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Abstract

Convex and continuous energy formulations for low level
vision problems enable efficient search procedures for the
corresponding globally optimal solutions. In this work we
extend the well-established continuous, isotropic capacity-
based maximal flow framework to the anisotropic setting.
By using powerful results from convex analysis, a very sim-
ple and efficient minimization procedure is derived. Fur-
ther, we show that many important properties carry over to
the new anisotropic framework, e.g. globally optimal binary
results can be achieved simply by thresholding the continu-
ous solution. In addition, we unify the anisotropic contin-
uous maximal flow approach with a recently proposed con-
vex and continuous formulation for Markov random fields,
thereby allowing more general smoothness priors to be in-
corporated. Dense stereo results are included to illustrate
the capabilities of the proposed approach.

1. Introduction
Convex and continuous approaches to low level vision

tasks are appealing for two reasons: (i) the convexity of the
formulation ensures global optimality of the obtained solu-
tions; and (ii) setting the problem in a continuous (i.e. non-
combinatorial) domain often results in intrinsically data-
parallel algorithms, that can be significantly accelerated
e.g. by modern graphics processing units. Typically, the
main challenge is to find a convex (and optionally continu-
ous) formulation of an apparently non-convex problem. For
instance, solving a pairwise Markov random field with mul-
tiple labels and linear or convex discontinuity costs requires
an embedding of the original formulation into a higher di-
mensional space (see [6, 13, 11, 12] for combinatorial ap-
proaches and [20] for a continuous formulation).

Finding global optimizers for Markov random fields
with pairwise and non-convex priors is generally NP-hard,
and only approximation algorithms are known. Well-
established approaches for MRF optimization in computer
vision include belief propagation [26], graph cut meth-

ods [7, 15], message passing approaches [14, 16], and se-
quential fusion of labeling proposals [17, 25].

One major inspiration for this work is the continuous
maximal flow framework proposed in [2], which provides
globally optimal and efficient solutions to minimal surface
problems for image segmentation (e.g. [9]) and stereo [21].
The original framework for continuous maximal flows uses
isotropic, i.e. non-direction dependent, capacity constraints.
The flow between neighboring nodes (as induced by the RN
topology) is uniformly limited in all directions. The utiliza-
tion of anisotropic capacities allows the flow to prefer cer-
tain, spatially varying directions.

It turns out, that the flow field with capacity constraints
directly corresponds to the dual vector field employed in
efficient minimization of total variation energies [10]. The
spatially varying isotropic capacity constraint in [2] recurs
as weighted total variation [8]. Anisotropic total variation
for image denoising was theoretically analyzed in [19], and
joint image smoothing and estimation of local anisotropy
orientation was proposed in [3].

This work is outlined as follows: Section 2 introduces
anisotropic capacity constraints and analyzes the relation-
ship with continuous minimal surface and maximal flow
formulations. An iterative optimization procedure main-
taining primal and dual variables is presented as well. Sec-
tion 3 uses strong duality results from non-smooth convex
optimization to deduce the corresponding dual energy, that
provides further theoretical insights, and is a useful indica-
tor to stop the iterations. In Section 4 the results obtained
in the previous sections are used to derive novel procedures
for certain classes of Markov random fields, thus provid-
ing an extension and unification of [2] and [20]. Section 5
concludes this work.

2. Anisotropic Continuous Maximal Flows
This section presents an extension of continuous max-

imal flows with isotropic capacity constraints as proposed
in [2] to anisotropic node capacities. Fortunately, the
approach used in [2] to prove the correctness and sta-
bility of the underlying partial differential equations for
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isotropic capacity constraints can be easily generalized to
the anisotropic setting as shown in the next sections.

2.1. Wulff Shapes

The aim of this section is to introduce a technique al-
lowing to rewrite non-differentiable terms like ‖ · ‖ as bet-
ter manageable expressions: unconstrained optimization of
certain non-differentiable objective functions can be formu-
lated as nested optimization of a scalar product term subject
to a feasibility constraint induced by the respective Wulff
shape (e.g. [19]):

Definition 1 Let φ : RN → R be a convex, positively 1-
homogeneous function (i.e. φ(λx) = λφ(x) for λ > 0).
The Wulff shape Wφ is the set

Wφ :=
{
y ∈ RN : 〈y, x〉 ≤ φ(x) ∀x ∈ RN

}
, (1)

where we denote the inner product in RN by 〈·, ·〉.

The Wulff shape Wφ is a convex, bounded and closed
set. Further 0 ∈ Wφ. Given a Wulff shape Wφ the generat-
ing function φ(·) can be recovered by

φ(x) = max
y∈Wφ

〈y, x〉. (2)

For consistency with [2] and with the dual energy formu-
lation (Section 3), we will use Eq. 2 in a slightly modified
form with negated dual variables, i.e.

φ(x) = max
−y∈Wφ

〈−y, x〉 = max
y∈−Wφ

〈−y, x〉, (3)

where we introduce the negated Wulff shape,

−Wφ = {−y : y ∈Wφ}.

An important set of functions φ satisfying the convexity and
positive 1-homogeneity constraint are norms. The Wulff
shape for the Euclidean norm, ‖ · ‖2 is the unit ball with
respect to ‖ · ‖2. In general, the Wulff shape for the lp norm
is the unit ball of the dual norm, ‖ · ‖q, with 1/p+ 1/q = 1.

One useful observation about Wulff shapes in the con-
text of this work is the geometry of the Wulff shape for lin-
ear combinations of convex and positively 1-homogeneous
functions. It is easy to see that the following holds:

Observation 1 Let φ and ψ be two convex, positively 1-
homogeneous functions, and k ∈ R > 0. Then, the follow-
ing relations hold:

Wφ+ψ = Wφ ⊕Wψ, (4)

where A⊕B denotes the Minkowski sum of two sets A and
B. Further,

Wkφ =
1
k
Wφ = {y

k
: y ∈Wφ} (5)

This observation allows us to derive the geometry of Wulff
shapes for positive linear combinations of given functions
from their respective individual Wulff shapes in a straight-
forward manner.

In [19] is it shown, that we have φ(x) = 〈y, x〉 for non-
zero x and y ∈Wφ if and only if

y ∈ ∂Wφ and x ∈ NWφ
(y), (6)

where ∂Wφ denotes the boundary of the Wulff shape and
NWφ

(y) is the set of outward pointing normals at y ∈ ∂Wφ.
Note that this observation is equivalent to the Fenchel-
Young equation (see Section 3), but expressed directly in
geometric terms.

2.2. Minimal Surfaces and Continuous Maximal
Flows

Appleton and Talbot [2] formulated the task of comput-
ing a globally minimal surface separating a known source
location from the sink location as a continuous maximal
flow problem. Instead of directly optimizing the shape of
the separating surface ∂A, the indicator function of the re-
spective region A enclosing the source is determined.

In this section we derive the main result of [2] for
anisotropic capacity constraints. Let Ω ⊂ RN be the do-
main of interest, and S ⊂ Ω and T ⊂ Ω the source and
sink regions, respectively. Further, let φx be a family of
convex and positively 1-homogeneous functions for every
x ∈ Ω. Then the task is to compute a binary valued func-
tion u : Ω → {0, 1}, that is the minimizer of

E(u) =
∫

Ω

φx(∇u) dx, (7)

such that u(x) = 1 for all x ∈ S and u(x) = 0 for all
x ∈ T . Note that we have replaced the usually employed
weighted Euclidean norm by the general, spatially varying
weighting function φx. In the following we will drop the
explicit dependence of φx on x and will only use φ. Since φ
is convex and positively 1-homogeneous, we can substitute
φ(∇u) by maxy∈Wφ

〈−y,∇u〉 (recall Eq. 3) and obtain:

E(u) =
∫

Ω

max
−y∈Wφ

〈−y,∇u〉 dx. (8)

We will collect all dual variables y ∈ −Wφ into a vector
field p : Ω → −Wφ. Hence, we arrive at the following
optimization problem:

min
u

max
p

E(u,p) = min
u

max
p

∫
Ω

〈−p,∇u〉 dx (9)

together with the source/sink conditions on u and the gen-
eralized capacity constraints on p,

−p(x) ∈Wφx ∀x ∈ Ω. (10)
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Figure 1. Basic illustration of the anisotropic continuous maximal
flow approach. The minimum cut separating the source S and the
sink T , the flow field p, and one anisotropic capacity constraint
Wφ (convex shape) are depicted.

In many applications the Wulff shape Wφ is centrally sym-
metric, and the constraint −p(x) ∈ Wφx is then equivalent
to p(x) ∈Wφx .

The functional derivatives of Eq. 9 with respect to u and
p are

∂E

∂u
= div p

∂E

∂p
= −∇u (11)

subject to Eq. 10 and the source and sink constraints on u.
Since we minimize with respect to u, but maximize with
respect to p, the gradient descent/ascent updates are

∂u

∂τ
= −div p

∂p
∂τ

= −∇u (12)

subject to −p ∈ Wφ. These equations are exactly the ones
presented in [2], the only difference lies in the generalized
capacity constraint on p. The basic setup is illustrated in
Fig. 1.

Correctness at Convergence The first order optimality
conditions are (recall Eq. 11):

div p = 0 (13)
∇u = 0 if −p ∈Wφ \ ∂Wφ (14)
∇u ∈ NWφ

(−p) if −p ∈ ∂Wφ. (15)

The first equations implies that there are no additional
sources or sinks in the vector field p and flow lines con-
nect the source and the sink. If the generalized capac-
ity constraint Eq. 10 is active (i.e. p ∈ −Wφx), we have
∇u ∈ NWφ

(−p) by Eq. 6. Further, we have 〈−p,∇u〉 =
φ(∇u) ≥ 0 whenever the capacity is saturated, since φ is a
non-negative function. Consequently, u is a non-decreasing
function along the flow lines of −p (or equivalently, u is
non-increasing along the flow lines of p), which is the key
observation to prove the essentially binary nature of u. The
proof for the optimality after thresholding u by an arbitrary
value θ ∈ (0, 1) is an extended version of the one given

in [2]. Since the proof relies on duality results derived later
in Section 3, we postpone the proof to the appendix.

2.3. Numerical Considerations

Discretization For finite lattices the gradient operator ∇
and the divergence operator div need to be dual. We do not
employ the staggered grid approach proposed in [2], but use
the same underlying grids for u and p in our implementa-
tion. ∇u is evaluated using forward differences, whereas
div p is computed by backward differences. In order to en-
sure that the negated gradient and the divergence are adjoint
linear operators, in the finite setting, suitable boundary con-
ditions are required [10, 8].

The gradient descent equations in Eq. 12 are applied us-
ing an explicit Euler scheme with a uniform time step τ .
Since these equations are the same discrete wave equations
as in [2], the same upper bound on the time step holds, i.e.
τ < 1/

√
N . The update of p is followed by a reprojection

step to enforce p ∈ −Wφ.

Complex Wulff Shapes In many cases this reprojection
step is just a clamping operation (e.g. if φ is the L1 norm)
or a renormalization step (if φ is the Euclidean norm). De-
termining the closest point in the respective Wulff shape can
be more complicated for other choices of φ. In particular, if
the penalty function is of the form (φ + ψ), then it is easy
to show that maintaining separate dual variables for φ and
ψ yields to the same optimal solution – with the drawback
of increased memory consumption.

Terminating the Iterations A common issue with iter-
ative optimization methods is a suitable criterion when to
stop the iterations. An often employed, but questionable
stopping criterion is based on the length of the gradients
or update vector. In [2] a stopping criterion was proposed,
that tests whether u is sufficiently binary. This criterion is
problematic in several cases, e.g. if a reasonable binary ini-
tialization is already provided. A common technique in op-
timization to obtain true quality estimates for the current
solutions is to utilize strong duality. The current primal en-
ergy (which is minimized) yields a upper bound on the true
minimum, whereas the corresponding dual energy provides
a lower bound. If the gap is sufficiently small, the iterations
can be terminated with guaranteed optimality bounds. Since
the formulation and discussion of duality in the context of
anisotropic continuous maximal flows provides interesting
connections, we devote the next section to this topic.

3. Dual Energy
Many results on the strong duality of convex optimiza-

tion problems are well-known, e.g. primal and dual formu-
lations for linear programs and Lagrange duality for con-
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strained optimization problems. The primal energy Eq. 7 is
generally non-smooth and has constraints for the source and
sink regions. Thus, we employ the main result on strong du-
ality from convex optimization to obtain the corresponding
dual energy (e.g. [5]).

3.1. Fenchel Conjugates and Duality

The notion of dual programs in convex optimization is
heavily based on subgradients and conjugates:

Definition 2 Let f : RN → R be a convex and continuous
function. y is a subgradient at x0 if

∀x : f(x0) + 〈y, x− x0〉 ≤ f(x)

The subdifferential ∂f(x) is the set of subgradients of f at
x, i.e. ∂f(x) = {y : y is a subgradient of f at x}.

Intuitively, for functions f : R → R, subgradients of f at
x0 are slopes of lines containing (x0, f(x0)) such that the
graph f is not below the line.

Definition 3 Let f : RN → R be a convex and semi-
continuous function. The Fenchel conjugate of f , denoted
by f∗ : RN → R, is defined by

f∗(z) = sup
y

[
〈z, y〉 − f(y)

]
. (16)

f∗∗ = f if and only if f is convex and semi-continuous.
From the definition of f∗, we obtain

f(y) ≥ 〈z, y〉 − f∗(z) ∀y, z ∈ RN , (17)

i.e. the graph of f is above the hyperplane [y, 〈z, y〉−f∗(z)]
(Fenchel-Young inequality). Equality holds for given y, z if
and only if z is a subgradient of f (or equivalently, y is a
subgradient of f∗, Fenchel-Young equation).

Let A ∈ RM×N be a matrix (or a linear operator in gen-
eral). Consider the following convex optimization problem
for convex and continuous f and g:

p = inf
y∈RN

[
f(y) + g(Ay)

]
. (18)

The corresponding dual program is [5]:

d = sup
z∈RM

[
−f∗(AT z)− g∗(−z)

]
. (19)

Fenchel’s duality theorem states, that strong duality holds
(under some technical condition), i.e. p = d. Further, since
the primal program is a minimization problem and the dual
program is maximized,

f(y) + g(Ay) ≥ −f∗(AT z)− g∗(−z) (20)

is always true for any y ∈ RN and z ∈ RM . This inequal-
ity allows to provide an upper bound on the optimality gap
(i.e. the distance to the true optimal energy) in iterative al-
gorithms maintaining primal and dual variables.

3.2. Dual Energy for Continuous Maximal Flows

Now we consider again the basic energy to minimize (re-
call Eq. 7)

E(u) =
∫

Ω

φx(∇u(x))dx.

Without loss of generality, we assume Ω to be 3-
dimensional, since our applications are in such a setting.
Let A denote the gradient operator, i.e. A(u) = ∇u. In the
finite setting, A will be represented by a sparse 3|Ω| × |Ω|
matrix with ±1 values at the appropriate positions.

The function g represents the primal energy,

g(A ◦ u) :=
∫

Ω

φx

(
(A ◦ u)(x)

)
dx. (21)

(A ◦u)(x) denotes ∇u(x). Since A is a linear operator and
φx is convex, g is convex with respect to u.

The second function in the primal program, f , encodes
the restrictions on u. The value attained by u(x) should
be 1 for source locations x ∈ S, and 0 for sink regions,
u(x) = 0 for x ∈ T . W.l.o.g. we can assume u(x) ∈ [0, 1]
for all x ∈ Ω. Without this assumption it turns out that the
dual energy is unbounded (−∞), if div p(x) 6= 0 for some
x ∈ Ω not in the source or the sink region (see below). We
choose f as

f(u) =
{

0 if u complies with the constraints above
∞ otherwise

(22)
We denote the space of functions satisfying the constraints
(equivalently, with finite f(u)) by U .

The dual variable is a vectorial function (vector field) p :
Ω → R3. Since g(∇u) is a sum (integral) of φx acting on
independent components of ∇u, we have for the conjugate
function g∗:

g∗(−p) =
∫

Ω

φ∗x(−p(x)) dx. (23)

Since all φx share the same properties, we drop the index
and derive the Fenchel conjugate for any convex, positively
1-homogeneous function φ(y). First, note that the Wulff
shape Wφ is nothing else than the subdifferential of φ at 0,
i.e. Wφ = ∂φ(0):

z ∈ ∂φ(0) ⇔ ∀y : φ(0) + 〈z, y − 0〉 ≤ φ(y)
⇔ ∀y : 〈z, y〉 ≤ φ(y) ⇔ z ∈Wφ,

where we made use of φ(0 · y) = 0 · φ(y) = 0. Hence, we
obtain for every z ∈Wφ (by the Fenchel-Young equation)

φ∗(z) = 〈z, 0〉 − φ(0) = 0. (24)

If z /∈ Wφ, then there exists a y such that 〈z, y〉 > φ(y).
Further, 〈z, λy〉 > φ(λy) = λφ(y) for any λ > 0, and
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therefore φ∗(z) = supy
[
〈z, y〉 − φ(y)

]
is unbounded. In

summary, we obtain

φ∗(z) =
{

0 if z ∈Wφ

∞ otherwise, (25)

i.e. the conjugate of φ is the indicator function of the re-
spective Wulff shape.

The conjugate of f , f∗, can be computed directly. The
argument of f∗ is a mapping from Ω to negated divergences,
q : Ω → R with

q(x) = (A∗ ◦ p)(x) = −div p(x),

where A∗ is the adjoint operator to A (recall that ∇∗ =

−div). Further, let
◦
Ω denote the domain without the source

and sink sets, i.e.
◦
Ω = Ω \ (S ∪ T ), then

f∗(q) = sup
u

[
〈q, u〉 − f(u)

]
(26)

= max
u∈U

[
〈q, u〉

]
(27)

= max
u∈U

∫
◦
Ω

qu dx +
∫
S

qu dx +
∫
T

qu dx

 (28)

=
∫
◦
Ω

max(0, q) dx +
∫
S

q dx, (29)

since u is fixed to 1 for x ∈ S, u(x) = 0 for x ∈ T , and
between 0 and 1 for locations neither at the source nor the
sink.

In summary, the primal energy to evaluate is given in
Eq. 7, and the dual energy (recall Eq. 19) is given by

E∗(p) =
∫
S

div p dx +
∫
◦
Ω

−max(0,−div p) dx (30)

=
∫
S

div p dx +
∫
◦
Ω

min(0,div p) dx (31)

subject to p(x) ∈ −Wφx . The two terms in the dual energy
have direct interpretations: the first term,∫

S

div p dx (32)

measures the total outgoing flow from the source, while
the second term,

∫
◦
Ω

min(0,div p) dx, penalizes additional

sinks in the interior of Ω. Thus, it corresponds directly to
the well-known min-cut/max-flow theorem.

If we do not add a bounds constraint on u, here u(x) ∈
[0, 1], then it is easy see show that a strict penalizer on the

divergence outside S and T is obtained. The dual energy
contains just the source term,

E∗(p) =
∫
S

div p dx (33)

subject to p ∈ −Wφx and div p = 0 in
◦
Ω. For p not satisfy-

ing these constraints the dual energy is −∞. Algorithms as
the gradient descent updates in Eq. 12 achieve div(p) = 0
only in the limit, hence the strict penalty on div(p) 6= 0 is
not beneficial. Nevertheless, Eq. 33 is useful for analysis
after convergence.

The bounds constraint u(x) ∈ [0, 1] is redundant for the
primal energy, since u(x) ∈ [0, 1] is always true for minima
of Eq. 7 subject to the source and sink constraints. In the
dual setting this range constraints has the consequence, that
any capacity-constrained flow p is feasible. Any additional
flow generated by p at the source S, but vanishing in the
interior is subtracted from the total flow in Eq. 31, hence
the overall dual energy remains the same, and bounded and
unbounded formulations are equivalent. In practice, we ob-
served substantially faster convergence if u is clamped to
[0, 1] after each update step, and a meaningful value for the
duality gap is thus obtained.

3.3. Equivalence of the Dual Variables

It remains to show, that the dual vector field p intro-
duced in Section 2 (Eq. 9) in facts corresponds to the dual
vectorial function p introduced in the dual energy formula-
tion (Eq. 31). This is easy to see: after convergence of the
primal-dual method, the primal-dual energy is

E(u,p) =
∫

Ω

〈−p,∇u〉 dx =
∫

Ω

div p · u dx

=
∫
◦
Ω

div p · u dx +
∫
S

div p · u dx +
∫
T

div p · u dx

=
∫
S

div p dx,

since u is one in S and zero in T , and div p = 0 in
◦
Ω.

Consequently, the primal-dual energy in terms of p after
convergence is identical to the total flow emerging from the
source, i.e. equal to the dual energy. Thus, p as maintained
in the primal-dual formulation is equivalent to the argument
of the pure dual one.

4. Application to Markov Random Fields
In this section we address the task of globally optimizing

a Markov random field energy, where every pixel in the im-
age domain can attain a label from a discrete and totally or-
dered set of labels L. Without loss of generality, we assume
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that the labels are represented by non-negative integers, i.e.
L = {0, . . . , L − 1}. Similar to [22, 21, 2, 20], we for-
mulate the label assignment problem with linearly ordered
label sets as a segmentation task in higher dimensions.

4.1. From Markov Random Fields to Anisotropic
Continuous Maximal Flows

We denote the (usually rectangular) image domain by I
and particular pixels in bold font, e.g. x ∈ I. We will re-
strict ourselves to the case of two-dimensional image do-
mains. A labeling function Λ : I → L, x 7→ Λ(x) maps
pixels to labels. The task is to find a labeling function that
minimizes an energy functional comprised of a label cost
and a regularization term, i.e. to find the minimizer of

E(Λ) =
∫
I

(
c(x,Λ(x)) + V (∇Λ,∇2Λ, . . . )

)
dx, (34)

where c(x,Λ(x)) denotes the cost of selecting label Λ(x)
at pixel x and V (·) is the regularization term. Even for con-
vex regularizers V (·) this optimization problem is generally
difficult to solve exactly, since the data costs are typically
highly non-convex. By embedding the labeling assignment
into higher dimensions, and by appropriately restating the
energy in Eq. 34, a convex formulation can be obtained. Let
Ω be the product space of I and L, i.e. Ω = I × L.

In the following, we introduce the level function u,

u(x, l) =
{

1 if Λ(x) < l
0 otherwise. (35)

Since one label must be assigned to every pixel, we require
that u(x, L) = 1 for all x ∈ I. Further, u(x, 0) = 0 by
construction. In particular, the gradients of these function
in spatial direction (∇x) and in the label direction (∇l) play
an important role, i.e.

∇xu =
(
∂u/∂x
∂u/∂y

)
∇lu = ∂u/∂ l.

Finally, ∇u specifies the full gradient of u in spatial and
label directions, ∇u = (∂u/∂x, ∂u/∂y, ∂u/∂ l)T .

We assume, that the regularization energy in Eq. 34 can
be written in terms of the gradient of the level function,
i.e. V (·) can be formulated as∫

Ω

ψx,l(∇u) dx dl, (36)

where ψx,l is a family of convex and 1-positively homo-
geneous functions, that shapes the regularization term. The
same technique as proposed in [20] can be applied to rewrite
the data term:∫

I
c(x,Λ(x))dx =

∫
L

∫
I
c(x, l)|∇lu(x, l)| dx dl (37)

=
∫

Ω

c|∇lu| dx dl, (38)

where |∇lu| ensures that costs stay positive even for general
choices of u, that attain any real value and are not monoton-
ically increasing in their label argument.

By combining the data fidelity and regularization terms,
we can rewrite the original energy Eq. 34 purely in terms of
u (where we omit the explicit dependence of x and l),

E(u) =
∫

Ω

[
ψ (∇u) + c|∇lu|

]
dx dl. (39)

Since ψx,l and c| · | are convex and 1-positively homoge-
neous, their sum φx,l(·) := ψx,l(·) + cx,l| · | shares this
property. Finally, we can rewrite Eq. 39 as

E(u) =
∫

Ω

φ (∇u) dx dl (40)

Since φx,l is again a family of positively 1-homogeneous
functions, the anisotropic continuous maximal flow ap-
proach described in Section 2 can be applied. Specifically,
the solution u after convergence is essentially binary and
monotone in the label direction, thus the optimal labeling
function Λ can be easily recovered from u.

4.2. Choices for ψ

In [20] a different approach is taken to analyze the par-
ticular choice ψx(∇u) = ‖∇xu‖2 (resulting in a special
case of the updates in Eq. 12). By the co-area formula it can
be shown, that this choice for ψx corresponds to the total
variation regularization of the underlying labeling function
Λ, ∫

I
‖∇Λ‖dx =

∫
Ω

‖∇xu‖2dx dl. (41)

As such, using ψx for the smoothness term results in the
preference of piecewise constant assigned labels. The cor-
responding Wulff shapeWφx,l

of φx,l = ‖∇xu‖2+αc|∇lu|
is a cylinder with its height proportional to the label cost
c(x, l). Since the regularization term is isotropic in the im-
age domain, i.e. the smoothness term does not depend on
the actual image content, we denote this particular regular-
ization as homogeneous total variation. Note that it is easy
to “squeeze” this cylinder depending on the strength and
orientation of edges in the reference image in the stereo pair
(Figure 2). In order to use only relevant image edges, the
structure tensor of the denoised reference image can be uti-
lized to shape the resulting Wulff shape. We use the phase
field approach [1] for the Mumford-Shah functional [18]
to obtain piecewise smooth images. The positive impact
on the resulting depth maps (with the sampling insensitive
Birchfield-Tomasi matching cost [4]) is illustrated in Fig-
ure 3.

The total variation regularization on the depth map is
rather inappropriate if the labels directly correspond to met-
ric depth values in 3D space instead of pure image dispari-
ties. A more suitable choice is ψ = ‖∇u‖, if we assume
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Figure 2. The Wulff shape for homogeneous (left) and edge driven
(right) total variation regularizers.

(a) α = 3, w/o tensor (b) α = 3, with tensor

Figure 3. Depth maps with and without edge driven regularization.
(a) is based on homogeneous total variation regularization, and (b)
utilizes edge driven regularization. Observe that in (a) the low data
fidelity weight yields to substantial loss of detail in the depth map,
which is clearly better preserved in (b).

that labels represent equidistantly sampled depth values.
This particular choice penalizes the 3D surface area and
yields smoother 3D models largely suppressing staircasing
artifacts. This specific choice for regularization complies
with smoothing the depth map based on an induced sur-
face metric [24]. It can be readily verified that the respec-
tive Wulff shape is a capsule-like shape (i.e. a cylinder with
half-spheres attached to its base and top face). Figure 4(a–
b) visually compares the 3D meshes for the “Dino ring”
dataset [23] obtained using total variation regularization
‖∇xu‖ (Fig. 4(a)) and 3D regularization ‖∇u‖ (Fig. 4(b)).
Figure 4(c) and (d) display the 3D models obtained for a
brick wall, for which a laser scanned reference range image
is available. The RMS for (c) is 5.1cm, and 3.2cm for (d)
with respect to the known range image.

The underlying update equations Eq. 12 are very suitable
to be accelerated by a modern GPU. Our current CUDA-
based implementation executed on a Geforce 8800 Ultra is
able to achieve two frames per second for 320 × 240 im-
ages and 32 disparity levels (aiming for a 2% duality gap at
maximum).

5. Conclusion

This work analyzes the relationship between continuous
maximal flows, Wulff shapes, convex analysis and Markov
random fields with convex and homogeneous pairwise pri-
ors. It is shown that strong results from isotropic continuous
maximal flow carry over to flows with anisotropic capacity
constraints. The underlying theory yields extensions to a

recently proposed continuous and convex formulation for
Markov random fields with total variation-based smooth-
ness priors. The numerical simplicity and the data-parallel
nature of the minimization method allows an efficient im-
plementation on highly parallel devices like modern graph-
ics processing units.

Future work will address the extension of this work to
more general classes of MRFs by investigating other linear
operators than ∇, e.g. using ‖∇x∇lu‖ in the regularization
term corresponds to the LP-relaxation of MRFs with a Potts
discontinuity prior.

A. The Potential u is Essentially Binary
This section shows, that thresholding of a not necessarily

binary primal solution u∗ of the anisotropic geodesic energy
Eq. 7 yields to a equally globally optimal solution. Let u∗

and p∗ be a pair of primal and dual globally optimal solu-
tions for the continuous maximal flow energy Eq. 9. Recall
that the optimal dual energy is the total flow leaving the
source S (Eq. 33):

v∗ := E∗(p∗) =
∫
S

div p dx, (42)

and that v∗ is equal to the primal energy E(u∗) =∫
φ(∇u∗). The thresholded result of u∗, uθ, is given by

uθ(x) =
{

1 if u(x) ≥ θ
0 otherwise.

Further, define Aθ := {x ∈ Ω : u∗(x) ≥ θ}. Note that
for x ∈ Ω with ∇uθ(x) 6= 0 (or equivalently x ∈ ∂Aθ) we
have ∇u∗(x) 6= 0 by construction. Even a stronger relation
holds: ∇uθ(x) = k(x)∇u∗(x) for a positive scalar k(x),
since both gradients point in the same direction. Further, the
capacity constraint is active at x ∈ Aθ: −p∗(x) ∈ ∂Wφx .
Thus, for all x ∈ Aθ (omitting the explicit dependence on
x)

〈−p∗,∇uθ〉 = 〈−p∗, k∇u∗〉
= k〈−p∗,∇u∗〉 = k φ(∇u∗)
= φ(k∇u∗) = φ(∇uθ).

Overall we have:∫
Ω

φ(∇uθ) dx =
∫

Ω

〈−p∗,∇uθ〉 dx

=
∫

Ω

div p∗ · uθ dx =
∫
S

div p∗ = v∗,

since div p∗ = 0 in
◦
Ω and uθ is 1 in S and 0 in T . This

means, that the binary function uθ has the same energy as
u∗ and is likewise optimal.
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(a) ψ = ‖∇xu‖, λ = 50 (b) ψ = ‖∇u‖, λ = 50 (c) ψ = ‖∇xu‖, λ = 150 (d) ψ = ‖∇u‖, λ = 50

Figure 4. 3D meshed obtained for ψ = ‖∇xu‖ (a, c) and ψ = ‖∇u‖ (b, d). Clearly, ‖∇xu‖ favors piece-wise constant results. In (d) the
strong matching term causes a visible step structure especially in the foreground. Using a lower value of λ in (c) removes the floor (bottom
part of the mesh).
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