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Abstract
This paper presents a nonparametric approach to label-

ing of local image regions that is inspired by recent develop-
ments in information-theoretic denoising. The chief novelty
of this approach rests in its ability to derive an unsuper-
vised contextual prior over image classes from unlabeled
test data. Labeled training data is needed only to learn a
local appearance model for image patches (although addi-
tional supervisory information can optionally be incorpo-
rated when it is available). Instead of assuming a paramet-
ric prior such as a Markov random field for the class la-
bels, the proposed approach uses the empirical Bayes tech-
nique of statistical inversion to recover a contextual model
directly from the test data, either as a spatially varying or
as a globally constant prior distribution over the classes in
the image. Results on two challenging datasets convincingly
demonstrate that useful contextual information can indeed
be learned from unlabeled data.

1. Introduction

This paper considers the problem of local region labeling
in images: we want to classify every pixel (or small patch)
by its semantic class, e.g., sky, grass, water, building, etc.
This task is challenging because of the well-known “aper-
ture problem” of local ambiguity: for example, a uniformly
blue image patch may be a piece of sky, calm water, or a
painted wall. To resolve this ambiguity, it is necessary to
look at the patch within the context of a larger image area
surrounding it. Therefore, a good approach to local region
classification must incorporate a contextual model that cap-
tures the probability of different classes occurring nearby,
or sharing a specific spatial relationship. Recent litera-
ture contains many approaches for contextual image label-
ing [4, 6, 11, 18, 19, 20, 21]. Most existing contextual mod-
els must be learned from training data that contains a rep-
resentative sampling of all possible inter-class interactions.
Since the number of even pairwise interactions is quadratic
in the number of classes, it is usually difficult to get enough
data to estimate an expressive context model. One tradi-
tional way to deal with this difficulty is to adopt a sim-

ple parametric prior that only encodes generic assumptions
about the smoothness of the label field — e.g., a Markov
Random Field with Potts potentials [8]. Recently, some
researchers have suggested more creative ways of dealing
with sparse training data, such as mining semantic knowl-
edge about class associations from the Web [11].

In this paper, instead of making strong smoothness as-
sumptions or searching for external sources of knowledge
to help with context estimation, we ask whether there is any
low-level information intrinsic to the unlabeled test images
that can allow us to learn a contextual model over class la-
bels. We are specifically interested in the scenario where
the labeled training data may be sufficient for learning what
small patches from each class look like locally, but not for
observing all the possible ways in which patches from dif-
ferent classes can co-occur within larger neighborhoods. In
this situation, deriving a contextual model directly from the
test data would be very useful because, after all, the test
data contains precisely the inter-class interactions that we
have to get right! Our work can also be viewed as a princi-
pled attempt to address the problem first posed by Divvala
et al. [3]: starting with an imperfect region classification
model learned from limited training data, can we improve
its performance by leveraging the wealth of unlabeled data
in the potentially much larger test set?

How can it be possible to deduce priors over class la-
bel sequences from an unlabeled image collection? At first
glance, it may seem counter-intuitive that this can be done at
all. However, provided there is a sufficiently stable stochas-
tic relationship between class labels of individual local re-
gions and corresponding image observations, then the se-
quence of image observations forms an indirect and noisy
reflection of the unseen class label sequence and retains a
lot of information about the structure of that sequence. In
effect, if we know the process that converts local labels to
image features, and if we observe a sequence of image fea-
tures, we should be able to go back from the features to
the labels. This insight can be formally captured with the
help of empirical Bayes methodology from statistics litera-
ture [13, 14], in which priors are inferred from data instead
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Figure 1. Image formation model used in this work. Image observations
(in our case, quantized image features such as texture and color) are pro-
duced by a stochastic or “noisy” mappingQ applied to the underlying true
image labels. We view region classification as the process of denoising the
observation sequence to recover the underlying clean label sequence.

of being specified in advance. This methodology has re-
cently given rise to an information-theoretic framework of
universal denoising [22], which, in turn, has inspired our
own work. We think of the stochastic mapping from class
labels to observations as a “noisy channel,” and then we in-
fer the underlying class labels sequence by denoising the
observation sequence (Figure 1).
Figure 2 gives a pictorial overview of the approach pro-

posed in this paper. We use the training data only to learn
the local likelihood model, or the conditional probabilities
of patch-level observations given class labels. Intuitively,
the local likelihood model captures the appearances of in-
dividual classes, which are the basic “building blocks” of
scenes. The knowledge of the local likelihood model then
allows us to recover a contextual prior over a sequence of
test observations using the empirical Bayes technique of
statistical inversion. Finally, the contextual prior is com-
bined with the local likelihood to perform Maximum a Pos-
teriori (MAP) region classification. This approach will be
formally described in the text section, followed in Section 3
by implementation details and experimental results.

2. The Approach
Figure 1 illustrates the basic “generative” framework fol-

lowed in this paper. Underlying each image is a sequence
or a field of class labels. Crucially, we do not assume any
parametric prior model (such as an MRF) for this sequence.
Instead, our priors will be deduced in a data-driven fashion
by looking at the statistical regularities in the observations.
Each class label x generates an image patch through some
unmodeled image formation process, and each patch in turn
undergoes a feature extraction and quantization step to pro-
duce a discrete observation y (the particular features and
quantization procedures used in our work will be described
in Section 3.1). The composition of the image formation
and feature extraction steps gives rise to a stochastic map-
ping from class labels x to observations y. This mapping
is fully described by the likelihood model of observations
given underlying classes. We can represent these likeli-
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Figure 2. Overview of the proposed approach. At training time, all we
need to learn is a likelihood modelQ(y|x) for local image patches y given
class labels x – that is, we only need to know what image patches from
different scene classes look like locally, not how they co-occur. The con-
textual information is recovered directly from the unlabeled test images by
exploiting the statistical redundancy of the observations. We group obser-
vations that occur in similar neighborhood contexts and obtain an estimate
of the distribution of underlying class labels in each group by statistical
inversion (Section 2). This yields a contextual prior that is combined with
the local likelihood to perform MAP classification of regions.

hoods in the form of a matrix Q each of whose rows Q(·|x)
is the conditional probability distribution of the observation
Y given x. The training stage of our approach consists of
learning the likelihood model from a set of training obser-
vations paired with their class labels.
Next, we need to know how to perform region classifi-

cation on a set of previously unseen test images. These test
images correspond to a sequence of observations y, and our
job is to infer the underlying class label sequence x. We
conceptualize this problem as denoising, or recovery of a
random sequence whose elements are independently cor-
rupted by a known noisy channel (i.e., the stochastic map-
ping Q), where we seek to minimize the expected fraction
of incorrectly recovered symbols. Denoising can be for-
mulated as a compound decision problem [12], or a set of
simultaneous statistical decision problems that have some
shared structure. In our case, each separate problem is the
recovery of a correct class label for a single test observation,
and the shared structure comes from the assumption that the
local stochastic mapping from the “clean” sequence of class
labels to the “noisy” sequence of observations is the same
for all image locations.
The goal of constructing robust and tractable decision

procedures that perform well without being tuned to a spe-
cific parametric model has given rise to a powerful class of
nonparametric universal denoising techniques [22], which
can asymptotically approach optimal performance among
all sliding-window schemes on any stationary ergodic ran-
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dom field. The idea behind universal denoising is to use
empirical frequencies of observed noisy symbols condi-
tioned on contexts computed from other observations in
their neighborhood to infer the corresponding frequencies
of the underlying clean symbols.
In the following, we adapt the methodology of [22]

to derive a denoising-type procedure for region classifica-
tion. Formally, a compound decision procedure is a rule
for obtaining the estimates x̂i of the clean symbols xi,
i = 1, . . . , n, based on the entire observation sequence y,
i.e., x̂i = fi(y) for some function fi. The goal is to make
the average probability of error 1

n

∑n
i=1 P [fi(Y) �= Xi] as

small as possible without assuming a specific form for the
prior distribution for x.
According to Bayesian decision theory [14], the optimal

estimate of xi is the one that has maximal posterior proba-
bility given the entire test sequence:

x̂i = arg max
x

P(Xi = x|Y = y) .

Unfortunately, estimating label posteriors conditioned on
all possible test sequences is not feasible. In order to ar-
rive at a more tractable and realistic decision procedure,
we need to make some simplifications. To begin with, we
will restrict the compound decision procedures under con-
sideration to sliding-window rules that “see” observations
in a suitably defined neighborhood of a given patch. This
restriction is realistic, provided the neighborhood is large
enough to capture most of the contextual influences on xi.
For each i, let yN (i) denote the vector of observations in
i’s neighborhood, let yi = (yi,yN (i)), and suppose that an
estimate of xi is given by x̂i = fi(yi). Now the problem
of optimal estimation of xi hinges on the estimation of the
posterior P(Xi = xi|Yi = yi). We can further assume that
each observation yi is conditionally independent of all the
other observations given its label xi (which corresponds to
the factorized likelihood model adopted by many MRF ap-
proaches to image labeling [8]). With this assumption, we
can write down a simplified posterior probability:

P(xi|yi) ∝ P(yi|xi,yN (i)) P(xi|yN (i))
= Q(yi|xi) P(xi|yN (i)) .

Because there is still a very large number of possible neigh-
borhood sequences yN (i), we make our model more flex-
ible by conditioning on contexts ci, or functions of yN (i)

defined to make the estimation task easier. For example, a
very simple kind of context function would be a histogram
of symbols in yN (i). In Section 3, we will discuss the actual
context functions used in this work. Once a suitable context
function has been defined, we can replace P(xi|yN (i)) by
P(xi|ci) and define our decision procedure by

x̂i = arg max
x

Q(yi|x)P̂ (x|ci) , (1)

Supervised (training) phase: learn local likelihood modelQ(y|x)
on a training set of labeled patches.

Unsupervised (test) phase:
1. Extract observation sequence y from the test images.
2. For each observation yi, compute context ci.
3. For each test patch i:

• Estimate empirical distribution P̂ (y|ci) from the entire
test sequence.

• Obtain contextual prior P̂ (x|ci) by statistical inversion
(eq. 2).

• Find x̂i by MAP rule: x̂i = arg max
x

Q(yi|x)P̂ (x|ci).

Table 1. Summary of the empirical Bayes approach to contextual region
classification (see also Figure 2).

where P̂ (x|ci) is an empirical estimate of P(xi|ci). But how
can we obtain this estimate if we do not actually observe the
values of x at test time? We can find the empirical distribu-
tion P̂ (y|ci) of the observations given their contexts, but
how can we go from P̂ (y|ci) to P̂ (x|ci) without any strong
assumptions on the distribution of x?
This is where we need to bring in the idea of statistical

inversion. We have

P(Y = y|c) =
∑

x

Q(y|x) P(X = x|c) .

Let P̂X|c and P̂Y |c be column vectors representing empiri-
cal estimates of P(X|c) and P(Y |c), respectively – and at
this point, we can only obtain P̂Y |c, while P̂X|c remains an
unknown quantity. By the law of large numbers, we can
write P̂Y |c ≈ QT P̂X|c. In principle, this is a linear equa-
tion that can be solved for P̂X|c. It can also be shown that
Q−T P̂Y |c (whereQ−T is the Moore-Penrose pseudoinverse

of QT ) is a statistically consistent estimate of P̂X|c, i.e., an
estimate that converges to the true distribution with proba-
bility one [22]. However, literal inversion is not guaranteed
to be consistent for small sample sizes, possibly resulting in
solutions that have negative components and do not sum to
one. Instead, we obtain P̂X|c by minimizing over all clean
distributions PX the Kullback-Leibler divergence between
P̂Y |c, the empirical noisy distribution, and QT PX , the dis-
tribution obtained by applying the stochastic map given by
Q to the clean distribution PX :

P̂X|c = arg min
PX

D(P̂Y |c‖QT PX) . (2)

This optimization problem is convex, and can be solved iter-
atively by Expectation-Maximization (EM). For complete-
ness, the update equation is as follows:

P
(t+1)
X|c (x) = P

(t)
X|c(x)

∑

y

Q(y|x)P̂Y |c(y)
∑

x′ P
(t)
X|c(x

′)Q(y|x′)
.

Now all the ingredients are in place, and we can write down
a very simple procedure for converting the output sequence
y into an estimated clean sequence. This procedure, given
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in Table 1, implements the MAP rule (1) where the like-
lihoods Q(yi|x) are learned from the training data, while
the contextual priors P̂ (x|ci) are estimated from the test se-
quence via statistical inversion.

3. Implementation and experiments
This section describes our implementation of the pro-

posed empirical Bayes scheme. Our main evaluation plat-
form is the standard MSRC dataset [19], which includes 21
common scene classes such as sky, grass, buildings, people,
dogs, etc. In Section 3.6, we will show additional results on
the geometric context dataset of Hoiem et al. [6].

3.1. Local likelihood model
We perform feature extraction by dividing the images

into non-overlapping 20 × 20 pixel patches and computing
four types of features from each patch: position, SIFT [9],
textons, and color. Textons are computed by convolving the
images with a filter bank and recording the index of the filter
with the maximum absolute response at each pixel. The tex-
ton descriptor is the histogram of texton indices within the
patch. We use a subset of the LM filter bank [7] consisting
of 18 second-derivative-of-Gaussian and 6 Laplacian filters,
and 13 filters from the S filter bank [17], for a total of 37
filters. Because we distinguish between positive and neg-
ative filter responses, the texton histogram has 74 dimen-
sions. For color, we compute a 48-dimensional descriptor
by subdividing the patch into a 4 × 4 grid and finding the
mean color (in the CIE Lab space) of each grid cell. Our
feature extraction scheme is similar to that of Verbeek and
Triggs [21], except that they have a more sophisticated color
descriptor and no texton channel.
We quantize SIFT, texton, and color descriptors using

visual codebooks of 500 centers each learned from train-
ing data using k-means. Position is quantized using a uni-
form 5 × 5 grid superimposed over the image. To cope
with the 5003 × 25 possible distinct output index combi-
nations, we make the usual Naive Bayes assumption that
the feature channels are conditionally independent given
the underlying class label x. Then the likelihood model is
given by Q(y|x) =

∏
m Qm(ym|x), where Qm(ym|x) is

the stochastic mapping between x and themth feature type,
and eachQm is estimated separately by smoothed empirical
counts from the labeled training set. Table 2 reports maxi-
mum likelihood classification results on the MSRC dataset
using this model with different combinations of cues (here
and in all the following, we use the standard split of this
dataset into 276 training and 256 test images [19]). The
table confirms that using all four cues together is beneficial.
It must be noted that the above vocabulary-based fea-

ture extraction scheme is just one of many possible schemes
that can be used with the general framework of Table 1.
Other discrete observation models, such as randomized
forests [18, 20], can be accommodated just as easily.

Feature combination Per-patch Per-class
SIFT only 24.04 18.63
SIFT + Texton 32.42 24.86
SIFT + Texton + Color 50.02 37.31
SIFT + Texton + Color + Pos 53.26 40.65

Table 2. The performance of the local likelihood model on the MSRC
dataset. Following standard practice, we report both the overall per-patch
classification rate (i.e., the percentage of all regions correctly classified)
and the average of per-class classification rates.

3.2. Neighborhood contexts

Figure 3. Con-
centric context.

We now discuss our representation of
the context function. We have experi-
mented with several ways of subdividing
a square neighborhood around a central
patch, looking for the right tradeoff be-
tween spatial selectivity and invariance to
permutations of context elements. The
best performance was obtained by subdividing the neigh-
borhood into concentric “rings” (Figure 3). The context
function for a given neighborhood is computed by taking
the marginal histograms of SIFT, color, and texton output
labels within each “ring” and concatenating them together,
resulting in a high-dimensional but sparse vector of counts.
Note that since the histograms within each “ring” are nor-
malized, the observations that occur closer to the center are
weighted more heavily in the context.

Having defined the form of the context function, we next
need to be able to estimate P̂ (y|c), the probability that a
given observation y occurs in the center of a neighborhood
with context c. This is a challenging task, as it is very rare to
observe multiple identical contexts in the image sequence.
To deal with this, we use a k-nearest neighbor estimate: For
each region i, we find k = 500 other regions whose con-
texts are the most similar to ci, where the similarity func-
tion is given by histogram intersection which can be com-
puted very quickly for sparse vectors, and let P̂ (y|ci) be
the empirical distribution of observations y over these con-
texts. Currently, we do exhaustive nearest neighbor search
(for the MSRC dataset, this amounts to classification time
of about three to five seconds per image, depending on the
dimensionality of the context), but in the future we plan to
explore fast approximate search [16] to speed up this task.

Table 3(a) shows the performance of our classifica-
tion scheme using the neighborhood context representation.
Compared to the local likelihood results shown in Table 2,
incorporating the contextual prior improves the overall ac-
curacy by over 10%. This confirms that the unlabeled test
set does indeed contain useful contextual information that
can be used to improve performance over purely local re-
gion classification. As a basic check, we would also like
to know how unsupervised contextual priors compare to su-
pervised ones, when the training data allows us to estimate
them. Table 3(b) shows the performance achieved on the
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Context type Per-patch Per-class
(a) Neighborhood (unsupervised) 63.65 52.68
(b) Neighborhood (supervised) 64.60 52.63
(c) Image-level (unsupervised) 66.20 56.49
(d) Neighborhood + image (unsupervised) 69.14 59.63
(e) Unsupervised + supervised 72.14 62.80
Table 3. Contextual classification performance for the MSRC dataset us-
ing different context models (see text). The size of the neighborhood con-
text is 4 (exactly as shown in Figure 3).

MSRC dataset when the prior P̂ (x|c) is empirically esti-
mated directly from training data, instead of being obtained
from the test set by statistical inversion. This result is re-
markably close to that of Table 3(a), giving strong evidence
of the power of the empirical Bayes approach to extract ac-
curate contextual priors from unlabeled data.

3.3. Unsupervised image-level contexts
An important implementation issue is selecting the spa-

tial support of the context. Figure 4 shows a typical example
of how the prior changes as the context neighborhood be-
comes larger. Not surprisingly, as the size of the context is
increased, the prior becomes smoother and more spatially
uniform. It is especially interesting to consider the “lim-
iting” case of priors that are constant over the entire im-
age. To compute such image-level priors, we can take the
following shortcut: instead of performing nearest-neighbor
context search for each region in the image, we can simply
declare that all the regions in the same image share the same
context c and that P̂ (y|c) for that context is the empirical
distribution of observations in the image.
Table 3(c) shows the classification rates for image-level

contexts obtained in this way. As compared to the perfor-
mance of the neighborhood context shown in Table 3(a),
we can see that the per-patch rate has increased by over 2%,
and the per-class rate has increased by over 3%. Thus, for
the MSRC dataset at least, the global or spatially constant
contextual prior seems to be more effective than the neigh-
borhood prior. But does this mean that our approach cannot
derive any advantage from spatially varying neighborhood
priors? The answer is a definite “no,” for two reasons. First,
as will be seen in Section 3.6, the neighborhood context can
be more effective than the global context on image collec-
tions with different characteristics, such as the geometric
context dataset [6]. A second, more compelling argument

Context size−→

Image

1 2 3 5 7

ground prior

cat prior
Figure 4. Dependence of contextual prior on context size (the number of
concentric “rings” in Figure 3).

is that we can improve the overall system performance by
combining neighborhood and image-level contexts, as will
be described in the next section.
But first, we would like to discuss an intriguing connec-

tion that emerges between our proposed approach for com-
puting image-level contexts and probabilistic Latent Se-
mantic Analysis (pLSA) [5], a popular document model
that has been successfully applied to images [15, 21]. This
model was originally developed as an unsupervised pro-
cedure for discovering latent document structure in terms
of underlying “topics” that generate the observed words.
In relation to the framework of this paper, words corre-
spond to observations y, and topics to class labels x. The
distribution of words in a document d follows P(y|d) =∑

x Q(y|x) P(x|d), where Q(y|x) is the conditional prob-
ability of word y given topic x and P(x|d) is a document-
specific topic probability. In standard pLSA, both Q(y|x)
and P(x|d) are assumed unknown, and EM is used to es-
timate them simultaneously. However, if we assume Q to
be known, then EM reduces to the optimization problem
in eq. (2). This is known as the fold-in heuristic, and it
is used to estimate the topic probabilities for new test docu-
ments after the likelihoods of words given topics are learned
on a training set [5]. It has been argued that pLSA is not
a “true” generative model because the prior over topics is
conditioned on the “dummy” variable d [2]. But from the
empirical Bayes perspective, d is actually the context, and
pLSA can be thought of as a data-driven technique that uses
the fact that a given group of words or observations all orig-
inated from the same document or image to infer a context-
specific prior via statistical inversion.
It is very interesting that the fold-in heuristic for pLSA

emerges as a special case of our approach, and that the em-
pirical Bayes perspective helps to give a more satisfying in-
terpretation of pLSA. Note, though, that in its full general-
ity, our approach is quite different from pLSA. First, pLSA
is a completely unsupervised procedure where the topic is a
latent variable in a generative model and the objective is to
maximize likelihood of the observed data. By contrast, our
approach is discriminative and its objective is to minimize
the average probability of error in a compound decision
problem. Second, our approach is based on a much more
general notion of context than pLSA. Our context is not
restricted to image-level “dummy variables” but can vary
from region to region in the same image, and regions from
different images can share the same context. Furthermore,
our approach offers the flexibility of combining image-level
and spatially varying priors, as discussed next.

3.4. Combining neighborhood and image contexts
Intuitively, neighborhood and global contexts should be

complementary, as they capture different types of depen-
dencies. The neighborhood context can group patches from
different images that are surrounded by similar patterns of
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Image Ground truth Initial labels Final labels Contextual priors

(a) 52.19% 92.24% building ground sky tree

(b) 60.33% 82.19% building grass plane sky

(c) 49.38% 87.92% bike ground building

(d) 77.12% 93.91% grass cow

(e) 11.63% 10.36% face dog ground

(f) 60.37% 72.96% ground dog cat

Figure 5. Examples of region classification on the MSRC dataset (best viewed in color). Each row shows (from left to right): the original image; the
ground-truth labeling; the initial labeling produced by the local likelihood model (the percentage of correct labels is indicated below the image); the final
labeling produced by the combined contextual model (Table 3(e)); contextual priors for the most common classes in the image.

observations, and can yield spatially varying priors. The
image-level context can capture the dependence of all the
patches within the image on the same underlying scene, but
it can only produce priors that are constant over the entire
image. How can we obtain priors that combine image-level
regularization and spatial variability?

It is important to realize that the essential function of
context within our empirical Bayes framework is to pool
together image regions whose underlying class labels have
the same expected statistical behavior. For this reason, the
context representation should be designed to be as infor-
mative about the labels x as possible. In particular, if we
have a class label sequence x̂ estimated with the help of
some “oracle,” we can try to define the context function
in terms of this sequence instead of the raw observations
y. Accordingly, we take the class labels estimated with the
help of image-level contexts as such an “oracle” and form
a neighborhood context by histogramming these estimated
labels using the concentric pattern of Figure 3. This pro-
cedure effectively combines image-level and neighborhood
contexts by applying two rounds of label estimation in se-
quence, where the first round uses image-level contexts and
its output is used to form neighborhood contexts in the sec-
ond round. As can be seen from Table 3(d), this approach
achieves an improvement of about 3% over the image-level
contexts (c). Figure 5 shows the spatially varying priors
computed with this approach on sample MSRC images.

Note that nothing stops us from iterating the above pro-

cess further. Every time we compute an improved esti-
mate of class labels over the images, we can re-compute
the neighborhood context using the new labels and re-
run the empirical Bayes algorithm to get a further im-
proved estimate. This strategy, similar to iterated condi-
tional modes [1], tends to converge very quickly (i.e., in
about three iterations), and typically results in a further im-
provement of just under 1%.

3.5. Additional evaluation
The contextual priors described so far are extracted by

statistical inversion directly from the unlabeled collection
of test images, when all we know in advance is the local
likelihood model Q(y|x). As far as we know, this type of
unsupervised context is completely novel. However, it is
also true that by restricting ourselves solely to unsupervised
context we are not utilizing all the possible information that
may be present in the training set. In this section, we show
that it may be possible to improve performance by incorpo-
rating additional supervisory information when it is avail-
able. Specifically, we show how to incorporate a supervised
image-level prior obtained through discriminative training
of global image models, as proposed by [20].
To learn a supervised image-level prior, we need a train-

ing sample of images labeled by the classes that they con-
tain. Clearly, both patch-level and image-level labels can
come from the same training set if it is labeled at the pixel
level (as the MSRC dataset is). Alternatively, the image-
level labels can come from a separate, weakly labeled col-
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Method Per-patch Per-class
Local maximum likelihood 57.21 45.92
Neighborhood (unsupervised) 62.44 48.71
Image-level (unsupervised) 60.86 48.23
Neighborhood + image (unsupervised) 63.85 51.03
Unsupervised + supervised 64.08 51.13

Table 4. Results on the geometric context dataset.

lection. Given this additional supervisory information, we
train binary support vector machines to predict the presence
of each target class in the image as a whole. The image-
level feature vectors on which the SVMs are trained are
given by global histograms of quantizer labels for the SIFT,
texton, and color features extracted from the image, con-
catenated with the histogram of per-patch class labels esti-
mated using the unsupervised image-level prior. The output
of the binary SVM corresponding to class x is converted to
a probability in the standard fashion [10] and becomes a su-
pervised image-level prior P (x). This prior is then used to
“modulate” the unsupervised contextual prior by multipli-
cation, as suggested in [20]. Table 3(e) shows the perfor-
mance obtained by the hybrid unsupervised/supervised sys-
tem, which improves over the unsupervised priors by about
3%. This is our best performance, which exceeds [19], is
comparable to [18, 21], but is below a few state-of-the-art
supervised methods [11, 20]. Overall, this is very encour-
aging for a new method that is the first to explore an un-
supervised notion of context. Unlike more mature super-
vised methods, ours can learn all it needs from a “pile” of
labeled local patches, and recover a prior contextual model
over classes “on the fly” from the unlabeled test set.
Most importantly, our results provide a convincing ini-

tial demonstration of the potential value of the empirical
Bayes framework, confirming that it can extract contextual
priors of non-trivial discriminative power from unlabeled
data. The examples of Figure 5 show that the priors inferred
by our method are perceptually plausible, in that they cor-
rectly capture the identities and overall spatial organization
of the major classes in the image. In some cases, these pri-
ors can even be more accurate than the ground truth because
they correctly “fill in” background regions where the labels
are missing, such as the tree in (a). Many of the confusions
of our method are also understandable: in (e), a close-up of
a flesh-colored dog’s face is confused with a human face,
and in (f), a cat is confused with a dog. Finally, Figure
6(a) shows the magnitude of improvement of the contex-
tual model over the local likelihood model for individual
images. The average per-image improvement is 18.46%.
This is the extent to which we can successfully “denoise”
the image observations to recover the original class labels.

3.6. The geometric context dataset
In this section, we report results of our method on the

300-image geometric context dataset [6]. The seven classes
in this dataset correspond to geometric surface types: sky,

(a)

sky ground vert. sky ground vert.
sky 92.5 0.3 7.2 90 0 10
ground 1.4 78.0 20.7 0 78 22
vertical 3.9 11.8 84.3 2 9 89

Our method Hoiem et al. [6]

(b)

center left right solid porous center left right solid porous
center 28.1 7.8 17.0 29.4 17.6 55 2 6 18 19
left 14.6 18.6 21.9 30.7 14.0 46 15 4 21 15
right 16.4 7.4 35.6 24.8 15.8 38 3 21 21 17
solid 11.3 2.8 5.1 64.9 15.8 20 2 3 50 26
porous 5.8 2.4 3.3 13.8 74.7 14 1 2 8 76

Table 5. Comparison with [6] for (a) the three main classes and (b) the
five vertical sub-classes.

ground, solid, porous, and vertical facing left, right, and
center. We use five-fold cross-validation with the same sub-
sets as [6], and the results are given in Table 4. Unlike on the
MSRC dataset, the image-level context here is weaker than
the neighborhood context, and incorporating additional su-
pervisory information (last line of the table) gives little im-
provement. This is due to the fact that the relative frequen-
cies of the geometric classes are much more uniform than
those of theMSRC classes. Also, while a typical MSRC im-
age contains only a small subset of the 21 classes, a typical
geometric context image contains a majority of the seven
geometric classes, resulting in “flatter” image-level priors.

Table 5 compares the performance of our system with
that of Hoiem et al. [6], which is specifically tailored for
the task of geometric context classification. The two ap-
proaches have comparable performance on the three major
classes (sky, ground, and vertical), but our approach gener-
ates more confusion between the sub-classes based on ver-
tical surface orientation (left, right, center). We conjecture
that specialized non-local cues used by [6], such as statis-
tics of lines and vanishing points, are necessary to achieve
higher accuracy on those classes. Figure 7 gives a few ex-
ample images classified by our system. Example (d) shows
that, as with many other image labeling approaches, the ad-
dition of a prior can sometimes make the initial labeling
worse by converting a large chunk of the image to an in-
correct class. Figure 6(b) confirms that there is a tendency
for contextual classification to decrease the accuracy of lo-
cal labelings that are poor to begin with. Nevertheless, the
application of our contextual model to this dataset results in
an average improvement of 6.8% per image.

MSRC Geometric context
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Figure 6. Final (contextual) vs. initial (local) performance for individual
images. All the data points above the diagonal line correspond to images
whose classification rates have improved. For the MSRC dataset, the av-
erage (resp. maximum) improvement is 18.46% (resp. 63.51%), and for
the geometric context dataset, it is 6.81% (resp. 27.33%).
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Image Ground truth Initial labels Final labels Contextual priors

(a) 62.56% 82.91% ground sky right left

(b) 68.97% 87.66% ground solid porous right

(c) 60.18% 78.93% ground solid porous sky

(d) 42.18% 33.95% ground porous center sky

Figure 7. Examples of region classification on the geometric context dataset (best viewed in color).

4. Conclusion
In this paper, we have presented a solution to the re-

gion classification problem based on the empirical Bayes
tradition [13] and on recent developments in information-
theoretic denoising [22]. We argue that at the scale of an
individual patch, the stochastic mapping from a semantic
class label to the corresponding image observation can be
learned reasonably well from a sufficiently representative
sample of labeled patches, while the detailed class composi-
tion of an image may vary significantly from scene to scene,
and is rather more difficult to learn in advance. Formaliz-
ing this intuition results in a novel, principled, and simple
method for extracting contextual information directly from
unlabeled test data, which can potentially lead to advances
in labeling of large-scale, sparsely labeled datasets such as
that of [3]. To make our method scale to such datasets, we
plan to replace the exhaustive search that is currently used to
estimate contextual probabilities by fast approximate search
techniques such as locality sensitive hashing [16] or ran-
domized forests [18, 20]. Another avenue for future work is
to make our method completely unsupervised by using EM
(as in pLSA) to simultaneously infer the local likelihood
model and the contextual priors.
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