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Abstract

Contemporary face recognition algorithms rely on pre-

cise localization of keypoints (corner of eye, nose etc.). Un-

fortunately, finding keypoints reliably and accurately re-

mains a hard problem. In this paper we pose two questions.

First, is it possible to exploit the gallery image in order to

find keypoints in the probe image? For instance, consider

finding the left eye in the probe image. Rather than using

a generic eye model, we use a model that is informed by

the appearance of the eye in the gallery image. To this end

we develop a probabilistic model which combines recogni-

tion and keypoint localization. Second, is it necessary to

localize keypoints? Alternatively we can consider keypoint

position as a hidden variable which we marginalize over

in a Bayesian manner. We demonstrate that both of these

innovations improve performance relative to conventional

methods in both frontal and cross-pose face recognition.

1. Introduction

Automated face recognition systems find application in

access control, image search, security and other areas.

However, widespread deployment has not yet been achieved

as current systems are not sufficiently reliable.

Part of the problem is that face recognition systems con-

sist of a pipeline of sequential operations [25]: in the face

detection stage the face is approximately localized in the

image. The face pixels may then be segmented from the

background pixels. The system then localizes keypoints

such as the eyes, nose etc. as shown in Figure 1, with a

view to registering the face more carefully. There follows

a measurement stage in which data are extracted from the

registered image. Finally inferences are made about iden-

tity. A problem at any part of the pipeline causes overall

performance to degrade.

Most research on face recognition has concerned the last

(inference) stage [20, 1, 25, 23, 7, 16, 21, 24]. Usually,

Figure 1. Localizing the left corner of mouth of a profile probe im-

age (B) with the help of a frontal gallery image (A). Ground truth

keypoints are indicated by white crosses. For each feature we have

a prior distribution, shown for the frontal image in (C). The pre-

dicted distribution of the keypoint in the probe image is estimated

by considering the probe image alone (D) or in combination with

the gallery image (E). The MAP estimation of the keypoint posi-

tion is indicated by white stars.

the extracted image measurements are mapped to a lower

dimensional feature space, in which the distance between

points is used to make decisions about similarity. Proposed

mappings have included linear approaches such as Princi-

pal Component Analysis (PCA) [20], Linear Discriminant

Analysis (LDA) [1] and Laplacianfaces [7] as well as non-

linear approaches such as Kernel Linear Discriminant Anal-

ysis (KLDA) [23]. Other authors have proposed algorithms

that embed similar recognition decisions in a probabilistic

framework [14, 16, 9]. Many of these methods perform well

for frontal faces under controlled conditions, and attempts

are ongoing to extend them to cases where illumination, ex-

pression and pose may vary [11, 2, 17, 22].

Unfortunately, these achievements are diminished if the

preceding pipeline is not reliable. A particular bottleneck is
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keypoint localization. In global approaches, the keypoints

are used to register the image to a common template [20, 1].

In local approaches, data are explicitly extracted from the

region around the keypoints [3, 12, 8]. In either case recog-

nition performance degrades if the keypoints are not accu-

rately localized [18], especially in cross-pose recognition

[13, 21, 17]. Unfortunately, automated facial keypoint de-

tection remains a hard problem despite much investigation

[3, 12, 8, 5].

In order to scientifically isolate the recognition stage, it is

common to use manually labelled features [21, 24, 19, 10],

while others simply do not detail how keypoints were local-

ized. Even face recognition databases commonly provide

manually labelled keypoint positions [15].

In this paper, we investigate whether it is even necessary

to estimate keypoint positions. We are inspired by recent

methods for inference in face recognition which do not es-

timate identity, but marginalize over all possible identities

in a Bayesian manner [16, 9]. In this paper, we marginalize

over both the identity and keypoint positions. One impli-

cation of combining keypoint localization and inference is

that we can use one image to help with localization in the

other: we no longer look for a generic eye, but the specific

eye that matches the other image.

In Section 2 we introduce the probabilistic recognition

framework. In Section 3 we describe our method for us-

ing the gallery image to help localize the keypoints in the

probe image. In Section 4 we show that marginalizing over

keypoint position is superior to finding the maximum a pos-

teriori (MAP) position. In Section 5 we extend our model

to cope with faces which differ in pose.

2. Probabilistic Face Recognition Framework

In this paper, we adapt the “Probabilistic Linear Discrim-

inant Analyzer” (PLDA) model [16], which is a probabilis-

tic version of [1]. In our initial description, we assume that

we have already localized keypoints and extracted a fea-

ture vector from each. We model the vector x associated

with each keypoint separately. Let xij be the feature vector

extracted from the j’th example of the i’th individual. We

describe this as a sum of signal and noise components:

xij = µ + Fhi + Gwij + ǫij (1)

The first component, µ + Fhi, represents the identity

signal. It does not contain any elements that depend on the

particular instance j of the given person’s face. The term hi

is termed a latent identity variable or LIV. It can be thought

of as an idealized representation of human identity. The

second component Gwij + ǫij represents within-individual

noise and is different for every image. The term wij is re-

ferred to as a latent noise variable.

The term µ represents the overall mean of the data. The

matrix F defines a basis for the identity (between individ-

ual) subspace. The columns of F are similar to the eigen-

faces of [20]. The term hi represents the position in this

subspace (similar to the weighting of eigenfaces). Similarly,

the matrix G defines a basis for the within-individual vari-

ation, and wij represents the position within this subspace.

The term ǫij is mean zero Gaussian noise, with diagonal co-

variance Σ. It accounts for any further image variation that

is not well described by the previous components.

More formally, we can re-write the model in terms of

conditional probabilities:

Pr(xij |hi,wij) = Gx [µ + Fhi + Gwij , Σ] (2)

Pr(hi) = Gh [0, I] (3)

Pr(wij) = Gw [0, I] (4)

where Ga [b,C] denotes a Gaussian distribution in a with

mean b and covariance C. We have also specified priors

over the latent variables hi, wij to complete the model.

The unknown parameters θ = {µ,F,G, Σ} can be learnt

using the Expectation Maximization (EM) algorithm [4] as

described in [16].

2.1. Inferences about Identity

Given face data xp and xg from the probe and gallery im-

ages respectively, we wish to know if they were generated

from the same identity or whether it is better to explain the

data with separate identities. We compare two generative

models for the data and choose the one with higher likeli-

hood. The model Md describes the case when the features

come from different individuals. The model Ms describes

the case when the features come from the same individual.

We treat each in turn.

When the probe and gallery image do not match (Md),
we treat them as independent and model them separately.

For the probe image we have:

xp = µ +
[

F G
]

[

h

w

]

+ ǫ (5)

or

xp = µ + Ay + ǫ. (6)

This has the form of a standard factor analyzer:

Pr(xp|y,Md) = Gxp
[µ + Ay, Σ] (7)

Pr(y) = Gy [0, I] (8)

The likelihood of observing the probe image assuming

that there was no match can be calculated by marginalizing

over the hidden variable y. From Equation 6 it is easy to

see that the first two moments of the distribution of the are

given by:
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E [xp] = µ

E
[

(xp − µ)(xp − µ)T
]

= E
[

(Ay + ǫ)(Ay + ǫ)T
]

= AAT + Σ

In fact, it can be shown the after marginalizing over the

hidden variables, the likelihood of the data has a Gaussian

form so that:

Pr(xp|Md) = Gxp

[

µ,AAT + Σ
]

(9)

A similar equation can be developed for the gallery im-

age. The likelihood when the images do not match is hence

Pr(xp,xg|Md) = Pr(xp|Md)Pr(xg |Md) (10)

If the faces do match (Ms) we use the generative equa-

tion:

[

xp

xg

]

=

[

µ

µ

]

+

[

F G 0

F 0 G

]





h

wp

wg



 +

[

ǫp

ǫg

]

(11)

or x′ = µ′ +By′ + ǫ′. The likelihood of the data under this

model is:

Pr(xp,xg|Ms) = Pr(x′|Ms) = Gx′ [µ′,BB′ + Σ′]
(12)

where

Σ′ =

[

Σ 0

0 Σ

]

(13)

3. Recognition and Keypoint Localization

Now we turn to the question of how to combine recog-

nition and keypoint localization. Once more, we treat each

keypoint independently. The (x,y) position of the keypoint

in the probe image Ip is denoted by tp . The (x,y) position

of the same keypoint in the gallery image Ig is denoted by

tg. Feature extraction is denoted by the function φ which

takes the image and keypoint positions so that:

xp = φ(Ip, tp) (14)

xg = φ(Ig, tg) (15)

The concatenated feature vectors x′ can hence be calcu-

lated as:

x′ =

[

xp

xg

]

=

[

φ(Ip, tp)
φ(Ig, tg)

]

(16)

3.1. Model 1: Finding keypoints using one image

Keypoints are usually found by a separate process from

the recognition model. However, since we have explicitly

described our data in terms of a generative model, it is pos-

sible to use the same model to find the keypoint. We max-

imize the posterior probability of the extracted feature as a

function of the keypoint position.

t∗p = arg max
tp

Pr(xp|Md, tp)Pr(tp)

t∗g = arg max
tg

Pr(xg |Md, tg)Pr(tg) (17)

where the relation between tp and xp is given by Equation

14 and the conditional relation between tg and xg is given

by Equation 15. We use these optimal keypoint values t∗p
and t∗g to calculate the features xp and xg and evaluate the

likelihoods that the images match or do not match using

Equations 10 and 12 respectively.

3.2. Model 2: Finding keypoints using both images

The previous method is similar to conventional ap-

proaches: the probe image is used to find the probe keypoint

and the gallery image is used to find the gallery keypoint.

However, since we also have a joint probability model of

the probe and gallery images (Equation 12) a new possibil-

ity emerges: perhaps we can exploit the matching process to

find both keypoints simultaneously. We now propose a dif-

ferent method to find keypoints depending on whether we

are hypothesizing that the faces are the same (Ms) or dif-

ferent (Md). When they are the same, we optimize over the

joint likelihood:

Ms : (18)

t∗p, t
∗

g = arg max
tp,tg

Pr(x′|Ms, tp, tg)Pr(tp, tg)

This has the natural interpretation of using not only our

knowledge of how the keypoint looks in general (embodied

in the model parameters), but also using the probe keypoint

to find the gallery keypoint and vice-versa.

When we hypothesize that the faces do not match, we

proceed as in Section 3.1 and find tp and tg separately:

Md :

t∗p = arg max
tp

Pr(xp|Md, tp)Pr(tp)

t∗g = arg max
tg

Pr(xg|Md, tg)Pr(tg) (19)

Our estimate of keypoint position differs based on our

interpretation of whether the images match or not.
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Figure 2. Frontal face identification results with keypoints esti-

mated using a single image (Model 1) or both images (Model 2).

Performance is better when both images are used.

3.3. Methods

We investigate face identification using the XM2VTS

frontal face data set. We use 1200 images from the first 195
identities for training. The first image of the first session

and that of the fourth session from the last 100 identities are

used as gallery and probe respectively. We train the PLDA

model with 6 iterations using the EM algorithm.

The original face images are RGB color images of size

400 × 400. We ran a sliding window face detector over the

images at several scales to identify the region of the image

that is most likely to contain a face. We reshaped the re-

sulting bounding box to 100× 100 pixels using a similarity

transform with bicubic interpolation. We did not use any

further image warping. We applied histogram equalization

to the resulting images.

Thirteen keypoints including the eye corners, nose and

mouth were investigated (see Figure 1). These keypoints

were manually labeled by two subjects to provide ground

truth for the training and test data. In all the experiments in

this paper, the keypoints in gallery images were manually

labelled, but those of the probe images were unlabelled. We

extract a feature vector that consists of the responses of Ga-

bor filters at 8 orientations and 3 scales in a 6×6 grid around

each keypoint. A separate PLDA model was built for each

keypoint. The keypoint positions are assumed to be inde-

pendent from one another.

The prior distribution of each keypoint is modeled as a

two dimensional Gaussian. The mean and covariance are

calculated using the coordinates of manually labeled key-

points of the training data. The locations of each keypoint

are discretized with single pixel resolution over a region

covering a Mahalanobis distance of ≤ 2.5. This describes

more than 99% of the probability density.

For model 1, we multiply the matching likelihood

Pr(xp|Md, tp) by the prior probability over positions

Pr(tp), then locate the keypoint by finding the position

with the maximum probability in a probe image as in Equa-

tion 17. For model 2, we multiply the matching likelihood

Pr(xp, xg|Ms, tp, tg) by the prior probability over posi-

tions Pr(tp), then locate the keypoint by finding the posi-

tion with the maximum probability in a probe image as in

Equation 18. Note that Pr(tp, tg) in Equation 18 becomes

Pr(tp) as the gallery image tg is fixed.

3.4. Results and Discussion

We compare Model 1 and Model 2 in two tasks. First, we

consider face identification. Second, we investigate the abil-

ity to localize the keypoints. We investigate both metrics as

a function of the subspace dimension (number of columns

in F and G). These are always set to be equal although this

need not necessarily be the case.

Percent first match identification rate is plotted as a func-

tion of subspace dimension in Figure 2. It is observed that

finding the probe keypoints using both gallery and probe

images (Model 2) produces greater or equal performance to

that when we find the probe keypoints using the probe im-

age alone (Model 1). In other words, matching performance

is worse when we search for a generic keypoint, than if we

use information from the hypothesized matching image to

search for the expected specific keypoint.

We can also assess performance in terms of the mean

localization error of the 13 keypoints. This is reported in

Figure 3. The localization error is described using normal-

ized Euclidean distance (fraction of inter-ocular distance)

following [6]. This metric makes the results independent

of image resolution. The results mirror the pattern for

face identification: Localization is also best when we treat

gallery and probe images together rather than separately.

This supports our hypothesis that the gallery image can help

the keypoint localization in the probe image. Furthermore,

the localization errors of both algorithms are very close to

that of the human labeling.

An interesting observation is that smaller localization er-

ror doesn’t always mean a higher identification rate. For

a given dimensionality this is generally true (see Figure

4). However, the localization is best with a small number

of factors, whereas recognition is best with an intermedi-

ate number. We conjecture that low frequency components

are primarily being used in the localization process and that

higher frequency components which are useful for recogni-

tion, may actually impede localization.

4. Registration-Free Face Recognition

The second question we address is whether it is neces-

sary to localize the keypoints in the probe images at all.

Previously we aimed to find the keypoint positions. Now

we treat the location of each keypoint as a hidden variable

and marginalize over it in a Bayesian manner. Once again,
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Figure 3. Normalized registration errors for keypoints as estimated

using a single image (Model 1) or both images (Model 2). We also

compare to manual labelling by a second subject.
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Figure 4. Localization error for keypoint 7 at the base of the sep-

tum for cases where recognition was correct and incorrect. Local-

ization error is generally smaller (mean = 0.081 vs. 0.092) when

the decision was correct, despite this being only one of many pos-

sible positions that contributed to the decision.

we have the choice of doing this in each image separately

or treating both images together.

4.1. Model 3: Marginalizing over keypoint position
using one image

When the faces differ we simply integrate over the fea-

ture position in the likelihood calculation:

Pr(xp|Md) =

∫

Pr(xp|Md, tp)Pr(tp)dtp (20)

Pr(xg |Md) =

∫

Pr(xg |Md, tg)Pr(tg)dtg (21)

When we evaluate the hypothesis that the faces are the

same, we first find a probability distribution over the possi-

ble feature based on the images separately

Pr(tp|Md) ∝ Pr(xp|Md, tp)Pr(tp)

Pr(tg|Md) ∝ Pr(xg |Md, tg)Pr(tg) (22)

and then we integrate over both unknown feature positions

based on the probability distributions estimated from the in-

dividual images.

Pr(xp,xg|Ms) = (23)
∫ ∫

Pr(xp,xg|Ms, tp, tg)Pr(tp|Md)Pr(tg |Md)dtgdtp

4.2. Model 4: Marginalizing over keypoint positions
using both images

Similar to estimating feature position in Section 3.2, it

is possible to use both images to infer the probability dis-

tribution over the keypoint positions. In this scenario, we

calculate the likelihood of the faces matching as:

Ms : (24)

Pr(xp,xg) =

∫∫

Pr(x′|Ms, tp, tg)Pr(tp, tg)dtpdtg

The likelihood of the faces not matching is:

Md :

Pr(xp|Md) =

∫

Pr(xp|Md, tp)Pr(tp)dtp

Pr(xg |Md) =

∫

Pr(xg |Md, tg)Pr(tg)dtg (25)

The likelihood of the features not matching is calcu-

lated as in Section 4.1. Hence, in this scheme, the proba-

bility distribution over keypoint position differs depending

on whether we are assessing the probability that the images

match or not.

Note that the integral in the above equations is calcu-

lated over all the possible positions of a keypoint. In prac-

tice, these positions are discretized and the integral can be

approximated using summation over these discretized posi-

tions. The prior probability of each position Pr(tp) can be

calculated using the training data, modeled as Gaussian.

4.3. Methods

We compare marginalization over possible keypoint po-

sitions treating each image separately (Model 3) to finding

the maximum a posteriori keypoint position as in Model 1.

We also investigate using both images and marginalizing

over keypoint position (Model 4). The experimental setting

is the same as in Section 3.3.

For model 1, we locate the keypoint by finding the posi-

tion with the maximum probability as in Equation 17. For

model 3, we multiply the matching likelihood by the prior

probability of each discretized position in a probe image as
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Figure 5. Identification performance for marginalizing over key-

point position (model 3) is superior to using the best estimate of

keypoint position (model 1). If we marginalize over keypoint po-

sition and use information from both images in keypoint localiza-

tion (model 4) performance improves further, and approaches the

results with manual labelling.

shown in Equation 22, then sum them up as in Equation 20

which formulates the final likelihood of this keypoint. For

model 4, we multiply the matching likelihood by the prior

probability over positions Pr(tp), then sum them up as in

Equation 24 which formulates the final likelihood of this

keypoint.

4.4. Results

Once again we will first consider face recognition per-

formance in an identification setting. Figure 5 shows that

model 3 outperforms model 1. In other words, it is bet-

ter to treat the probe keypoint position as a random vari-

able and marginalize than it is to find maximum a posteri-

ori keypoint position. The most likely explanation for this

phenomenon is that there are some points where the like-

lihood surface over keypoint position is flat and possibly

multimodal. When we are forced to choose a single es-

timate of position we occasionally make drastic mistakes.

However, when we integrate over this distribution, the bulk

of the probability may be close to the correct position, al-

though the maximum is quite wrong.

The previous experiments have shown that (i) treating

two images together is better than treating them separately

and (ii) marginalizing over keypoint positions is better than

finding the MAP keypoint. In Figure 5 we also investigate

the combination of these approaches (model 4). These two

manipulations have additive effects on identification perfor-

mance: the best results are produced by marginalizing over

position and using both images in estimation.

For completeness, we also plot the results for images

with labels that were marked by hand by a second individual

(Figure 5). We note that we have improved performance to

a maximum of 95% but not to the level of manually marked

keypoints which have maximum performance of 98%. We

note that the identification rate achieved by using manually

labeled keypoints is somewhat lower than that presented in

[16]. However, in their experiment, the gallery images are

also included in the training whereas in our experiments

training and test sets were completely disjoint. There are

also various other small methodological differences includ-

ing the image resolution, choice of keypoints and degree of

image warping.

5. Cross-Pose Face Recognition

Finding features is more problematic in non-frontal im-

ages and hampers our ability to perform cross-pose recogni-

tion [17]. In this section, we investigate applying the same

ideas to cross-pose recognition. We adapt the tied PLDA

model of Prince et al. [17] to this task. The idea behind tied

PLDA is to provide a generative explanation for the data

that is parameterized by the viewing conditions. The j’th

feature vector from the i’th individual in the k’th pose is

described as:

xijk = µk + Fkhi + Gwijk + ǫijk (26)

In this paper, we compare profile (k=1) probe faces to

frontal (k=2) gallery faces. The associated tied PLDA

model hence consists of two sets of parameters θ1 =
{µ1,F1,G1, Σ1} for generation of non-frontal faces and

θ2 = {µ2,F2,G2, Σ2} for generation of profile faces. By

analogy with section 2.1 we have two sets of equations for

when the images do not match:

xp = µ +
[

F1 G1

]

[

h

w

]

+ ǫ (27)

xg = µ +
[

F2 G2

]

[

h

w

]

+ ǫ (28)

(29)

and when they do:

[

xp

xg

]

=

[

µ

µ

]

+

[

F1 G1 0

F2 0 G2

]





h

wp

wg



 +

[

ǫp

ǫg

]

(30)

We calculate likelihoods for the two modelsMs andMd

by integrating over the hidden models in exactly the same

manner as in Section 2.1.

5.1. Methods

We investigate the same two hypotheses as for frontal

face identification. The procedure was very similar to for-

mer experiments. We use 2392 images from the first 195
identities for training among which half of them are fontal
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Figure 6. Identification results for cross-pose face recognition task.

As for the frontal case, best performance is for the case where we

exploit both images to find the probe keypoints and marginalize

over the unknown position (Model 4). In this case performance

exceeds that with human labelled keypoints.

faces and the other half are right profile faces (i.e. 90 de-

grees pose difference) as shown in Figure 1. In both training

and testing, we assume that the pose of the face is known.

The frontal images of the first session from the last 100
identities were used for the gallery. The profile images of

the fourth session from the last 100 identities were used as

the probe. We train the tied PLDA model with 6 iterations

of the EM algorithm as detailed in [16]. Six keypoints from

the eye corners, nose and mouth are investigated. These are

illustrated in Figure 1 (B). Once again the keypoints were

manually labelled by two subjects. The training keypoint

positions were used to learn the model. For the test set, the

manually labelled keypoints were used in the gallery im-

ages, but the probe image keypoint position was assumed to

be unknown. The manually labelled keypoints for the probe

images are only used to test the accuracy of registration.

5.2. Results

We report the results of cross-pose face identification in

Figure 6. The results are similar to those for frontal faces.

Treating gallery and probe images together improves per-

formance as does marginalizing over keypoint positions.

The best identification rate of the proposed method is 78%
and that of using manually labeled keypoints is 76%. We

don’t claim that our proposed method outperforms using

manually labeled keypoints, but the performance is com-

parable.

The registration errors are shown in Figure 7. Similarly

to the frontal case, treating the gallery and probe images

together improves performance relative to finding the key-

point using only a single image. With both methods pre-

dicted keypoint positions are closer to the manually labeled

positions than the manual labels of the second subject. This

is probably due to the fact that two of the keypoints (the

chin and hairline) are quite ambiguous and hard to label.
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Figure 7. Normalized registration error of probe keypoints in

cross-pose task decreases when we use information from the probe

and gallery image (Model 2) rather than just from the probe

(Model 1). Surprisingly, both methods estimate keypoint positions

better than a second human subject.
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Figure 8. Normalized registration errors on 6 probe keypoints in

cross-pose task. The subspace dimension is 32. The first and sec-

ond largest errors are observed for keypoint 5 and 6 (the chin and

hairline) because they are quite ambiguous and hard to label. Com-

pared to these two keypoints, keypoint 3 and 4 (the corners of nose

and mouth) are much easier for human labelling.

We plot the registration errors on these 6 keypoints for a

subspace dimension in Figure 8. This seems to be in agree

with our explanation. Since our algorithm has very good

knowledge of the prior position it never make any drastic

mistakes.

6. Conclusion

We have proposed to integrate face registration and

recognition. Rather than using a generic keypoint model

to localize them in a probe image, we use a model that is in-

formed by the appearance of the keypoint in the gallery im-

age. Furthermore, we consider keypoint position as a hid-

den variable which we marginalize over in a Bayesian man-

ner. Experimental results on XM2VTS database demon-

strate that both of these innovations improve performance

in both frontal and cross-pose face recognition.
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One weakness of this model is that we are forced to dis-

cretize keypoint positions in order to effectively marginal-

ize over them as there is no closed form solution to this

integral. The discretization means additional computational

complexity and also means that we may have to store the

original image rather than preprocessed low-dimensional

projections.

A second weakness is that the model is overconfident in

practice and this diminishes the effect of the priors. One

possible solution would be to construct a similar model

based on the multivariate Student t-distribution rather than

Gaussian statistics. The long tails of the t-distribution effec-

tively moderate the confidence and allow the prior to play a

larger role.

In future work, we would also like to investigate joint

models of keypoint localization: the position of one key-

point provides information about the position of the oth-

ers. In practice such information could be incorporated effi-

ciently by defining the relations between keypoints to have

the structure of a tree and applying a dynamic programming

technique in inference.
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