
A 3D Reconstruction Pipeline for Digital Preservation

Alexandre Vrubel Olga R. P. Bellon Luciano Silva
IMAGO Research Group (http://www.imago.ufpr.br)

Universidade Federal do Parana, Curitiba, Brazil ∗

Abstract

We present a new 3D reconstruction pipeline for digital
preservation of natural and cultural assets. This applica-
tion requires high quality results, making time and space
constraints less important than the achievable precision.
Besides the high quality models generated, our work allows
an overview of the entire reconstruction process, from range
image acquisition to texture generation. Several contribu-
tions are shown, which improve the overall quality of the ob-
tained 3D models. We also identify and discuss many prac-
tical problems found during the pipeline implementation.
Our objective is to help future works of other researchers
facing the challenge of creating accurate 3D models of real
objects.

1. Introduction

Digital reconstruction of 3D models from range and
color images is a very active research field, but still in-
cludes many challenges. In this context, there are two main
surveys [3, 13] presenting an entire reconstruction pipeline.
Also, pioneer works focusing on digital preservation of cul-
tural heritage are presented in [4, 15, 18]. These works
contribute by highlighting the difficulties to be overcome
in scanning complex objects.

In this paper, we show how we built a functional 3D
reconstruction pipeline, aiming for high quality results re-
quired in the digital preservation of natural and cultural as-
sets. Our contributions and the rationale behind the choices
we make are meant to help future works in this area.

In our work we used a commercial 3D scanner, the Vivid
910 from Konica Minolta. However, the reconstruction
software shipped with the scanner has several limitations:
the alignment of views is an arduous process; the mesh in-
tegration sometimes generates incorrect surfaces that need
to be manually corrected; the hole filling does not work in
holes with complex topologies; and the generated texture
is of low quality and incorrectly parametrized in all but the

∗Thanks to CAPES, CNPq and FINEP for funding.

simplest objects. All these factors make inappropriate its
use for digital preservation, and motivated our development
of a working high-quality 3D reconstruction pipeline.

Several steps compose a complete 3D reconstruction
pipeline, as shown in Fig. 1.

Figure 1. Overview of our 3D reconstruction pipeline.

First, the data is acquired from different and sufficient
viewpoints. Next, the data is aligned into a common refer-
ence frame in a process known as registration. After align-
ment, follows the mesh integration stage where data from all
acquired views are combined. Eventual holes due to incom-
plete data acquisition are usually filled after the integration
step. Then, a 3D model with its textures (i.e. diffuse color,
specular and normal maps) is generated. Finally, mesh sim-
plification may be performed to improve rendering perfor-
mance and storage costs. We follow this sequence of stages
to present our solutions as well as other related works.

2. The 3D Reconstruction Pipeline
2.1. Acquisition

There are several types of acquisition devices to gather
depth information from an object: laser scanning tech-
niques, multi-view stereo, shape from structured light,
shape from silhouette, contact digitizers, among others.
From all these techniques, laser scanning is the most pre-
cise [22], being our choice.

One current avenue of research is dedicated to improving
the quality of the acquired data. Nehab et al. [19] combine

2687978-1-4244-3991-1/09/$25.00 ©2009 IEEE

depth information from a triangulation scanner with normal
information from photometric stereo. Park and Kak [21]
proposed a technique to capture optically challenging ob-
jects through the usual laser triangulation technique with
some modifications. Any improvement in the quality of ac-
quired data is very welcome since it surely improves the
fidelity of the 3D reconstruction.

The first obstacle we faced was how to separate the ob-
ject from the background. The segmentation by color is
problematic, because it needs a controlled acquisition back-
ground, and places restrictions on colors present on the
scanned object. Scanning the object placed over a black
surface (to avoid laser capture), is not a good option either,
because dark regions of the object need higher laser power;
therefore leading to the capture of the black surfaces used
as support for the object.

Our contribution to this stage is a new method able to
separate the object from the background data. In our ap-
proach, we assume that the object is always scanned over a
support plane (e.g. a table). Then, we automatically detect
and remove this plane, since we know that there is no in-
formation below the plane, and the object data is above. If
we project all points into the support plane normal direction
(using dot product), the points on the plane would project
at the same value, the points on the object would be spread
with values larger than the plane, and there would be very
few values below the plane value (due to noise). If we build
a histogram of the distribution of these values, one can find
a distinct profile (see Fig. 2).

Our method tries different normal directions (sorted by
occurrence on the data points), searching for a histogram
that matches the presented profile. When one is found, we
select the points on the peak, and refine the plane param-
eters with MSAC [29]. The refined plane is accepted and
found if it conforms to a plane thickness threshold (usually
around 2 mm), minimum plane percentage of total points
(usually around 5%), maximum below plane percentage of
total points (usually around 2%) and minimum above plane

Figure 2. Example of a distribution of range points over a candi-
date support plane normal direction.

percentage of total points (usually around 10%). If any of
these conditions fail, a new plane normal direction is tried.
The thresholds were obtained empirically, and can be ad-
justed to different compromises between precision and de-
tection. Once the plane is obtained, only the points above
the plane are marked as belonging to the object.

The advantage of our method is that the control of the
background colors is unnecessary, what is very useful for
acquisitions made outside a controlled environment. Be-
sides, our method does not place any restrictions on scan-
ning parameters (e.g. focus distance or laser power). For
example, when scanning using a turntable, the technique
consists of scanning only the turntable, and then discard-
ing these data from each captured view. This requires that
the scanner position and focus be constant on all captured
views, an awkward limitation when scanning complex ob-
jects. Such a limitation does not exist in our technique. Fi-
nally, the detected plane can be helpful in the mesh integra-
tion stage, because it defines a half-space that is known to
be outside the scanned object. Fig. 3 shows the automatic
support plane detection.

(a) (b)
Figure 3. Range image of a real insect (beetle), showing a plane
difficult to detect: (a) original range image, with several discon-
nected patches belonging to the support plane; (b) result from our
automatic support plane detection and removal algorithm.

2.2. Registration

The objective of this stage is to find a 4× 4 transforma-
tion matrix for each captured view to achieve the alignment
into a common object coordinate system. Rusinkiewicz and
Levoy [25] and Salvi et al. [28] present several algorithms
that can be used in the registration stage.

In our pipeline, we use a pairwise ICP alignment [25],
followed by a global registration step using Pulli’s algo-
rithm [23]. For each pair of neighboring views with suffi-
cient overlap, we find the transformation matrix that aligns
the second view with the first, using a modified version of
the ICP algorithm, presented below. Currently, we manu-
ally pre-align the views; however, automatic pre-alignment
techniques like in [1] can be used to improve this task.

Our contribution regarding this stage is a new two-phase
ICP algorithm. We needed an algorithm with good conver-
gence properties (to reach the correct alignment), and with
maximum precision. To achieve this, the first phase uses an

2688

ICP variant with the point-to-plane error metric, a closest-
compatible approach for pair generation, normal space sam-
pling with random selection of points on both views, and
rejection of the farthest pairs [25]. This promotes excellent
convergence, but with limited precision.

When this first phase converges, we move on to the sec-
ond phase of the ICP algorithm. Now, we use all points on
both views, adding a maximum pair distance into the pair
compatibility test. This distance is related to the scanner er-
ror, and is usually very small (e.g. around 0.7 mm). We still
use a point-to-plane error metric during error minimization.
This version of ICP has limited convergence, but excellent
precision. As the first phase already reached an almost opti-
mal alignment, the second phase just improves the precision
of the result. As the compatibility threshold is very restric-
tive, we achieve good outlier elimination, which is essential
for a precise alignment.

Fig. 4 shows an experimental result from this two-step
ICP-based approach; even with the low overlap and bad ini-
tial position, the result converged to a precise alignment.

After the pairwise alignments, the global registration al-
gorithm of Pulli [23] improves the final alignment, spread-
ing the errors equally between all view pairs.

(a) (b) (c)
Figure 4. Our two-phase ICP-based approach: (a) initial position
of two views, far from being aligned; (b) result from the first
phase of our algorithm; (c) final result, with alignment precision
enhanced by the second phase of our algorithm. Red is used to
represent the matching pairs.

2.3. Mesh Integration

After the registration, we have several overlapping par-
tial meshes, one for each captured view. The next stage of
the reconstruction pipeline must integrate them to build a
single triangle mesh for the object. There are several ap-
proaches for mesh integration: Delaunay-based methods,
surface-based methods, parametric surfaces and volumetric
methods [3], all of them presenting limitations. Delaunay-
based methods are costly, and require pre-processing tech-

niques to eliminate incorrect data. Surface-based methods
may have problems with complex topologies and are sensi-
tive to noisy data. Most parametric surfaces algorithms can-
not handle sharp corners properly and surface fitting can be
problematic due to the outliers. Finally, volumetric methods
are costly regarding both time and space. In addition, Kazh-
dan et al. [14] compared several recent algorithms, neither
one was able to ensure high fidelity reconstructions, espe-
cially at small-scale details.

We chose volumetric methods because they impose
fewer restrictions to reconstructed objects; offer an easy
way to change the precision of the output (by varying the
voxel size); can easily support the space carving tech-
nique [6] to help outlier elimination; and can work in the
presence of low quality input data. Besides, they present
better results compared to other recent techniques [14].

We exhaustively implemented, tested and modified three
algorithms: The VRIP from Curless and Levoy [6], used in
“The Digital Michelangelo Project” [15]; Consensus Sur-
faces from Wheeler et al. [30], used in “The Great Buddha
Project” [18]; and our new algorithm, developed to solve
the limitations present in the two previous methods.

The VRIP in general achieves good results, but presents
some artifacts near corners and thin surfaces. Consensus
Surfaces, even with the improvements by Sagawa et al. [26,
27] and some of our own, still generates incorrect results in
regions near occlusions, as these regions rarely can achieve
consensus.

To solve these drawbacks, we developed a new algo-
rithm that combines elements from both VRIP and Consen-
sus Surfaces. Our new algorithm is based on two phases.
In the first one, we use a slightly modified version of VRIP,
together with a space carving method, to generate an initial
volumetric representation. Our modification on VRIP is a
new weight curve (see Fig. 5), that gives more weight to
outside voxels than to the ones inside the objects. This at-
tenuates the artifacts of VRIP in corners and thin surfaces,
at the cost of a small misplacement of the surfaces in the
first phase. Our space carving takes into consideration only
the object data, and optionally the support planes detected in

Figure 5. Distance weight curves for VRIP. The original curve [6]
is shown with the dashed line, and our new curve with the solid
one. Our new curve is a simple concatenation of two bezier seg-
ments. It reduces both creases and the effect of outliers on the
integrated surface. This factor ranges from 0.0 to 1.0 (according
to the signed distance), and is multiplied by the other weight fac-
tors. Negative values of distance are outside the object.

2689

the acquisition stage, having as main goal the outlier elimi-
nation. The volumetric result of this first phase works as a
consensual basis for the second phase of the algorithm.

The second phase builds the definitive volumetric repre-
sentation, integrating only measurements in consensus with
the result obtained in the first phase. The consensus is tested
at each candidate voxel, between the normal on the closest
surface point of each view and the gradient of the volume-
tric result from the first phase. The space carving performed
on the first phase is also used to eliminate outliers, here
standing for the incorrect data outside the object. We must
note that we use line-of-sight signed distances on the first
phase (VRIP) for performance, and Euclidian distances on
the second phase (Consensus) for precision and correction
of the hole filling later on.

With our algorithm, we eliminate the artifacts of VRIP
near corners and thin surfaces, and generate good results
near occluded regions. Fig. 6 shows a comparison of results
from the integration algorithms discussed previously.

(a) (b)

(c) (d)
Figure 6. Comparison of integration algorithms: (a) VRIP;
(b) Consensus Surfaces; (c) our new integration algorithm, which
successfully removed all outliers; (d) our algorithm with holes
filled with the Volumetric Diffusion algorithm [7]. Both VRIP
and Consensus Surfaces generate incorrect surfaces due to outliers
(indicated by the red arrows), spoiling the subsequent hole filling.
Our new algorithm, in contrast, eliminates all outliers and keeps
the space carving information, allowing the hole filling stage to
generate very good results.

2.4. Hole Filling

The acquisition process is usually incomplete. Deep re-
cesses and occlusions prevent the capture of some parts of
the objects. This requires some efforts to complete the cap-
tured data to allow the generation of a “watertight” model,

necessary for several applications such as user visualization
and creation of replicas.

Some integration algorithms fill holes automatically, like
the ones based on parametric surfaces [5, 20]; however, the
results are not always topologically correct. Some sim-
ple techniques catastrophically fail in holes with complex
topology, common in real objects, when they assume that
the holes have a disc topology.

In our pipeline we chose the volumetric diffusion algo-
rithm by Davis et al. [7], because it can handle complex
topologies satisfactorily. Besides, it is a volumetric tech-
nique that works well with our mesh integration stage. The
idea of the algorithm is to diffuse the values on observed
voxels into voxels without data, similar to a 3D blurring
operation. Space-carving information, although not neces-
sary, usually helps the algorithm to produce a more faithful
reconstruction.

The volumetric diffusion algorithm suffered some cri-
ticism by Sagawa and Ikeuchi [26], but we disagree with
their assessment. In our experiments, the Volumetric Dif-
fusion generated excellent results, mainly due to the qua-
lity of our integration method. The explanation lies on the
characteristics of the integration algorithms used. Sagawa
and Ikeuchi [26] use the Consensus Surfaces, which usu-
ally generates incorrect results near holes. So, it is natu-
ral that when propagating this incorrect information to fill
holes, bad results are expected. Since our new integration
method eliminates incorrect data near holes, and space car-
ving data from the first integration phase is available, Davis’
method is able to generate good results in these challenging
cases. Therefore, we can say that Volumetric Diffusion is
a good technique, but depends on a good mesh integration
to work successfully. Fig. 6(d) shows Davis’ method result
after our integration algorithm was performed.

2.5. Mesh Generation

We use the well established Marching Cubes algo-
rithm [17] to generate a triangle mesh from the volumetric
representation of the previous stages. We use the disam-
biguation method of Chernyaev [16] to ensure the genera-
tion of manifold topologies.

The only drawback of this approach is the generation of
very thin triangles (a.k.a. slivers) in some parts of the gen-
erated model. A mesh simplification technique like [11] can
eliminate these triangles, resulting in a more homogeneous
mesh, useful for the next stages of the pipeline.

2.6. Texture Parametrization

The mesh generation concluded the geometric part of the
reconstruction problem. However, we still needed to calcu-
late the surface properties (i.e. color and specularity). These
properties are usually represented by textures. Therefore,
we need to be able to apply textures to the generated model.

2690

The goal of this stage is to generate a mapping between
the 3D coordinates (x, y, z) of each vertex and a 2D texture
coordinate (u, v). These 2D coordinates represent a posi-
tion into the texture image. This process can be seen as
“skinning” the model through cuts and planifications.

There are several methods to perform texture
parametrization [12]. For our purposes, we needed a
parametrization that minimized distortion, being at the
same time as homogeneous as possible. In our imple-
mentation, we used a simple texture atlas approach. We
segmented the model into almost planar regions, starting
from a seed triangle and growing the region while the
normals of the faces are within a threshold (usually 30◦, to
prevent the generation of too many small regions) from the
average normal of the region. Each region is then planified;
this is done by calculating the principal axis of the vertices
in question [31]. The axis closest to the average normal of
the region is then used as the normal of the plane, and the
other two axes define the u and v directions in the texture
space. The result is a 2D projection (in mm) of each region.
After all regions are planified, a texture atlas is generated,
packing all regions into a single parametrization space (see
Fig. 7). As we know the size of each region in millimeters,
it is easy to define the image size in pixels necessary to
achieve a desired resolution in pixels per millimeter.

We must notice that any parametrization can be used
with our pipeline. An extensive review of more complex
parametrization alternatives is presented in [12].

It is important to note that the trivial solution of generat-
ing an atlas with each triangle being a region is a really bad
choice of texture parametrization. The performance of real
time rendering suffers greatly due to lack of spatial coher-
ence, and mip-mapping [8] becomes almost impossible to
accomplish, consequently reducing the quality of the ren-
derings. Therefore, minimizing the number of regions on
the atlas is also an important criterion when choosing a good
texture parametrization scheme.

2.7. Surface Properties Calculation

The main surface property we need to calculate is the
reflectance or surface color. Additional properties, like spe-
cularity, are also useful in high fidelity reconstructions.

Acquiring accurate color information from the object
is more challenging than it appears. Usually, we do not
have complete control over the incident illumination on the
scanned object. Even when this is tried, the simple illumi-
nation models commonly used in Computer Graphics (e.g.
Phong, Blinn, Torrance-Sparrow [8]) are not physically re-
alistic, since they ignore indirect illumination and object
inter-reflections. Bernardini and Rushmeier [3] present the
main techniques used to estimate the surface properties, in-
cluding the compensation of the illumination parameters.

Another practical difficulty is that the commercial 3D

(a) (b)
Figure 7. Example of automatically generated textures for the ob-
ject presented in Fig. 8: (a) diffuse color texture; (b) object-space
normal map. We used our chart parametrization and calculated
vertex colors and normals to generate both textures. As explained
in section 2.8, we diffused the border of each chart into its neigh-
boring pixels to prevent problems with mip-mapping.

scanners available usually return color information in low
resolution. For example, the Vivid 910 we used returned
images with 640× 480 pixels of resolution, and the color is
not reliable. This leads to the use of a different high reso-
lution camera to acquire color images, and the need of cal-
ibration between this camera and the scanner data, another
source of imprecision on the final result.

There are two approaches to generate the surface proper-
ties. We can either generate color and illumination per ver-
tex, as the models are usually high-poly; or we can generate
them directly into the texture space, using the parametriza-
tion of the previous pipeline stage. The former is used when
only data from the 3D scanner is available, while the latter
is needed when using high resolution cameras.

Our current implementation still does not calculate an
accurate photometric modeling. We use the simple vertex
color approach, and we have been improving it using high
resolution cameras. Specularity is not yet estimated, too.
To generate the vertex colors, we calculate a weighted aver-
age of the colors on all views that observe each vertex. The
weight we adopted is the angle between the scanner line-of-
sight and the vertex normal. This is done because the data
observed at an angle are less reliable than the data facing di-
rectly the scanner. Although simple, our method generates
good results, as shown in Section 3.

2.8. Texture Generation

Texture generation combines the results of the two previ-
ous stages of the pipeline: texture parametrization and sur-
face properties. Our objective is to encode the surface pro-
perties into one or more images (i.e. textures). These will be
used when rendering the reconstructed model (see Fig. 7).

This stage and the previous two are very dependent on
the algorithm used. Sometimes, they are condensed in a
single stage [24]; in other cases, they are strongly related to

2691

the acquisition devices used [2]. We prefer to separate these
three stages, so that different techniques can be tested, and
at the same time easily integrated in our pipeline.

As we explicitly generate the parametrization and vertex
color, the texture generation is straightforward. We render
the model using the texture coordinates (u, v, 0.0) as the
(x, y, z) coordinates of the vertices, and using the calcu-
lated vertex colors. The 3D graphics card interpolates the
color across each face using Gouraud shading [8]. We use
an orthogonal projection matrix, and a render target of the
size of the desired texture. The same rendering technique
can be used to generate other textures, like a normal map
(encoding each vertex normal as a RGB triplet), or a specu-
lar map (encoding each vertex specular color and exponent
as a RGBA tuple).

We found another practical problem when automatically
generating textures: the perimeters of each parametrized re-
gion usually causes problems with mip-mapping [8]. This
occurs due to the bilinear interpolation made when access-
ing texture maps. This appears as “cracks” on the final
model that highlights the boundaries of the segmented re-
gions. To solve this, we expanded the colors from the re-
gions into the unused texture spaces, using a diffusion tech-
nique. We created this technique inspired on the Volumetric
Diffusion [7] used for hole-filling, but here the diffusion is
2D and we propagate color instead of distance values. This
works like a blurring filter, but only affecting the unused
pixels of the texture, and using only the colors propagated
from the regions. This technique can be used on any chart-
based parametrization scheme, and is usually effective to
solve the “crack” problem. Fig. 8 shows the problem and
the solution with our method, while Fig. 7 shows an exam-
ple of textures with diffused regions.

(a) (b)
Figure 8. Example of the “cracking” problem due to the mip-
mapping of automatically generated textures: (a) rendered result
with the original texture map; (b) rendered result with colors dif-
fused into the unused texture space, with “cracks” eliminated.

2.9. Mesh Simplification

An optional pipeline stage consists of reducing the tri-
angle count on the model to improve its rendering perfor-
mance and storage costs. After capturing the geometric,
color and eventually specular properties into textures, we
can perform mesh simplification and still mantain the visu-
ally high accuracy of the source model.

When dealing with digital preservation, this step is not
essential, since we want precise results. However, the
Marching Cubes algorithm used in the pipeline can generate
much more triangles than necessary to accurately represent
the model, mainly in almost planar regions. So, a mesh sim-
plification procedure can improve the performance keeping
high accuracy. Another important fact is that we are able to
generate a normal map for the model that helps preserve the
visual accuracy even when low-poly models are used.

There are several approaches for mesh simplification.
The technique of Garland and Heckbert [9], improved by
Hoppe [11] is fast and generates accurate results when re-
ducing moderately the polygon count, which is the goal of
digital preservation. Using a progressive mesh representa-
tion [10] is also useful to allow the generation of different
levels of detail for each object.

We prefer to perform the mesh simplification after the
texture generation, because we are able to generate maxi-
mum quality normal maps, and the textures can guide the
mesh simplification, thus minimizing texture distortion.

3. Results and Future Works

We used our pipeline to reconstruct several objects,
ranging from artworks to fossils. The objects were se-
lected to stress test the pipeline, with complex topolo-
gies and optically uncooperative materials. Table 1 shows
characteristics of some reconstructed objects, presented in
Fig. 9. In general, we are able to generate good qua-
lity reconstructions, even on complicated objects. Other
examples can be found on our research group website
(www.imago.ufpr.br/Museu).

Our implementation of a reconstruction pipeline had to
overcome several practical problems:

Object Characteristics Beetle Rooster Protocyon
Number of views 43 32 56
Number of ICP pairs 69 36 104
Data size 979 MB 671 MB 1.22 GB
Voxel size 0.3 mm 0.5 mm 0.5 mm
Dimensions (cm) 6×4×2 22×19×12 23×15×10
Number of vertices 136,706 296,786 436,863
Number of faces 273,424 593,584 873,746
Reconstruction time 322 s 963 s 1,348 s

Table 1. Some reconstructed objects with the proposed pipeline.
We used a 2.2GHz Core2 Duo PC, with 4 GByte of RAM.

2692

(a) (b) (c)

(d) (e) (f)

Figure 9. Results from our 3D reconstruction pipeline: (a) reconstruction of a beetle, challenging because the small scale of the details
and dark colors; (b) reconstruction of a metal statue of a rooster, challenging because the specularity of the object material and thin gaps
between the feathers; (c) reconstruction of a protocyon fossil (an ancient American wolf), challenging because the complex topologies,
occlusions and thin surfaces; (d), (e) and (f) color images of the real objects. In all cases, high quality reconstructions were achieved.

• Even moderately sized objects generate large data sets.
Keeping all these data loaded into memory is unfeasi-
ble, therefore temporary files, a cache mechanism, and
cache-friendly algorithms are necessary;

• Current mesh integration algorithms still generate false
or incorrect surfaces. This directly impacts the accu-
racy of the final models;

• Mathematically evaluating accuracy of the results is
still difficult. When reconstructing real objects, we do
not have a “ground truth” to compare the generated
model to. Even producing a test object from a previ-
ous 3D model, to scan and reconstruct it later, does
not solve the problem. This happens because any pro-
duction process introduces inaccuracies that make the
real object different from the source 3D model, ma-
king a simple comparison between the source and re-
constructed model incorrect;

• Color images acquired with laser triangulating 3D
scanners are usually of low resolution. This limits the
generation of accurate textures for the 3D model.

Some future works can focus on improving several
stages of the pipeline. An interactive tool to help planning

the capture would be useful to minimize the effort during
acquisition. Using some automatic pre-alignment for each
pair of views would reduce the amount of human labor to
generate the models. Improving the quality of the alignment
would improve the precision of the resulting models. The
development of better integration algorithms is another im-
portant avenue of research, so that only precise surfaces are
generated. Using camera calibration techniques to combine
the acquired geometry with high resolution photographs of
the object would improve the quality of the textures.

4. Conclusion
The purpose of this work is to show a complete and func-

tional solution for the 3D reconstruction problem applied to
digital preservation. There are lots of algorithms and pos-
sibilities to build such a pipeline; we present our particular
solution, and the reasoning behind the selection of the algo-
rithms for each stage of the pipeline. We are able to recon-
struct complex objects with good accuracy, proving that our
approach is functional.

Our main contributions are: a new support plane detec-
tor to automatically separate the object from the background
in the acquired range data; a new two-phase ICP-based al-

2693

gorithm to achieve at the same time good convergence and
good precision; a new volumetric integration algorithm that
overcomes drawbacks from both VRIP and Consensus Sur-
faces, working nicely with the Volumetric Diffusion algo-
rithm for hole-filling; a functional way to generate textures
for the geometric models using a simple texture atlas ap-
proach combined with a per-vertex calculation of surface
color; and an automatic rendering of the texture image us-
ing common 3D graphic accelerators. Another important
contribution is a general overview of the entire pipeline, and
how each stage interacts with the other stages; attention to
this is paramount when building a functional 3D reconstruc-
tion pipeline.

We hope our work helps other researchers facing the
daunting task of building a 3D reconstruction pipeline for
digital preservation, facilitating its achievement.

References
[1] D. Aiger, N. J. Mitra, and D. Cohen-Or. 4-points congru-

ent sets for robust pairwise surface registration. ACM Trans.
Graphics, 27(3):1–10, 2008.

[2] F. Bernardini, I. Martin, and H. Rushmeier. High quality
texture reconstruction. IEEE TVCG, 7:318–332, 2001.

[3] F. Bernardini and H. Rushmeier. The 3D model acquisition
pipeline. Comp. Graphics Forum, 21(2):149–172, 2002.

[4] F. Bernardini, H. Rushmeier, I. M. Martin, J. Mittleman, and
G. Taubin. Building a digital model of Michelangelo’s Flo-
rentine Pieta. IEEE Comp. Graph. and Appl., 22(1):59–67,
2002.

[5] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R.
Fright, B. C. McCallum, and T. R. Evans. Reconstruction
and representation of 3D objects with radial basis functions.
In Proc. SIGGRAPH, pages 67–76, 2001.

[6] B. Curless and M. Levoy. A volumetric method for building
complex models from range images. In Proc. SIGGRAPH,
pages 303–312, 1996.

[7] J. Davis, S. R. Marschner, M. Garr, and M. Levoy. Filling
holes in complex surfaces using volumetric diffusion. Proc.
3DPVT, pages 428–438, 2002.

[8] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes.
Computer Graphics (2nd ed. in C): Principles and Practice.
Addison-Wesley Publishing, 1996.

[9] M. Garland and P. Heckbert. Simplification using quadric
error metrics. In Proc. SIGGRAPH, volume 31, pages 209–
216, 1997.

[10] H. Hoppe. Progressive meshes. In Proc. SIGGRAPH, pages
99–108, 1996.

[11] H. Hoppe. New quadric metric for simplifying meshes with
appearance attributes. In Proc. IEEE Visualization, pages
59–66, 1999.

[12] K. Hormann, B. Levy, and A. Sheffer. Mesh parameteri-
zation: Theory and practice. In ACM SIGGRAPH Course
Notes, 2007.

[13] K. Ikeuchi, T. Oishi, J. Takamatsu, R. Sagawa, A. Nakazawa,
R. Kurazume, K. Nishino, M. Kamakura, and Y. Okamoto.

The Great Buddha project: Digitally archiving, restoring,
and analyzing cultural heritage objects. IJCV, 75(1):189–
208, 2007.

[14] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface
reconstruction. In Proc. Eurographics SGP, pages 61–70,
2006.

[15] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller,
L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg,
J. Shade, and D. Fulk. The Digital Michelangelo project:
3D scanning of large statues. In Proc. SIGGRAPH, pages
131–144, 2000.

[16] T. Lewiner, H. Lopes, A. W. Vieira, and G. Tavares. Efficient
implementation of marching cubes’ cases with topological
guarantees. Journal of Graphics Tools, 8(2):1–15, 2003.

[17] W. E. Lorensen and H. E. Cline. Marching cubes: A high
resolution 3D surface construction algorithm. In Proc. SIG-
GRAPH, pages 163–169, 1987.

[18] D. Miyazaki, T. Oishi, T. Nishikawa, R. Sagawa, K. Nishino,
T. Tomomatsu, Y. Takase, and K. Ikeuchi. The Great Buddha
project: Modelling cultural heritage through observation. In
Proc. VSMM, pages 138–145, 2000.

[19] D. Nehab, S. Rusinkiewicz, J. Davis, and R. Ramamoorthi.
Efficiently combining positions and normals for precise 3D
geometry. ACM Trans. on Graphics, 24(3):536–543, 2005.

[20] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H. P. Sei-
del. Multi-level partition of unity implicits. ACM Trans. on
Graphics, 22(3):463–470, 2003.

[21] J. Park and A. C. Kak. 3D modeling of optically challenging
objects. IEEE TVCG, 14(2):246–262, 2008.

[22] G. Pavlidis, A. Koutsoudis, F. Arnaoutoglou, V. Tsioukas,
and C. Chamzas. Methods for 3D digitization of cultural
heritage. Journal of Cultural Heritage, 8(1):93–98, 2007.

[23] K. Pulli. Multiview registration for large data sets. In Proc.
3DIM, pages 160–168, 1999.

[24] K. Pulli, M. Cohen, T. Duchamp, H. Hoppe, L. Shapiro, and
W. Stuetzle. View-based rendering: Visualizing real objects
from scanned range and color data. In Proc. 8th Eurograph-
ics Workshop on Rendering, pages 23–34, 1997.

[25] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP
algorithm. In Proc. 3DIM, pages 145–152, 2001.

[26] R. Sagawa and K. Ikeuchi. Hole filling of a 3D model by
flipping signs of a signed distance field in adaptive resolu-
tion. IEEE TPAMI, 30(4):686–699, 2008.

[27] R. Sagawa, K. Nishino, and K. Ikeuchi. Adaptively merg-
ing large-scale range data with reflectance properties. IEEE
TPAMI, 27(3):392–405, 2005.

[28] J. Salvi, C. Matabosch, D. Fofi, and J. Forest. A review of
recent range image registration methods with accuracy eval-
uation. Image and Vision Computing, 25(5):578–596, 2007.

[29] P. Torr and A. Zisserman. MLESAC: A new robust estimator
with application to estimating image geometry. Computer
Vision and Image Understanding, 78(1):138–156, 2000.

[30] M. D. Wheeler, Y. Sato, and K. Ikeuchi. Consensus sur-
faces for modeling 3D objects from multiple range images.
In Proc. ICCV, pages 917–924, 1998.

[31] X. Wu. A linear-time simple bounding volume algorithm.
Graphics Gems III, pages 301–306, 1992.

2694

