

based on a weighted combination of the output of
a bank of N different classifiers F (αi, fi(x)) =
(F (αi,1, fi(x)) , . . . , F (αi,N , fi(x)))T . Each classifier is
assumed to yield a continuous-valued score. αi are the pa-
rameters of the classifier, and wi are the weights. In Fig. 1
the classifiers are denoted with F . Interestingly, such a for-
mulation can be seen as a probabilistic analog to multiple-
kernel learning [1, 24] as it allows for a weighted combina-
tion of different classifiers.

Edge potentials. The edge potentials φij model the interac-
tion of two labels yi and yj based on the interaction of two
features fi(x) and fj(x). These pairwise potentials are cru-
cial for our model, as they allow us to capture the interplay
of features and therefore to define the structure of objects.
To that end, we realize the pairwise potentials with a linear
classification of concatenated unary features that is passed
through a softmax nonlinearity:

φij(yi, yj , x; θ) = (3)

exp
(
(fi(x), fj(x))T eij

yiyj

)
∑

c,d∈{−1,1} exp
(
(fi(x), fj(x))T eij

cd

)
We use a specific classification vector eij

cd for each possible
edge and each combination of labels that allows to model
spatial dependencies and relations of different feature types.
It is important here to emphasize that these potentials are
not restricted to modeling only local neighborhood struc-
tures as in many recent approaches [7, 10, 13, 15, 21, 22,
26], but may also involve long-range dependencies of dis-
tant nodes.

Both, the unary and pairwise potentials, contribute to our
discriminative framework in the sense that the unary poten-
tials classify nodes in the hierarchy independently while the
pairwise potentials encode dependencies and thus the spa-
tial configuration and underlying structure of objects. What
sets this work apart from previous approaches is that we
are able to learn the graph structure A automatically, which
gives us a sound and efficient way of modeling complex,
long-range dependencies. This allows us to determine the
structure of the underlying domain and simultaneously con-
sider a powerful hierarchical view on objects.

2.1. Hierarchical features

Before showing how to learn the parameters and struc-
ture of the model, we will first introduce the features and
classifiers that the CRF model is based on.

We use a hierarchical representation of objects, which
provides a powerful descriptor and yet is flexible enough
to capture appearance, articulation and viewpoint changes.
It is furthermore based on a dense representation of multi-
ple descriptors in order to aggregate different cues on ob-
jects. We include both hierarchical HOG (hHOG) [2] and
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Figure 3. (a) Object instance. (b) Hierarchical HOG features of the
instance weighted with parameters of our model. (c) Hierarchical
HOG features of the instance weighted with linear SVM weights.

hierarchical bag-of-words (hBoW) [12] features to account
for local and global representations of objects. In the fol-
lowing, we assume that each local classifier F (αn, f(x))
is actually the concatenation of a HOG and BoW classi-
fier F (αn, f(x)) =

(
FH

(
αn, f

H(x)
)
, FB

(
αn, f

B(x)
))

,
which will be described in turn2.

Hierarchical HOG descriptors. For computing the hier-
archical HOG features, we compute a dense grid of non-
overlapping cells of oriented gradients [2] over the image.
As in [17], we extract multiple layers of those cell grids
with increasing cell size at higher levels. Four neighboring
cells are concatenated and normalized to one block, result-
ing in a dense grid of blocks (neighboring blocks overlap
by 50%). We concatenate several blocks to form our lo-
cal descriptors (details in Section 4). The global descriptor
captures a holistic view on the object, since we concatenate
all blocks of the bottom layer into a single global feature.
The various descriptors are associated with the nodes of our
model, indicated as green dots in Fig. 1.

Based on the local and global HOG descriptors, we train
discriminative classifiers in order to represent local defor-
mations as well as global statistics of objects. Therefore, we
divide the grid of nodes in rectangular subregions (3× 3 at
the bottom layer) and train one SVM per subregion. Within
the hierarchy, we reduce the number of subregions at higher
levels: 2×2 at the second level and 1×1 at all other levels.
Each classifier is a kernel-based SVM (c.f . Fig. 1):

FH
(
αH

n , f
H(x)

)
=

∑
s∈Sn

αHn,sK
(
s, fH(x)

)
+ αHn,0, (4)

where Sn refers to the set of support vectors,K is an appro-
priate Mercer kernel, αHn,s denotes the support vector coeffi-
cients, and αHn,0 an offset. We employ linear kernels, though
any Mercer kernel can be used.

In Fig. 3(b) we show the hierarchical HOG (hHOG) fea-
tures of the shown object weighted with the parameters of
our model and in Fig. 3(c) weighted with the weights of
a linear SVM trained on the concatenation of all features.
Note, with our model the real structure and shape is bet-

2Here and in the remainder of the paper we drop the subscript i for
parameters α and feature functions f for notational simplicity.

ter represented, since our framework is able to learn feature
couplings for capturing spatial dependencies of features.

Hierarchical BoW descriptors. For integrating a hierar-
chical bag of words (hBoW) approach [12] in our model
we calculate SIFT descriptors [16] with radii (5, 10, 15) and
spacing of 10 pixels. Those descriptors are vector quantized
into visual words with k-means clustering over the positive
training instances (k = 300). We calculate one global BoW
descriptor over the entire image and subsequently divide the
image in regions according to the number of nodes of ev-
ery level of our hierarchical model. In every subregion, we
build a histogram of word occurrences and use it as the fea-
ture fB(x). The hBoW features are also classified using a
kernel-based SVM:

FB
(
αB

n , f
B(x)

)
=

∑
a∈An

αBn,aK
(
a, fB(x)

)
+ αBn,0, (5)

where An refers to the set of support vectors, K is again a
Mercer kernel, αBn,a denote the support vector coefficients,
and αBn,0 is the offset.

Bootstrapping hard negatives. We bootstrap hard nega-
tive examples from the negative images and train the SVMs
again with the additional negative images.

3. Model Learning
Given training data consisting of a set of images X and

the corresponding set of node labels Y , our goal is to esti-
mate the model parameters θ = {α,w, e} and to identify a
suitable graph structure represented by the active set A.

3.1. Parameter learning

For now assuming a fixed graph structure A, our goal is
to train the parameters of the CRF model in a discriminative
fashion. To that end, we consider the log-posterior of the
parameters

L(θ) = logP (Y|X ; θ,A) + logP (θ), (6)

which we aim to maximize. Here, P (θ) = P (w) · P (e)
denotes a prior over the model parameters that regular-
izes parameter estimation to avoid overfitting. The SVM
classifiers including the parameters α are trained ahead of
time decoupled from the rest of the model using standard
quadratic programming, as e.g., in [7, 13, 22, 26]. This step
attempts to optimally separate each object region from the
background independently from other nodes in the hierar-
chy. Note that it would be also possible to train the α dur-
ing CRF training based on the primal form of the SVM (c.f .
[21]), but we leave that for future work.

As usual in CRFs [11], it is not possible to find a closed
form estimate for the parameters. Hence we rely on gradient
ascent (see e.g. [15]) on the log-posterior to determine w
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and e. Moreover, at each iteration we only consider a subset
of the training data to improve efficiency, which yields a
stochastic gradient ascent procedure.

Unary potentials. Assuming a Gaussian prior for the unary
parameters (P (w) ∼ N (0, 1)), we derive the gradient of the
log-posterior w.r.t. wi as

∂L
∂wi

=
[ ∑

x∈X
EY|x [F(αi, fi(x)) · yi · ψi(yi, x)]−

EP (y|x) [F(αi, fi(x)) · yi · ψi(yi, x)]
]
− wi, (7)

where EY|x[·] denotes the empirical expectation and
EP (y|x)[·] denotes the expectation value under the posterior
probability of our model. While the empirical expectation
can be easily computed by plugging in the training label cor-
responding to x, the expectation over the model distribution
requires computing the marginal distribution P (yi|x). For
a loopy graph as used here, this marginal cannot be com-
puted in closed form. Consequently, we approximate it us-
ing loopy sum-product belief propagation (LBP) [27], as is
widely done in the literature (e.g. [15]).

Note that learning the unary parameters corresponds to
a simple form of structure learning that determines the rel-
ative importance of the features, much like multiple-kernel
learning does in SVMs. Intuitively, the weight of a node
should be small, if that node is classified incorrectly for
most of the training instances. Otherwise, the weight should
be high, if a node helps to discriminate foreground from
background training instances.

Pairwise potentials. For the pairwise potentials, we
proceed in a similar fashion. We put a Laplace prior
P (e) ∝ exp(−||e||) on the weights corresponding to a L1-
regularization (see below), and derive the gradient of the
log-posterior as:

∂L
∂eij

yiyj

=
[ ∑

x∈X
EY|x

[
(fi(x), fj(x))Tφij(yi, yj , x)

]
− (8)

EP (y|x)
[
(fi(x), fj(x))Tφij(yi, yj , x)

] ]
− sgn(eij

yiyj
)

To compute the expectation over the model distribution, we
require the marginals P (yi, yj |x), which we again approxi-
mate using the beliefs from LBP.

The L1-regularization term not only avoids overfitting,
but more importantly favors sparse solutions, where the ma-
jority of edges are inactive because of small weights [14].
Care needs to be taken near 0 since the L1-regularizer is
non-differentiable there. We avoid numerical problems by
approximating the L1-norm by

√
‖e‖2 + ε.

3.2. Structure learning

The key contribution of our approach compared to other
CRF models is that we not only learn the parameters, but

also the appropriate graph structure. In particular, our goal
is to find a sparse set of edges that best describes the rel-
evant dependencies and feature interactions for a particu-
lar class of objects (we learn one active set A per class).
Similar to [14], we do this in an iterative fashion, where at
each iteration we add meaningful pairwise features to the
active set A from the large pool of candidate edges (the in-
active set I) and simultaneously remove features from the
model that have become irrelevant. Since any change of
the graph structure may render the current set of parame-
ters θ inappropriate, we interleave each update of the graph
structure with parameter learning as described above (100
iterations of gradient ascent). The procedure starts with a
disconnected graph (A = ∅, I = Ω) and iteratively adds
and removes edges.

Adding pairwise couplings. Since optimal feature selec-
tion is NP-hard, we use a gradient-based heuristic for esti-
mating which feature most likely improves the model. We
adapt the heuristic of [19], where at each step the feature
with the largest likelihood-gradient is added to the active
set. However, this method is only defined for generative
models; here we carry this heuristic forward to discrim-
inative structure learning with high-dimensional features.
While such gradient-based heuristics are suboptimal, [14]
showed that information gain based heuristics provide only
slight improvements compared to gradient-based heuristics,
but the latter are more efficient to compute.

The intuition behind this is that edge (i, j) with the
largest log-likelihood gradient ∂ logP (y = 1|x, θ)/∂eij

has the largest impact on changes of the target function
(foreground likelihood) [19]. In a generative setting, this
would help explaining the foreground object, because we
can expect the highest increase in likelihood by adding that
edge, and thus the largest improvement of the model. Here
we take a discriminative approach instead, and not only look
at the importance of explaining the object, but rather link
the likelihood assuming object and the likelihood assuming
background to each other. To that end, we consider the log-
likelihood ratio

(
log P (y|x,θ)

P (−y|x,θ)

)
, and find the edge from the

inactive set that maximizes the log-likelihood ratio:

(i∗, j∗) = arg max
(i,j)∈I

∥∥∥∥∥ ∂L
∂eij

11

− ∂L
∂eij

−1−1

∥∥∥∥∥ (9)

This criterion approximately finds the edge whose feature
combination provides the largest improvement in discrimi-
native power. The edge is subsequently added to the model
(A ← A∪ {(i∗, j∗)} and I ← I \ {(i∗, j∗)}).

So far, we argued for selecting edges according to
Eq. (9), which requires computing the parameter gradi-
ent from Eq. (8). However, this is difficult to do as long
as the edge is not added to the graph, but simply adding
each potential candidate edge to the graph for computing
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Eq. (8) is infeasible. The underlying issue is that we require
probabilistic inference to compute the pairwise marginals
P (yi, yj |x) needed in Eq. (8). We can, however, approxi-
mate this pairwise marginal using LBP as described in [25]:

b̃ij(yi, yj) ∝ ψi(yi, x) · ψj(yj , x)·

φij(yi, yj , x) ·
∏

s∈Γi\j

Msi(yi)
∏

s∈Γj\i

Msj(yj) (10)

Here Γi refers to the neighborhood of i, i.e. all nodes in A
that are connected to i, and Msi(yi) denotes the message
that is passed from node s to node i.

Removing feature couplings. In order to avoid the model
from becoming overly complex, which would make it in-
efficient and prone to overfitting, we follow two different
strategies. The first is to use L1-regularization for the edge
parameters, which encourages sparsity as discussed above.
The other is to remove edges after each iteration of the
structure learning procedure that are not crucial to the dis-
criminative power. Whenever the weight of an active edge
(i, j) ∈ A drops below a threshold (‖eij

cicj
‖ ≤ τ1) and the

weight gradient is below a threshold as well (‖ ∂L
∂eij

cicj

‖ ≤
τ2), we remove it from the active set (A ← A\{(i, j)} and
I ← I ∪ {(i, j)}). In this case the edge has no major in-
fluence on the log-likelihood ratio and since the gradient is
small, one would expect the weights not to change signifi-
cantly with more iterations of parameter learning. Thus, the
edge and the coupling of the features can be removed with-
out deteriorating the discriminative power considerably.

4. Experiments
We report experiments on the challenging PASCAL

VOC 2007 dataset [3] to support our claims about the ben-
efits of our structure learning approach. For all experiments
we report the average precision (AP), the common evalu-
ation criterion of the PASCAL challenge. Due to compu-
tational reasons we prefiltered object hypotheses X̃ with
the model of [4] and rescored them with our framework.
Note, we do not leverage misclassifications of [4], but train
our model on the provided training and validation bound-
ing boxes and randomly cropped negative bounding boxes.
Given our learned model (i.e. active edges and parameters
α,w, e), for every x̃ ∈ X̃ we compute the log-likelihood
that the object of interest is present, logP (y = 1|x̃), in
the hypothesized bounding box x̃ and use this as the score.
Note that we do not perform inference during testing, which
is due to the fact that we are interested in an efficient way of
obtaining a detection score. Inference during testing would
additionally allow us to obtain a segmentation.

In all experiments we used SVMlight [8] with linear ker-
nels to train the parameters α. We did not add only a single
edge per iteration but estimated and added the 20 best edges.
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Figure 4. (a) Comparison of the average precision for learned
(blue) and fixed (red dot) structure. The learned structure is plotted
vs. no. of edges. The fixed structure accounts for 800 edges. (b)
No. of edges vs. no. of iterations. (c) AP vs. different percentage
of connectedness for binary (blue) and multi-labels (red, dashed)
(d) 2.5d visualization of the learned structure of our model.

In terms of pairwise parameters e we only optimize e+1,+1

and e−1,−1, and set e+1,−1 = e−1,+1 = 0, since we aim to
classify whether bounding boxes contain the object or not.
Thus, the case of changing signs is not represented in the
training set and unlikely to appear during testing. Training
the model takes approx. 10h, while calculating the score for
one bounding box takes approx. 0.3s.

Feature descriptors. In our experiments the global HOG
descriptor is the same as in [2], though we use different
sizes of local HOG descriptors. They are specific to each
object class and depend on the aspect ratio and the average
size of the bounding box. We used sizes between 4 × 2 or
2 × 4 blocks and 9 × 5 or 5 × 9 blocks of local gradient
histograms. Thus, each local descriptor covers an area be-
tween 40× 24 and 80× 48 pixels (or 24× 40 and 48× 80).
The local descriptors are sampled densely over the bound-
ing box and may overlap up to 2

3 . For the experiments using
the hierarchical representation we deployed 3 levels of local
descriptors and one global descriptor (see Fig. 4(d)).

PASCAL VOC 2006 motorbikes. A preliminary experi-
ment on the motorbikes class of the PASCAL VOC 2006
challenge serves to shed light on the different aspects of our
model. This dataset contains challenging multiscale, par-
tially occluded, and multiview instances. We trained our
model on the provided training and validation set. The
results are summarized in Tab. 1 and detailed below. In
Fig. 4(d) the most relevant feature couplings are shown. As
it can be seen, our model includes short-range as well as
long-range dependencies within but also between layers.

Our complete model (hHOG + hBoW features) yields
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VOC 2006 lin. SVM/ Unary lin. SVM Our model
motorbikes HI SVM poten. on unary structure

lin. / HI
BoW 36.1 / 38.3 20.3 23.7 42.7 / 45.1
hBoW 49.0 / 50.2 45.0 47.1 52.4 / 53.5
HOG 49.1 / 50.0 47.3 48.5 51.0 / 53.3
hHOG 60.1 / 61.0 59.1 60.0 62.8 / 63.4
hHOG + hBoW 61.0 / 61.6 60.2 61.4 63.2 / 64.0
train on [4] - - - 64.2 / -
sliding window - - - 60.1 / -
MKL HI-kernel [1] 62.0 - - -
DPM [4] 58.2 - - -

Table 1. Summary of the results of different aspects of our model
on the PASCAL VOC 2006 motorbikes. HI denotes the use of
histogram intersection kernels.

a performance of 64.0% AP (histogram intersection kernel
(HI)) and 63.2% (linear kernel), outperforming the baseline
[4] (58.2%) by more than 5% AP. Multiple kernel learning
with histogram intersection kernels [1] and the same fea-
tures achieved 62.0%, which we outperform by 2% AP. This
emphasizes the benefit of learning the structure of objects,
since in [4] a fixed structure is assumed and in [1] no depen-
dencies of features are learned. When we train on the output
of [4] the performance of our model increases to 64.2% with
linear kernels. When not using [4] as a pre-filter, but sliding
window instead we achieve 60.1% still outperforming [4].

In Fig. 4(a) we compare our structure learning method
vs. an instantiation with local, fixed pairwise couplings (as
proposed in [21]), which amount to 800 pairwise edges. The
model with fixed structure showed a performance of 61.9%,
while our structure learning scheme achieved the same per-
formance with fewer edges. When we look at the perfor-
mance of structure learning with 800 automatically discov-
ered edges, our framework achieved 62.7% AP.

For further investigating the stability of our model we ex-
perimented with different initializations of the active set A
(empty and the structure of [21]), with different thresholds
for removing edges and with different numbers of edges
to be added to A in each iteration. For all these exper-
iments our model learned similar structures and achieved
similar performance. In Fig. 4(c) (blue line) we plot the
performance vs. different degrees of connectedness (result-
ing from different thresholds). As it can be seen the perfor-
mance does not differ dramatically for different thresholds
when a certain level of connectedness is reached.

Furthermore, we compared our work against several
baseline methods on the pre-filtered hypotheses of [4]:
SVM classification (linear and HI kernels) on the concate-
nation of all features (column one of Tab. 1), unary classi-
fication alone (column two), and SVM classification on the
output of our unary potentials (column three). SVM-based
classification of the concatenation of our features showed
61.0% AP for linear kernels and 61.6% for HI kernels,
which we outperform by 3.0% and 2.4% AP respectively.

Concerning unary classification alone, we calculated only
the unary potentials (i.e. no active edges) and added them
up to one classification score yielding 60.2% AP. Compared
to the latter, our complete model showed an improvement
of 3.8% AP. In a different setting we train a support vector
machine on the output of our unary potentials, yielding a
comparable performance (61.4%) as pure SVM classifica-
tion. Note that our model outperforms all other correspond-
ing learning methods on the challenging dataset, which sup-
ports our claims about the flexibility and advantage of struc-
ture learning.

For further insights into our work, we evaluated our
model when only using BoW features with one layer and
with the hierarchy (hBoW), using only HOG features with
one layer and with the hierarchy (hHOG). As can be seen
in Tab. 1 our structure learning scheme consistently outper-
forms the other corresponding baseline models across all
evaluated features. Note that using HI kernels consistently
improves the performance compared to linear kernels.

Preliminary experiments with a multi-label setting as in
[21] showed slightly worse performance than our binary la-
bel setting. Fig. 4(c) (red, dashed line) shows the perfor-
mance vs. different degrees of connectedness.

PASCAL VOC 2007. In order to further support our claims
about the advantages of our structure learning scheme, we
evaluated our model using linear kernels on all 20 classes of
the PASCAL VOC 2007 challenge. We compare our com-
plete model using hierarchical HOG and hierarchical BoW
features against using only hHOG features. Furthermore,
we show the performance of the baseline of [4] and the best
performance of the original challenge [3]. Note, we used
[4] as baseline, since it is the leading model on the PAS-
CAL dataset. All results are summarized in Tab. 2.

On average across classes, our model achieved a perfor-
mance of 27.5% outperforming the baseline of [4] (25.9%)
by 1.6% AP. Furthermore, our structure learning model con-
sistently improves the detection performance of the baseline
across all categories between 0.1% AP for chairs and 4.4%
AP for horses. As can be seen in Fig. 2 our work is more
flexible in terms of modeling different viewpoints, appear-
ances, and articulated instances. Furthermore, the highest
scored false positives of our model mainly account for mis-
aligned bounding boxes containing the object of interest or
sensible false alarms like bicycles recognized as motorbikes
and cows recognized as horses. We conclude that our model
helps in understanding the domain of interest and success-
fully discriminates object instances from background.

When comparing against the original VOC 2007 chal-
lenge, we achieved the best results for 16 of 20 classes. On
average, we improved the best performance of the challenge
(23.3%) by 4.2% AP. Note, in that measure we do not com-
pare against one single model, but against the performance
of the best model for every object class.
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VOC 2007 (lin. kernels) aero bicyc bird boat bottle bus car cat chair cow
Our model hHOG+hBoW 31.7 56.3 1.7 15.1 27.6 41.3 48.0 15.2 9.5 18.3
Our model hHOG 30.0 56.1 1.5 15.0 27.2 41.1 47.5 14.5 9.5 18.1
DPM [4] 28.1 55.4 1.4 14.5 25.4 38.9 46.6 14.3 9.4 16.0
Best VOC07 [3] 26.2 40.9 9.8 9.4 21.4 39.3 43.2 24.0 12.8 14.0

table dog horse mbike person plant sheep sofa train tv average
Our model hHOG+hBoW 26.1 11.3 48.5 38.9 35.8 14.8 17.7 18.8 34.1 39.8 27.5
Our model hHOG 25.2 10.8 47.3 37.4 35.5 13.7 16.3 18.6 32.4 37.6 26.8
DPM [4] 22.8 10.6 44.1 37.0 35.2 13.6 16.1 18.5 31.8 36.9 25.9
Best VOC07 [3] 9.8 16.2 33.5 37.5 22.1 12.0 17.5 14.7 33.4 28.9 23.3

Table 2. Results of our algorithm on the PASCAL VOC 2007 challenge.

Furthermore, we tested our complete model (hBoW and
hHOG features) in comparison to only using hHOG fea-
tures. On average, using hBoW and hHOG improves
the performance of using only hHOG (26.8%) by 0.7%
AP. Again, the complete model consistently shows equal
(chairs) or better performance (all other classes) up to an
improvement of 2.2% AP. Thus, including different features
helps our framework to model complex object classes and
increases the detection performance.

5. Conclusions
This paper presented a novel discriminative structure

learning framework applied to hierarchical representations
for object detection. Our model is defined as a structure
learning extension to standard CRF models that allows to
preserve the discriminative notion and increase the expres-
siveness of the model for object detection. The model is
capable of capturing inherent structure of the domain of in-
terest, as it flexibly learns local as well as long-range feature
couplings. Paired with discriminative hBoW and hHOG
based classification, our scheme lends itself to modeling the
spatial layout of objects, which is crucial for detection in
challenging real world scenes. As the experiments show,
our model can represent a higher variation in viewpoint, ap-
pearance and articulation than the currently leading method
on the PASCAL VOC challenge. In future work, we will
explore global context information and other complemen-
tary features in our model. Furthermore, joint learning of
all model parameters (α,w, e) will be investigated.

Acknowledgments. We thank Joris Mooij for making lib-
DAI available online. This work has been funded, in part,
by GRK 1362 of the German Research Foundation (DFG)
and a Feodor Lynen Fellowship granted by the Alexander
von Humboldt Foundation.

References
[1] A. Bosch, A. Zisserman, and X. Muoz. Image classification using

ROIs and multiple kernel learning. IJCV, 2008. Submitted.
[2] N. Dalal and B. Triggs. Histograms of oriented gradients for human

detection. In CVPR’05.
[3] M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisser-

man. The PASCAL VOC challenge 2007.
[4] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively

trained, multiscale, deformable part model. In CVPR’08.

[5] R. Fergus, A. Zisserman, and P. Perona. Object class recognition by
unsupervised scale invariant learning. In CVPR’03.

[6] K. Grauman and T. Darrell. The pyramid match kernel: Efficient
learning with sets of features. JMLR, 8:725–760, 2007.

[7] D. Hoiem, C. Rother, and J. Winn. 3D layout CRF for multi-view
object class recognition and segmentation. In CVPR’07.

[8] T. Joachims. Making Large-Scale SVM Learning Practical. Ad-
vances in Kernel Methods - Support Vector Learning, 1999.

[9] A. Kapoor and J. Winn. Located hidden random fields: Learning
discriminative parts for object detection. In ECCV’06.

[10] S. Kumar, J. August, and M. Hebert. Discriminative random fields.
IJCV, 68(2):179–201, 2006.

[11] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In
ICML’01.

[12] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bag of features: Spa-
tial pyramid matching for recognizing natural scene categories. In
CVPR’06.

[13] C. H. Lee, R. Greiner, and O. Zaianen. Efficient spatial classification
using decoupled conditional random fields. In PKDD’06.

[14] S.-I. Lee, V. Ganapathi, and D. Koller. Efficient structure learning of
Markov networks using L1-regularization. In NIPS’06.

[15] A. Levin and Y. Weiss. Learning to combine bottom-up and top-
down segmentation. In ECCV’06.

[16] D. Lowe. Distinctive image features from scale-invariant keypoints.
IJCV, 60(2):91–110, 2004.

[17] S. Maji, A. C. Berg, and J. Malik. Classification using intersection
kernel support vector machines is efficient. In CVPR’08.

[18] S. Parise and M. Welling. Structure learning in Markov random
fields. In NIPS’06.

[19] S. Perkins, K. Lacker, J. Theiler, I. Guyon, and A. Elisseeff. Grafting:
Fast, incremental feature selection by gradient descent in function
space. JMLR, 3:1333–1356, 2003.

[20] M. Schmidt, K. Murphy, G. Fung, and R. Rosales. Structure learn-
ing in random fields for heart motion abnormality detection. In
CVPR’08.

[21] P. Schnitzspan, M. Fritz, and B. Schiele. Hierarchical support vector
random fields: Joint training to combine local and global features. In
ECCV’08.

[22] J. Shotton, J. Winn, C. Rother, and A. Criminisi. TextonBoost: Joint
appearance, shape and context modeling for multi-class object recog-
nition and segmentation. In ECCV’06.

[23] D. Tran and D. Forsyth. Configuration estimates improve pedestrian
finding. In NIPS’07.

[24] M. Varma and D. Ray. Learning the discriminative power-invariance
trade-off. In ICCV’07.

[25] M. J. Wainwright, T. Jaakkola, and A. S. Willsky. Tree-based repa-
rameterization for approximate estimation on graphs with cycles. In
NIPS’02.

[26] J. Winn and J. Shotton. The layout consistent random field for rec-
ognizing and segmenting partially occluded objects. In CVPR’06.

[27] J. Yedidia, W. Freeman, and Y. Weiss. Understanding belief propa-
gation and its generalizations. In Exploring Artificial Intelligence in
the New Millennium. 2003.

[28] J. Zhang, M. Marszałek, S. Lazebnik, and C. Schmid. Local fea-
tures and kernels for classification of texture and object categories:
A comprehensive study. IJCV, 73(2):213–238, 2007.

2245


