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Abstract

In this paper we introduce a new approach to knowledge-
based segmentation. Our method consists of a novel rep-
resentation to model shape variations as well as an effi-
cient inference procedure to fit the model to new data. The
considered shape model is similarity-invariant and refers
to an incomplete graph that consists of intra and inter-
cluster connections representing the inter-dependencies of
control points. The clusters are determined according to the
co-dependencies of the deformations of the control points
within the training set. The connections between the com-
ponents of a cluster represent the local structure while the
connections between the clusters account for the global
structure. The distributions of the normalized distances be-
tween the connected control points encode the prior model.
During search, this model is used together with a discrete
markov random field (MRF) based segmentation, where the
unknown variables are the positions of the control points in
the image domain. To encode the image support, a Voronoi
decomposition of the domain is considered and regional
based statistics are used. The resulting model is compu-
tationally efficient, can encode complex statistical models
of shape variations and benefits from the image support of
the entire spatial domain.

1. Introduction

Knowledge-based segmentation is a fundamental task of
low and mid-level vision. In fields where a prior knowledge
is available (like medical imaging), such a method carries
on great potentials since the domain knowledge can be used
to introduce constraints which improves the final reliability
and accuracy of the segmentation result. In order to do so,
one first has to determine a model representing these con-
straints and then an inference process which aims to com-
bine the visual support with the prior knowledge.

The definition of the shape model involves a represen-
tation and a statistical model. Landmark-based representa-
tions are widely used in computer vision. Point-based rep-
resentations [6] are a typical example of such methods that
have been studied widely in the context of active contours
and snakes [18] through continuous interpolation strate-
gies. Implicit representations [14] are an alternative ap-
proach to model shapes that handle topological changes nat-
urally, while being computationally inefficient. The above-
mentioned methods reconstruct the shape through local or
global interpolation.

Once the representation has been considered, the next
task consists of modeling its variation within a training set
in order to construct the prior. In this context, simple av-
erage models [3], principal component analysis [6], as well
as their kernel variants [8], Gaussian densities [15], mixture
models, and non-parametric priors were considered. These
methods make an explicit assumption on the nature of the
statistical behavior of the training set and then determine the
optimal set of parameters towards representing the observed
variations.

Image-based inference is the last issue to be addressed
where one aims to combine the visual support with the prior
model. To this end, a cost function that combines both
edge-based as well as region-driven terms is often consid-
ered. The main challenge is to determine the correspond-
ing optimal solution that is often challenging with gradient-
based approaches [18]. On the other hand, discrete meth-
ods [2] could yield a better minimum of the objective func-
tion under certain constraints but the integration of global
deformable priors [9, 16] is not straightforward. The aim
of our approach is to address the above-mentioned limi-
tations of conventional knowledge-based segmentation ap-
proaches.

To build a model that combines global and local de-
formable priors within the MRF framework, we consider
a novel representation where control points are clustered
according to their behavior within the training set using a
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linear programming approach [11]. Clusters correspond to
sets of points for which one can predict with certain con-
fidence the positions given the position of the cluster cen-
ter. This clustering is obtained through an inference pro-
cess that measures the statistical similarity in terms of de-
formation between pairs of control points using shape maps
[13]. On the other hand, the relative positions of cluster
centers with respect to control points that do not belong to
their clusters encode the global structure of the shape. Then,
we model the shape variation through probability densities
that encode the aforementioned local and global dependen-
cies. The resulting framework can encode simple or com-
plex distribution models according to the entropy of the ob-
served system, unlike [10] where the model is assumed to
be Gaussian. Such a model is represented using an incom-
plete graph having a structure derived from the training set,
where the connections between the components of a clus-
ter represent the local dependencies, while the connections
between the clusters account for the global correlations be-
tween parts of the shape.

Then, inference consists of deforming the model consis-
tently with the image information. The unknown param-
eters refer to the positions of the control points. In or-
der, to determine the support from the image, we propose
a Voronoi decomposition of the domain, defining a mem-
bership function that relates the pixels to the control points.
The data term is then determined using this decomposition,
while the prior term is expressed using the pairwise poten-
tials between control points. Recent advances in the area of
discrete optimization which explore the duality theorem of
linear programing [12] are considered to recover the lowest
potential of the objective function.

The remainder of this paper is organized as follows. In
section 2 we introduce the shape model while in section
3 we propose the knowledge-based discrete segmentation
framework. In section 4 we present the application and the
experimental validation and the last section concludes the
paper.

2. Shape Representation

Knowledge-based segmentation methods are based on
the definition of a model which is then combined with im-
age measurements towards object extraction. Classic ap-
proaches consist of representing the shape using a number
of landmarks and learning their behavior using a training
set.

2.1. A point-distribution model

Our shape model S = {x1, . . . ,xn} consists of a set
of n control points lying on its boundary. The contour of
the shape can be recovered for example by interpolating
the positions of these control points. The information car-

ried by our model is described in a similarity-invariant man-
ner, using the distances dij between pairs of control points
(xi,xj), normalized by the scale d of the object, or:

dij =
‖xi − xj‖

d
, (1)

where d = 2
n.(n−1)

∑n
i=1

∑n
j>i ‖xi − xj‖. Let us con-

sider now a set S = {s1, . . . , sm} of m instances of the
object, where each example is represented using n control
points, i.e. su = {xu

1 , . . . , xu
n},∀u ∈ {1, . . . ,m}. Hence,

∀i ∈ {1, . . . , n}, the set Xi = {x1
i , ..., x

m
i } represents in-

stances of the ith control point of the shape. In practice, this
training set is obtained by manually labeling the landmarks
for each instance of the shape, or by deducing the landmarks
from the registration between a labeled shape and a set of
non-labeled shapes.

Then, given a statistical model, we learn from the train-
ing set the probability density distributions of the relative
positions of the control points pij ≡ p (xi,xj) ≡ p (dij).
These n.(n−1)

2 densities enables us to describe the informa-
tion contained in the training set. However, this represen-
tation suffers from redundancy and is expensive in terms of
computation cost.

2.2. Removing redundancy

The task of eliminating the redundancy in the model,
while preserving its ability to represent the data, is related
to the minimum description length principle on one hand,
and can be thought as a spectral clustering problem on the
other hand. We aim to obtain as compact a model as pos-
sible assuming that the high dimensional data space can be
approximated by a lower dimensional embedded manifold,
which reduces the dimension of the problem significantly.
Shape maps [13] handle precisely these two aspects, and
are learned from the data in a way closely related to the dif-
fusion maps [4], but using the compactness of models that
describe sub sets of the entire data instead of the spatial dis-
tances or similarities between individual points. Therefore,
we compute the shape map of the control points, using the
training set {X1, . . . ,Xn}, and then we cluster the control
points according to their mutual shape map distances. For
a pair of control points (xi,xj), the resulting map distance
will be noted dsm (xi,xj). A new clustering algorithm [11]
was used for this final task, and is described in the section
2.3. The obtained clusters reflect the interdependencies be-
tween the control points, and refer to the parts of the object
that have highly-correlated relative displacements.

2.3. Clustering via linear programming

Clustering refers to the process of organizing a set of ob-
jects into groups, where the members of each group are as
similar to each other as possible. More formally, a common
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(a) (b)

Figure 1: Model construction. (a) The considered training
set. (b) The density or redundancy is color coded on the
projection of the control points in the first 3 shape map di-
mensions. It reflects the coherence of local shape variation.

definition for clustering is the following one: suppose we
are given a set of objects V = {v1, . . . , vn} endowed with a
distance function d that can measure the similarity between
any two objects vi, vj ∈ V . In such a case, the goal of clus-
tering is to choose K objects, say, {c1, c2, . . . , cK} from
V (these will be referred to as the clusters centers), so that
the obtained sum of distances between each object and its
closest center is minimized, or:

min
c1,c2,...,cK

∑
vi∈V

min
ck

d(vi, ck) . (2)

A common drawback of many popular clustering tech-
niques (such as the K-means algorithm) is that they need
to be given the number K of clusters beforehand. However,
this is problematic as this number is very often not known
in advance. To address this issue, we will let this number
vary as well and change the objective function of clustering
so as to assign a penalty (denoted by d(vi, vi)) whenever an
object vi is chosen as a cluster center, or:

min
K,c1,c2,...,cK

∑
vi∈V

min
ck

d(vi, ck) +
∑
ck

d(ck, ck) . (3)

Another very bad symptom of many clustering techniques
is that they are particularly sensitive to initialization. For
instance, the K-means algorithm (which is one of the most
commonly used clustering techniques) is doomed to fail if
its initial cluster centers happen not to be near the actual
cluster centers. To address this very important issue, we
have used a novel clustering method. The main idea behind
our method is to first formulate the clustering as a linear

integer program as follows:

min
n∑

i=1

n∑
j=1

d(vi, vj)xij (4)

s.t.
n∑

j=1

xij = 1, ∀i (5)

xij ≤ xjj , ∀i 6= j (6)
xij ∈ {0, 1}, ∀i, j (7)

In the above formulation, the binary variable xij (with
i 6= j) indicates whether object vi has been assigned to
cluster center vj or not, while the binary variable xjj indi-
cates whether object vj has been chosen as a cluster center
or not. It is then very easy to prove that the above linear in-
teger program is actually equivalent to minimizing the ob-
jective function (3) of clustering. To this end, it suffices to
observe that (5) simply expresses the fact that each object
vi can be assigned to exactly one cluster center vj , while
(6) simply expresses the fact that if any object vi has been
assigned to an object vj , then vj must be chosen as clus-
ter center. To obtain an approximately optimal solution to
the above integer program, we will then rely on first solv-
ing its linear programming relaxation and then “rounding”
the relaxed solution in an appropriate manner. More details
about the formulation of the problem and its optimization
are given in [11]. In the validation section of [11], it is
added that a constant penalty cost, roughly set to the me-
dian of the distances d (vi, vj) is used in the experiments.
We also considered the same penalty value for our tests.

In our case, the set of objects correspond to the control
points {x1, . . . ,xn}, and the distance d corresponds to the
aforementioned distance dsm in section 2.2. We give in
[Fig. 2(a)] an example of the output of this clustering pro-
cess using the hand database [17].

2.4. The shape model

Before proceeding, let us summarize the model we ob-
tain after the clustering step. Our shape model M = (S,P)
is an incomplete graph. It consists of a set of control points
(unary cliques) S = {x1, . . . ,xn} lying on the boundary of
the object, and a set P = Pl ∪Pg of pairs of control points
(binary cliques), where Pl contains the “local” pairs, and
Pg contains the “global” pairs, or:

(i, j) ∈ Pl ⇐⇒ xi ∈ C(xj) or xj ∈ C(xi) (8)
(i, j) ∈ Pg ⇐⇒ xi /∈ C(xj) or xj /∈ C(xi) (9)

where C(xi) is the cluster having xi as center. Hence, each
cluster center is connected to the control points in its cluster
(local pairs) and to all the other control points (global pairs),
which leads to a k-fan graph structure [7]. The novelty here
consists in the method that defines automatically from the
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(a) (b) (c) (d) (e) (f)

Figure 2: Model representation. (a) Control points clustered in 11 clusters: centers are represented by squares. (b)–(e)
Deformation of a point cloud according to the shape prior term. (f) Voronoi decomposition of the model domain.

training data the number of fans and their centers. To each
one of these pairs (xi,xj) we associate a probability density
distribution pij learned from the training set as previously
stated in section 2.1. In practice, applying shape prior con-
straints to an initial set of random control points leads to
an instance of the learned object, as showed in [Fig. 2(b)–
2(e)]. The use of such prior in the segmentation framework
is a much more interesting application and it is explored in
the following.

3. Knowledge-based Segmentation

The main challenges of knowledge-based segmentation
are: (i) appropriate modeling of shape variations, (ii) suc-
cessful inference between the image and the manifold. Let
us consider the simplest possible scenario that aims to de-
tect an object of particular interest from the background
in an image I. We formulate the segmentation problem
as an energy minimization problem. First, we introduce
our model in the image at an initial position and state (it
will be noted M0). Then, we search the optimal displace-
ments ~D = (~d1, . . . , ~dn) of the control points that give the
best compromise between the pairwise prior constraints, en-
coded in our shape model M, and the fidelity to the image
information. Formally, the segmentation of the image I us-
ing the shape model M is given by:

(
~d1, . . . , ~dn

)
= argmin

~di

E
(
M0, I,

(
~d1, . . . , ~dn

))
.

(10)
The energy E(M0, I, ~D) of displacing the model in the im-
age by the displacement vectors ~D = (~d1, . . . , ~dn) is the
sum of a data-related term V (S0 + ~D, I) expressing the
image cost of displacing the control points in S0 from their
initial position, and a prior term V (P, ~D) expressing the
cost of deforming the pairs in P from their initial position
according to the displacement vectors and with respect to

the prior learned distributions :

E
(
M0, I, ~D

)
= V

(
S0 + ~D, I

)
+ V

(
P, ~D

)
. (11)

We explain in this section how we define these two energy
terms, and we detail in particular the relationships between
the control points and the image domain. We also develop
an optimization procedure that enables to solve (10) using
an efficient discrete optimization algorithm.

3.1. Regional Statistics & Image Segmentation

By applying the data-related cost, we seek the optimal
separation of the object from the background in terms of
visual properties. Let, pobj and pbcg be the conditional den-
sities for these two hypotheses. Given that the control points
S0 + ~D = {x0

1 + ~d1, . . . ,x0
n + ~dn} form a closed boundary,

they partition the image domain Ω into an object domain
Ωobj and a background domain Ωbcg . To simplify the no-
tation here, we will refer to a current configuration of the
control points that will be noted S. Then by considering
the − log of the posterior probabilities, we express the cost
V (S, I) using the regional statistics [21] as follows:

V (S, I) =
∑

y∈Ωobj

− log (pobj (I (y)))

+
∑

y∈Ωbcg

− log (pbcg (I (y))) .
(12)

In order to evaluate this component and associate it with
the proposed shape representation, we decompose the im-
age domain Ω according to the control points S by con-
sidering their Voronoi diagram [Fig. 2(f)]: Ω = ∪n

i=1Ωi,
where Ωi is the Voronoi cell associated with the control
point xi. By intersecting these Voronoi cells with the object
domain and the background domain, we obtain the partition
Ω = ∪n

i=1(Ωobj,i ∪Ωbcg,i) that relates each pixel of the im-
age to one control point, and specifies its class. Then, one
can decompose the global image term (12) into sub-terms
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which are defined at the partition cells as follows:

V (S, I) =
n∑

i=1

Vi(xi, I) (13)

with Vi(xi, I) =
∑

y∈Ωobj,i

− log (pobj (I (y)))

+
∑

y∈Ωbcg,i

− log (pbcg (I (y)))
(14)

being the image-related cost associated with the control
point position xi. These terms can be calculated very effi-
ciently per class by combining rasterization techniques and
fast integral computing over polygons [19]. We should note
that this term uses the entire image domain to determine
the image support and can be replaced either using more
complex descriptors, or through edge-driven support. In
practice, we used simple Gaussian models and mixture of
Gaussians models for the object and the background. Such
a component will perform well if the data support is strong
but will fail to deal with noise, clutter, missing parts, etc.
The use of prior knowledge on the expected geometry of
the shape could address the above mentioned limitations.

3.2. Prior Knowledge & Image Segmentation

In the context of our approach, we have defined the shape
model as an incomplete graph. Furthermore, we were able
to determine an approximate density of this model using a
small number of joint densities. In order to impose the prior,
we minimize the cost V (P, ~D) that we decompose over all
the pairs:

V (P, ~D) = α
∑

(i,j)∈Pl

Vij(x0
i + ~di,x0

j + ~dj)︸ ︷︷ ︸
local prior cost

+ β
∑

(i,j)∈Pg

Vij(x0
i + ~di,x0

j + ~dj)︸ ︷︷ ︸
global prior cost

,
(15)

with Vij(x0
i +~di,x0

j+~dj) = − log
(
pij(x0

i + ~di,x0
j + ~dj)

)
.

(16)
This model allows for the encoding of global dependen-
cies as local combinations of individual pairwise densities.
Some examples of the impact of this term for a random col-
lection of points with respect to the hand model [Fig. 2(a)]
are shown in [Fig. 2(b)-2(e)]. The parameters (α, β) control
the relative influence of inter and intra cluster constraints.

One can now integrate the data term with the prior
term towards knowledge-based segmentation, by combin-

ing (11), (13) and (15):

E
(
M0, I, ~D

)
=

n∑
i=1

Vi(x0
i + ~di, I)

+ α
∑

(i,j)∈Pl

Vij(x0
i + ~di,x0

j + ~dj)

+ β
∑

(i,j)∈Pg

Vij(x0
i + ~di,x0

j + ~dj) .

(17)

3.3. The energy minimization

The optimization of this cost function (17) in the contin-
uous domain is rather problematic. One can expect that it is
not convex and therefore a gradient-based optimization will
fail. In order to optimize such a cost function, we consider
recent results from discrete optimization.

We make two assumptions that are most often verified
in practice. First, the initial positions of the control points
are within the image domain, and that is why we can as-
sume an upper bound on the maximum displacements that
would lead to the solution. Second, we consider that the
precision required about the solution is specified, which en-
ables to choose a quantization step of the displacement vec-
tors ~D. Then, we can approximate the continuous defor-
mations of our shape model towards the solution by a fi-
nite set of displacements vectors ~D = {~d1, . . . , ~dz}. Let
L = {1, . . . , z} be the set of labels associated the quanti-
zation ~D = {~d1, . . . , ~dz} of the displacements. Then, dis-
placing the control point x0

i by the vector ~dli is equivalent
to assigning the label li to x0

i , and the minimization of the
energy in (17) can be written as a labeling problem, or:

(l1, . . . , ln) = argmin
li∈L

E
(
M0, I, (l1, . . . , ln)

)
, (18)

with E
(
M0, I, (l1, . . . , ln)

)
=

n∑
i=1

Vi(x0
i , li)

+ α
∑

(i,j)∈Pl

Vij(x0
i ,x

0
j , li, lj)

+ β
∑

(i,j)∈Pg

Vij(x0
i ,x

0
j , li, lj)

(19)

where Vi(x0
i , li) = Vi(x0

i + ~di, I) and Vij(x0
i ,x

0
j , li, lj) =

Vij(x0
i +~di,x0

j +~dj). In such a context, the problem of find-
ing the most appropriate deformation of the initial shape can
be expressed using an MRF with singleton and pairwise in-
teractions between the control points. We should note that
such an approach is invariant to translation, rotation and
scale (due to the definition of (1)). Recovering the opti-
mal solution of this objective function is known to be an
NP-hard problem and the complexity is influenced mostly
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from the pairwise potentials function. Hence, we consider
an approximate solution to the labeling problem using the
Primal-Dual algorithm [12].

The cardinality of the label set is quite important since
on one hand it defines the accuracy of the search, while on
the other hand increases the complexity of the algorithm. In
order to address the above mentioned issues, first we con-
sider an approach that is incremental in terms of displace-
ments while reducing the number of interactions between
the nodes of the graph, and retaining the ability to encode
the global structure. To this end, we cope with the accuracy
issue, that is closely related to the quantization of ~D, by us-
ing a pyramidal coarse-to-fine approach. Each level of the
pyramid corresponds to a quantization step that is refined
in the following level. To speed up the convergence in each
level of the pyramid, we also adopt an incremental approach
in terms of the label set, where in each iteration t we look
for the set of labels that will improve the current solution by
minimizing:

Et (l1, . . . , ln) =
n∑

i=1

Vi(xt−1
i , li)

+ α
∑

(i,j)∈Pl

Vij(xt−1
i ,xt−1

j , li, lj)

+ β
∑

(i,j)∈Pg

Vij(xt−1
i ,xt−1

j , li, lj) ,

(20)

with xt
i = x0

i +
t∑

τ=1

~dli(τ) , (21)

with li(τ) being the optimal label associated with the ith

control point at time τ . Towards computational efficiency
and localization of a good minimum, we adopt a fast and
efficient method for the optimization, the Primal-Dual al-
gorithm [12] that is based on linear programing and takes
benefit of the duality theorem. The main challenge of op-
timizing the above objective function relates with the fact
the we have arbitrary pair-wise potentials. Therefore the
use of method like graph-cuts [1] is prohibited while at
the same time the use of more advanced optimization like
belief-propagation networks [20] is also problematic due to
the structure of the graph.

4. Experimental Validation
In order to validate the performance of our method, we

considered the application of modeling the hand using a 2D
40-example dataset of annotated left hands, showing differ-
ent relative finger positions, hand sizes, and texture [17]. On
each hand contour, 56 landmarks were used to describe the
structure. We performed clustering in the distribution space
as described in section 2.3, using shape maps [13]. The
clustering provided 11 clusters shown in [Fig. 2(a)]. The

Figure 3: Boxplots of dice overlap coefficients comparing
our method to AAM.

constructed model was used as a shape constraint as shown
in [Fig. 2(b)-2(e)], and applied in different segmentation
settings. We considered a multi-scale implementation of
the approach using gradually an increasing number of con-
trol points to accelerate convergence. First, we segmented
correctly 37 out of the 40 examples of the database. Exam-
ples of the results we obtained are shown in [Fig. 4(a)]. We
also compared quantitatively our method to AAM segmen-
tation [Fig. 3]. We can see in these boxplots that our algo-
rithm performs better quantitatively with examples where
the forearm is hidden by a sleeve. In the case of nude fore-
arms, the data term drives the model to “oversegment” the
hand in comparison with the ground truth, which explains
our results. These “oversegmentations” are visually correct
(especially the fingers are correctly segmented) as we can
see in [Fig. 4(a)]. The three examples where our method
did not succeed are particularly difficult because they ex-
hibit occlusion between the fingers, which can cause fold-
ing in the evolving contour. Towards checking the robust-
ness of the method, we removed some hands parts for sev-
eral examples, and despite the important missing structure,
the results were quite satisfactory as shown in [Fig. 4(b)].
The prior weight in these cases was increased, and enforced
the correct segmentation, as the data term was less reliable.
Furthermore, to validate the robustness of our method, we
added severe Gaussian noise to the database images. The
segmentations obtained in [Fig. 4(a)] are completely or
almost recovered, thanks to the prior knowledge, as it is
shown in [Fig. 4(c)]. Eventually, we used our segmenta-
tion method in a real setting, on hand video frames, with
a cluttered background and partial occlusion cases. [Fig.
4(d)] gives some examples of the obtained segmentations.
We could reproduce the result we obtained on the noisy
images using AAM segmentation [5], but this algorithm
could not reproduce our results for the occlusion cases .In
our experiments, one iteration lasts approximately 1s us-
ing a non-optimized program, on a DELL Duo Computer
(3GHz,3GB).
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5. Discussion

In this paper, we have proposed a novel approach to
knowledge-based segmentation. Our main contribution
consists of modeling the co-dependencies between control
points deformations towards a compact, sparse but efficient
shape representation using an incomplete graph that was de-
termined through an unsupervised clustering approach on
the relevance of statistical behavior of control points de-
formations. This representation is combined with a data
term like regional statistics in order to perform inference
of the model location or analogously segmentation in new
image data. To this end, a MRF is considered where sin-
gleton potentials account for the image support while pair-
wise potentials encode the shape prior. Our approach can
claim certain optimality properties thanks to the efficient
linear programming optimization techniques considered in
this paper. Furthermore, our approach makes full use of the
regional statistics and the obtained minimum is the one cor-
responding to the entire image potential. Our framework is
however general, and we can imagine the use of different
data terms that are more suitable to other applications or in
different settings.

The proposed approach aims to optimize the connectiv-
ity of the graph nodes, and learns the structure and the local
deformation statistics of an object from a set of training ex-
amples. In terms of clustering, the distance between the
observations has a critical impact and should be further in-
vestigated. The temporal aspect of priors is also of great
importance with potential applications to motion analysis,
scene understanding and medical imaging. Therefore, ex-
tending the current framework in this direction would be
also investigated.

Acknowledgments
We thank Radhouène Neji for the insightful remarks on

the graph construction and for his interesting suggestions.

References
[1] Y. Boykov and G. Funka-Lea. Graph cuts and efficient

n-d image segmentation. Int. J. Comput. Vision (IJCV),
70(2):109–131, 2006.

[2] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-
ergy minimization via graph cuts. IEEE T. Pattern Anal.
(PAMI), 23(11):1222–1239, 2001.

[3] Y. Chen, F. Huang, H. D. Tagare, M. Rao, D. Wilson, and
E. A. Geiser. Using prior shape and intensity profile in med-
ical image segmentation. In ICCV ’03: Proc. 9th Int. Conf.
Comput. Vision, pages 1117–1124, 2003.

[4] R. R. Coifman and S. Lafon. Diffusion maps. Appl. Comput.
Harmon. Anal. (ACHA), 21(1):5–30, 2006.

[5] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appear-
ance models. IEEE T. Pattern Anal. (PAMI), 23(6):681–685,
2001.

[6] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Ac-
tive shape models - their training and application. Comput.
Vis. Image Und. (CVIU), 61(1):38–59, 1995.

[7] D. Crandall, P. Felzenszwalb, and D. Huttenlocher. Spa-
tial priors for part-based recognition using statistical models.
In CVPR ’05: Proc. 2005 Conf. Comput. Vision & Pattern
Recogn., pages 10–17, 2005.

[8] D. Cremers, T. Kohlberger, and C. Schnörr. Nonlinear
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(a) Database Examples: Successful segmentations

(b) Finger Collusion - Missing Part Examples. Two first images: difficult examples because of fingers collusions. Three last images: segmentation of
hands with missing parts.

(c) Severe Noise Added: The prior knowledge highly contributes in correctly segmenting very noisy images.

(d) Video Frames - Partial Occlusions. Real video frames: cluttered background and occlusions.

(e) AAM results: succeeds with the learning examples but fails with occlusions. Initialization on the left - result on the right.

Figure 4: Model-based segmentation of the hand. Initialization is shown in white, segmentation in red, and the final control
points positions in blue.
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