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Abstract

In this paper, we present a novel algorithm based on flow
velocity field estimation to count the number of pedestrians
across a detection line or inside a specified region. We re-
gard pedestrians across the line as fluid flow, and design a
novel model to estimate the flow velocity field. By integrat-
ing over time, the dynamic mosaics are constructed to count
the number of pixels and edges passed through the line.
Consequentially, the number of pedestrians can be esti-
mated by quadratic regression, with the number of weighted
pixels and edges as input. The regressors are learned off
line from several camera tilt angles, and have taken the cal-
ibration information into account.We use tilt-angle-specific
learning to ensure direct deployment and avoid overfitting
while the commonly used scene-specific learning scheme
needs on-site annotation and always trends to overfitting.
Experiments on a variety of videos verified that the pro-
posed method can give accurate estimation under different
camera setup in real-time.

1. Introduction
The crowd counting problem can be classified into two

tasks: crowd counting across a detection line in certain time
duration (line of interest counting, or LOI counting), and
estimating the total number of pedestrians in some region
at each time (region of interest counting, or ROI count-
ing). In the published literature, there are two classes of
methods for ROI counting 1) feature and pixel regression,
2) pedestrian detection. Feature or pixel regression meth-
ods extract the feature vectors in the region of interests and
use the machine learning algorithm to regress the number
of pedestrians from number of features and pixels in fore-
ground blobs or segmented motion segments. The features
include edges[7], wavelet coefficients[14], or combination
of a large bank of features[16, 4]. The regression method
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(a) Flow Velocity Field Estimation on detection line

Figure 1. LOI counting by flow velocity estimation: (a) when
pedestrians are crossing the detection line (red line), we can re-
gard the moving crowd as fluid flow, and compute the flow veloc-
ity field on the detection line; (b) at each frame, using the velocity
as thickness, we can crop the slices passed the line and accumu-
late them into patches. Finally, the number of pedestrians can be
estimated in each patch .

may be linear regression[7], neural network[6], Gaussian
process regression[4] or discrete classifier[16]. The num-
ber of features carried by one pedestrian is heavily affected
by camera perspective. So they always need retraining us-
ing large amount of annotated data from the specific scene,
which makes it inconvenient to deploy in practical appli-
cations. Pedestrian detection methods count pedestrians
by multi-target detection. The detection is completed by
background differencing[8], motion and appearance joint
segmentation[20], silhouette or shape matching[22], or
standard object recognition method. Though there are great
progresses in object detection in recent years, robust detec-
tion of pedestrian under crowd environment is still a chal-
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lenging problem. The performance of pedestrian detection
method will decrease rapidly when the crowd density and
occlusion degree increase. Feature regression and pedes-
trian detection are only applied to ROI detection. For LOI
counting, most literature adopt feature tracking. Features
across frames are tracked into trajectories, and the trajecto-
ries are clustered into object tracks. Examples include [18],
[2], [3], [13], [1],[5]. The tracking based method are hardly
robust under crowd environment, and its time consumption
is often huge for real-time system.

In this paper, we present a novel LOI and ROI counting
algorithm based on flow velocity field estimation. We re-
gard pedestrians crossing the line as fluid flow and compute
the flow velocity on the line. By integration over time, we
can estimate the number of pixels and edges passed through
the line (see Figure 1). At last, we estimate the number of
pedestrians by quadratic regression, with the number of pix-
els and edges as input. The regressors are trained off line in
different camera tilt angles, and the calibration information
has been taken into account.

The contribution of this paper lies in three aspects:

1. We proposed a robust algorithm for flow velocity field
estimation on detection line, which takes the slow and
smooth prior[21] along line into account and can be
used in other applications.

2. Without scene-specific learning,we adopted an offline
learning method, tilt-angle-specific learning, to facili-
tate application and avoid overfitting.

3. Our method unified and solved both of these two types
crowd counting problem, LOI and ROI, at the same
time. Moreover, this method can run real-time for LOI
and high frame rate for ROI; and lots of experiments
have validated the effectiveness of our method.

The remainder of the paper is organized as follows. We
define our flow velocity estimation model in section 2. In
section 3, the flow chart of our counting algorithm is pro-
posed. The experiment results and conclusion are presented
in section 4 and 5 respectively.

2. Flow Velocity Field Estimation
When multiple pedestrians cross a detection line, it is

a challenge situation for both tracking and counting, espe-
cially when the camera tilt angle is less than 75◦. We formu-
late the moving pedestrians as a flow field. As shown in Fig
1, when pedestrians cross the detection line, we compute
the flow velocity on the detection line. At each frame, us-
ing the velocity as thickness, we can crop the slices passed
the line and accumulate them into patches. Therefore, the
first step is to compute the flow velocity on the line robustly.
It is well known that estimating the flow velocity field ro-
bustly is a difficult task. In LOI counting, the pedestrians

ui ui+1

ui-1

Figure 2. Flow Velocity Field Estimation: we solve 1-D flow ve-
locity field on the detection line in two directions robustly.

are mainly moving across the detection line in two direc-
tions, and we just need care the motion vectors on the line,
so we can constrain the directions of possible velocities near
the normal direction of the line.

In traditional optical flow, the velocity is estimated by
minimizing an energy function composed of two items
— iso-brightness constraint and smoothness constraint[10].
The iso-brightness constraint requires that the pixel inten-
sity should be consistent after moving. The smoothness
constraint requires that the neighbor pixels should have sim-
ilar velocities. Based on the similar setting of traditional
optical flow, we introduce the following improvements to
make the estimation robust

1. In addition to spatial smoothness constraint, we add
two additional constraints, slow motion constraint and
temporal smoothness constraint.

2. In traditional optical flow, only iso-brightness between
two frames are considered. We use multi-frame iso-
brightness constraint to improve the robustness.

3. In traditional optical flow, all the energy terms are ex-
pressed in squares of L2 norms, which is helpful for
close form solution.. We use L1 norms[12] instead,
which is more robust.

In our application, users are required to specify a detec-
tion line, (see Figure.2). We assume that there are N points
on the line, {x1, · · · ,xN}. We solve the velocities for all
point {u1, · · · ,uN} by optical flow on the line. Let It be
image at time t, and It(x) be the pixel value at position x.
The color of particular point on an object is constant over
time, so we should minimize multi-frame iso-brightness
constraint

Ebr =
N∑
i=1

T∑
τ=−T

|It+τ (xi + uiτ)− It(xi)| (1)

where [−T, T ] is the time span during which we assume
objects crossing the line can be matched near rigidly. To
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Figure 3. The mosaic results in one minute: top, camera tilt ≈ 45◦; bottom, camera tilt ≈ 90◦. From the illustration, one can see that
the blobs stacked from slices are quite reasonable. It verifies that our estimations of velocities are accurate enough. For better illustration,
some blank segments are removed and positions of some slightly collided blobs are adjusted.

reduce computation, for high resolution videos, we match
frames t−2, t and t+2 and in low resolution ones, we match
t−1, t and t+1. Similar to traditional optical flow, we apply
spatial smoothness constraint to make the minimization
well-posed

Esp =
N−1∑
i=1

|ui − ui+1|. (2)

As the pedestrians cannot move very fast, slow motion con-
straint is imposed to make the estimated velocities more
robust

Esl =
N∑
i=1

|ui|. (3)

In most of cases, pedestrians are moving smoothly without
abrupt acceleration, so we have temporal smoothness con-
straint

Etp =
N∑
i=1

|ui − u′i| (4)

where u′i is the velocity of the i-th point in previous frame.
The slow and smooth motion prior has been verified by [21]
in human motion perception.

Finally, we combine all the four energy Eq (1–4), and
find the velocity field by minimizing

E = Ebr + αEsl + βEtp + γEsp, (5)

where α, β and γ are weights for the corresponding energy
items (typically, we set α = 200, β = 10, γ = 2000).

Because the velocities lie on a line, it can be solved by
dynamic programming. We avoid derivatives to ensure ro-
bustness and global minimum. The total energy (5) can be

expanded in frame-wise and frame-pair-wise items,

E =
N∑
i=1

Di +
N∑
i=2

Di−1,i (6)

where Di =
∑T
τ=−T |It+τ (xi + uiτ)− It(xi)|+ α|ui|+

β|ui−u′i| andDi−1,i = γ|ui−1−ui|. For each velocity ui,
it hasK candidate solutions, {u(1)

i , · · · ,u(K)
i }, whereK is

relate to the maximal velocity. In this paper, the range of ve-
locities is [−MaxVel,+MaxVel], where MaxVel is 20 for
90 degree and 10 for 45 and 65 degrees and the step size is
one pixel. For each candidate u(k)

i , we can associate a min-
imal partial energy up to i, as E(k)

i . With these notations,
the detail of steps are as below:

1. For each candidate u(k)
1 for u1, let E(k)

1 = D1. Let
i = 2.

2. For each candidate velocity k for ui, let E(k)
i = Di +

mink′ [Di−1,i + Ek
′

i−1], and record the match in previ-
ous frame k′.

3. If i = N , choose E = mink E
(k)
N , trace back for the

optimal candidate at each frame and exit; else let i ←
i+ 1 repeat step 2.

3. Counting by regression
3.1. Dynamic mosaic

The velocity field on the detection line, as shown in Fig-
ure 2, is segmented by moving directions after small ve-
locities removed. We drop the short segments and count
moving in two directions separately. For each segment, we
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Figure 4. Perspective normalization: (a) illustrates the area of a
pixel in the image plane projected to the shoulder height plane; (b)
is the weight coefficient of each pixel on the boundary of the ROI.
The farther the distance is, the greater the value.

use its average velocity as thickness to crop a slice. The
slices at the same position are accumulated and stacked to-
gether over time to construct a blob. We call this process
dynamic mosaic, as Figure 1(b). The mosaic is terminated
when there are no motions or the current blob size reaches
a threshold. Figure 3 shows two results on mosaic for two
different camera tilt angle, from which we can conclude that
our flow velocity estimation and dynamic mosaic are effec-
tive.

Before dynamic mosaic, the background pixels from the
slices are removed by a background model. Three back-
ground models are tried in this paper, Gaussian Mixture
model[19], LBP[9] and Incremental PCA[24], and found
to give similar results.

After dynamic mosaic stops for one blob, we estimate
the number of pedestrians in the blob by regression on its
normalized area and number of edges. We can take into
account other complex features, but the simple features still
produce acceptable results.

3.2. Perspective normalization

The area and number of edges on each pedestrian are
heavily affected by camera perspective. Some crowd count-
ing algorithms have introduced normalization to deal with
the perspective projection [11, 17]. We handle the perspec-
tive problem by projecting each pixel on the detection line
to the shoulder height plane and weighting it by its area
on the shoulder height plane. We use a simplified version
of calibration algorithm proposed in [15] to obtain a rough
calibration matrix. We treat each pixel as a square and use
the calibration matrix to project vertices of the square to the
shoulder plane to obtain a quadrangle. We use the area of
the quadrangle as the weight of the corresponding pixel, see
Figure 4. In ROI, we just need to normalize the area along
its surrounding region.

3.3. Regression

Many algorithms based on pixel-feature or texture-
feature need online training for application, which trends

Figure 5. The regression result in 45 degree tilt-angle. The X-axis
and Y-axis are the ground truth and prediction respectively, and the
height of each bars(Z-axis) denotes the probability of regression
result.

to overfitting and prevent it from broadly application, for
example[4]. We present an off-line learning algorithm
which do not need retraining on a new position.

As the pedestrians present different appearances at dif-
ferent camera tilt angle. If the angle is about 45 degree,
torsos and legs can be seen and the occlusion is heavy. If
the angle is increased to about 65 degree, the torso and legs
can be seen and the occlusion level decreases. If the angle
is nearly vertical, only the head and shoulder can be seen
and there are nearly no occlusion. Therefore, we classify
these angles into three categories, 90 degree, 65 degree and
45 degree, and do regression separately.

For each category, we describe the dynamic blobs us-
ing two features: total number of weighted pixels A and
total number of weighted edge pixels B. The edge pix-
els are computed by Canny edge detector. Given the cal-
ibration matrix, we can predict the height of pedestrian H
(for 90 degree, H is the width of shoulder) on the detec-
tion line in pixel. Finally, we train a quadratic regressor
using (A,B, 1/H) as input and number of pedestrians in
each blob as output. Figure 5 illustrates the regress result
in the most difficult category, 45 degree. The ideal result is
that all of the bars distribute in diagonal. When the pedes-
trian number is large, it will be a little scattered due to heavy
occlusion. But we still get acceptable results.

4. Experiments

4.1. Data

There are total of 12 different videos used in our experi-
ments, classified into 3 categories by its tilt angles and each
categories includes 4 videos. As shown in Figure 6, the first
row is the 90 degree categories, including 4 videos, named
from 1-1 to 1-4; and the second row and third row are the 65
degree and 40 degree categories respectively. All the videos
are from the LHI database[23]. These videos cover from
the perspective of 45 degree to nearly 90 degree under dif-
ferent scenes, and all the video images are down sampled to
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352 × 288. Moreover, all the video sequences are labeled
ground truth for both of LOI counting and ROI counting.
For each view angle, we use 1/3 of all videos for training
and the other 2/3 for testing.

4.2. LOI counting

We measure the accuracy of the LOI counting by the fol-
lowing equation

Accuracy = 1− |
∑

# of ground truth−
∑

# of predicted|∑
# of ground truth

.

(7)
The end users of LOI counting system always care about

how many pedestrians pass the line in a certain time, such
as one day, one hour or 10 minutes. So we compute the
accuracy of our system in a certain time duration (see Ta-
ble 1). To reduce the impact of the frames without pedes-
trian, we also compute the accuracy in certain number of
pedestrian, see Table 2. From these two tables, one can see
that for a duration of 5 minutes or 40 pedestrians, our sys-
tem obtains perfect results for 90 degree camera tilt angles;
and acceptable results for 65 and 40 degree angle,this is be-
cause the occlusion increases when the tilt angle decreasing.
For shorter duration, the results are also reasonable. Some
demonstrations are shown in Figure 6. Total numbers of
ground truth and predicted numbers over time are shown in
Figure 7. We can conclude that our algorithm can count the
number of the pedestrians across the detection line accu-
rately. In comparison to 90 degree condition, in which the
accuracy rate are from 99% to 98.4%[1], and from 100%
to 90.4% [5] in 90 degree. In the 90 degree category of ta-
ble 2, our LOI result is between 97.66% and 93.33% under
four different scenes, which are very competitive to [1][5].
However, our algorithm is an offline learning method, and
can be used without retraining in new scenes. Moreover, our
algorithm can still work even when the tilt angle decreases
to nearly 45 degree. So far as I know, no one has done the
LOI counting in case of 65 and 45 degree scene.

4.3. ROI counting

We can adapt our algorithm to perform ROI counting.
If user specifies the ROI by a polygon, we can compute
number of pedestrians who enter and exit the region by
LOI counting. To prevent accumulated error, we first check
whether there are any foreground blob in the region. If no,
we reset the counter to zero. We test ROI counting on three
of our videos, demonstrations are shown in Figure 8 and the
curves of numbers over time are show in Figure 9. From the
curves, one can see that in most times, the predicted values
match the ground truth exactly.

Two measures (Mean-Squared-Error(MSE) and the Ab-
solute Error) are used to analyze the accuracy of ROI count-

Angle  Video Name  1min  2min  5min  VideoLength

 

 

90 

1‐1  99.90%  99.06%  97.25%  8:59 

1‐2  91.89%  99.34%  97.60%  14:48 

1‐3  97.20%  91.30%  N/A  4:30 

1‐4  98.72%  98.49%  96.25%  5:30 

 

 

65 

2‐1  80%  95.83%  85.37%  11:29 

2‐2  72.50%  73.64%  84.75%  8:24 

2‐3  84%  90.48%  N/A  3:45 

2‐4  80%  83.33%  N/A  4:40 

 

 

40 

3‐1  81%  80%  79.11%  7:16 

3‐2  78.17%  84.31%  91.56%  25:35 

3‐3  89.13%  91.12%  87.27%  13:08 

3‐4  88.10%  87.10%  87.10%  10:08 

 

Table 1. LOI counting accuracy in time, including three categories,
each row with the name in the second column corresponds to the
video with the same name in Figure 6. We compare the accuracy of
each video in 1min, 2min and 5min respectively. The last column
is the video length used for testing.

Angle  Video 

Name 

#of 

Ped 

20 Ped 

Accuracy

40 Ped 

Accuracy

100 Ped 

Accuracy

Total 

Accuracy

90  1‐1  256  95.0%  97.5%  99.0%  97.66% 

1‐2  247  95.0%  95.0%  94.0%  94.33% 

1‐3  23  95.0%  N/A  N/A  95.65% 

1‐4  180  95.0%  90.0%  95.0%  93.33% 

65  2‐1  62  95.0%  90.0%  N/A  83.87% 

2‐2  300  75.0%  77.5%  84.0%  84.67% 

2‐3  42  80.0%  87.5%  N/A  90.48% 

2‐4  44  80.0%  85.0%  N/A  86.36% 

40  3‐1  29  80.0%  82.5%  N/A  82.76% 

3‐2  267  85.0%  92.5%  93.0%  93.26% 

3‐3  288  90.0%  90.5%  94.0%  93.75% 

3‐4  40  80.0%  87.5%  N/A  87.50% 

 
Table 2. LOI detection accuracy in number,each row corresponds
to the video with the same name in Figure 6. The third column
is the total number of pedestrians in each video, and we compare
the accuracy of each video in 20, 40, 100 and total number respec-
tively.

ing quantitatively:

MSE =

∑
all frames

|# of ground truth− # of predicted|2

total # of frames
, (8)

Absolute Error =

∑
all frames

|# of ground truth− # of predicted|

total # of frames
.

(9)
Table 3 shows the MSE and Absolute Error from 3

videos of different categories. In comparison to [4], in
which the MSE is larger than 4.181 and the Absolute Er-
ror is larger than 1.621. we can conclude that our algorithm
is much more accurate than [4]. More over, our algorithm
facilitate to use in different scenes directly without anymore
retraining.
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Video name  Tot Num  MSE  Absolute Error

1‐1  17595  1.0388  0.4088 

2‐1  41556  0.6308  0.3101 

3‐2  3539  0.139  0.1152 

 Table 3. ROI counting accuracy. The second column is the total
number of pedestrians appearing in each test video, and the MSE
and Absolute Error are adopted for comparision.

Our algorithm is implemented in C and tested on a ma-
chine with P4 2.8GHz CPU and 1G RAM. For LOI count-
ing, it can process 25 frames per second; and for ROI count-
ing, where more computation is needed, it can still process
17 frames per second on average. The processing time in-
cludes the time consumed by background modeling.

5. Conclusion
In this paper, by regarding the moving pedestrians crowd

as fluid flow, we present a novel crowd counting algorithm,
which unified both of the LOI and ROI problems together
and solved it based on our flow velocity field estimation
model and offline learning. Our velocity estimation model
can estimate the flow velocity and get the dynamic mosaic
accurately and robustly. Without scene-specific learning, an
offline learning method (tilt-angle-learning) are adopted for
learning and testing, and get satisfied results. If we use the
training method like some feature-based method, we can get
much higher accuracy rate, but it tend to arose overfitting
and make no sense for application. However, our algorithm
is very convenient for practical application, because it just
need to calibrate without retraining under new scene. The
testing results above have proved these. In conclusion, our
algorithm can be applied to solve both of the LOI and ROI
problem in real-time effectively and robustly.

6. Acknowledge
This work is done at Lotus Hill Institute and is supported

by NSF China (60875005, 60832004, 60871078) and a 863
project 2008AA01Z126.

References
[1] A. Albiol, I. Mora, and V. Naranjo. Real time high density

people counter using morphological tools. IEEE Trans. on
Intelligent Transportation Systems, 2(4), 2001.

[2] G. Antonini and J. P. Thiran. Counting pedestrians in video
sequences using trajectory clustering. IEEE Trans. on Cir-
cuits and Systems for Video Technology, 16(8), 2006.

[3] G. J. Brostow and R. Cipolla. Unsupervised bayesian detec-
tion of independent motion in crowds. In CVPR, 2006.

[4] A. B. Chan, Z.-S. J. Liang, and N. Vasconcelos. Privacy pre-
serving crowd monitoring: Counting people without people
models or tracking. In CVPR, 2008.

[5] T. Chen, T. Chen, and Z. Chen. An Intelligent People-Flow
Counting Method for Passing Through a Gate. In Robotics,
Automation and Mechatronics, IEEE Conf. on, 2006.

[6] S. Y. Cho, T. W. S. Chow, and C. T. Leung. A neural-based
crowd estimation by hybrid global learning algorithm. IEEE
Tran. on Systems, Man, and Cybernetics, 29(4), 1999.

[7] A. C. Davies, J. H. Yin, and S. A. Velastin. Crowd monitor-
ing using image processing. Electronics and Communication
Engineering Journal, 1995.

[8] L. Dong, V. Parameswaran, V. Ramesh, and I. Zoghlami.
Fast crowd segmentation using shape indexing. In ICCV,
2007.
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Figure 6. Demonstration of LOI results. These 12 images are classified into 3 categories(the first row is the 90 degree category, the second
row and third row are the 65 degree and 40 degree category), and each category includes 4 videos under different scenes. In each image,
the total number of Up and Down(or Left and Right) the detection line are shown in the top-left marked in light green background color;
the yellow line is detection line, the short line segments attached to the detection line are estimated velocities, and the red rectangle is the
detection region for flow velocity estimation.

0 1000 2000 3000 4000 5000 6000 7000
0

50

100

150

Frame

T
o
ta

l 
N

u
m

b
e
r

 

 

Down GroundTruth

Down Prediction

Up GroundTruth

Up Prediction

0 1000 2000 3000 4000 5000 6000 7000 8000
0

5

10

15

20

25

30

Frame

T
o
ta

l 
N

u
m

b
e
r

 

 

Down GroundTruth

Down Prediction

Up GroundTruth

Up Prediction

0 2000 4000 6000 8000 10000
0

2

4

6

8

10

12

14

16

18

Frame

T
o
ta

l 
N

u
m

b
e
r

 

 

Down GroundTruth

Down Prediction

Up GroundTruth

Up Prediction

0 5000 10000 15000
0

20

40

60

80

100

120

140

160

Frame

T
o
ta

l 
N

u
m

b
e
r

 

 

Down GroundTruth

Down Prediction

Up GroundTruth

Up Prediction

0 2000 4000 6000 8000 10000 12000 14000
0

20

40

60

80

100

120

140

Frame

T
o
ta

l 
N

u
m

b
e
r

 

 

Down GroundTruth

Down Prediction

Up GroundTruth

Up Prediction

0 2000 4000 6000 8000 10000 12000
0

20

40

60

80

100

120

140

Frame

T
o
ta

l 
N

u
m

b
e
r

 

 

Down GroundTruth

Down Prediction

Up GroundTruth

Up Prediction

0 500 1000 1500 2000 2500 3000 3500
0

2

4

6

8

10

12

Frame

T
o
ta

l 
N

u
m

b
e
r

 

 

Down GroundTruth

Down Prediction

Up GroundTruth

Up Prediction

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

5

10

15

20

25

30

35

Frame

T
o
ta

l 
N

u
m

b
e
r

 

 

Down GroundTruth

Down Prediction

Up GroundTruth

Up Prediction

0 2000 4000 6000 8000 10000 12000 14000
0

20

40

60

80

100

120

140

160

180

200

Frame

T
o
ta

l 
N

u
m

b
e
r

 

 

Down GroundTruth

Down Prediction

Up GroundTruth

Up Prediction

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

5

10

15

20

25

30

35

40

45

Frame

T
o
ta

l 
N

u
m

b
e
r

 

 

Down GroundTruth

Down Prediction

Up GroundTruth

Up Prediction

0 500 1000 1500 2000 2500 3000 3500
0

5

10

15

20

25

30

35

40

45

Frame

T
o
ta

l 
N

u
m

b
e
r

 

 

Down GroundTruth

Down Prediction

Up GroundTruth

Up Prediction

1-1 1-2

2-1 2-2 2-3 2-4

3-1 3-2 3-3 3-4

1-3

0 1000 2000 3000 4000 5000 6000 7000 8000
0

20

40

60

80

100

120

Frame

T
o
ta

l 
N

u
m

b
e
r

 

 

Down GroundTruth

Down Prediction

Up GroundTruth

Up Prediction

1-4

Figure 7. LOI results over time. There are total of 12 graphes, each graph corresponds to the image in the same location of Figure 6.
The total number of LOI in the DOWN and UP direction are shown in the solid and dot lines respectively, and the red and blue colors
distinguish the Ground Truth and the Prediction in each direction.
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Figure 8. Demonstration of ROI results. These three video from three different categories were taken. The red quadrangles are the boundary
of the ROI, the predicted result of the pedestrians number is shown in the top marked by light green color.
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Figure 9. ROI results over time for 90 degree, 65 degree and 40 degree respectively. The Ground Truth and the Prediction are marked in
blue and red solid lines.
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